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Abstract 

The patient’s lifetime is significantly increased by an early detection of 

Skin Cancer (SC). Nevertheless, none of the existing works 

concentrated on analyzing the pitting/crusting ratio. Therefore, this 

paper proposes an effective Dermoscopy, Deep Incremental 

Convolutional Elastic-tanh Pooling Neural- Cosinu-sigmoidal Linear 

Unit Network (DICEPN-CLUN)-based pitting/crusting ratio 

estimation and multiclass SC classification employing dermoscopy 

images.  Primarily, the International Skin Imaging Collaboration-2019 

(ISIC-2019) dataset is gathered and then pre-processed. Afterward, the 

hair removal process is done, followed by lesion segmentation. 

Likewise, from the segmented lesions, the 3D heat map is constructed. 

Similarly, from the dataset, the Metadata is extracted, followed by data 

pre-processing. Then, the features are extracted. In the meantime, the 

pitting/crusting region identification and pitting/crusting ratio 

estimation are carried out. An effective Fuzzy Rational Quadratic 

Weibull Inference System (FRQWIS) is established to identify the PCR. 

Lastly, the eight categories of SC are efficiently classified by the 

proposed DICEPN-CLUN. Hence, the proposed work obtained better 

outcomes with 99.9046% accuracy. 
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1. INTRODUCTION 

Globally, one of the most dangerous cancers that cause 

widespread health illness is SC [1, 2]. Essentially, genetic and 

environmental factors cause SC [3, 4]. The most aggressive form 

of SC is melanoma [5]. To identify the SC, many researchers have 

established Machine Learning (ML) along with Deep Learning 

(DL) methodologies [6]. Currently, dermoscopy plays a prime 

role in classifying SC [7, 8]. To perform SC detection, the 

prevailing works utilized Convolutional Neural Network (CNN) 

[9, 10]. Nevertheless, none of the existing studies focused on 

analyzing the PCR during SC classification. In the prevailing [11], 

the presence of hair on the skin’s surface obscured the important 

visual features of the lesions. The existing [12, 13] failed to 

consider important metadata and also struggled to accurately 

segment the skin lesions owing to the surface curvature. Thus, a 

novel DICEPN-CLUN-based PCR estimation and multiclass SC 

classification is proposed in this paper. 

The paper is structured as: The related works are exhibited in 

Section 2, the proposed scheme is derived in Section 3, the 

proposed model’s performance is validated in Section 4, and 

finally, Section 5 concludes the article.  

 

 

2. LITERATURE SURVEY 

In [12] examined a hybrid ML and DL-based SC 

classification. Here, the features were inputted to the Support 

Vector Machine (SVM), which classified the SC efficiently. 

Nevertheless, owing to the lack of contextual factors, this model 

was ineffective. Likewise, [14] scrutinized a DL-based multi-

classification of SC using Dermoscopic Images (DI). Here, to 

classify the SC, the CNN was established. This approach had 

better accuracy. Nevertheless, this model was only suitable for 

fair-skinned subjects. Additionally, [13] offered an automatic SC 

classification based on a multi-feature fusion scheme. To perform 

SC classification, the lesion descriptors were subjected to ML 

models like SVM. This model had high consistency. 

Nevertheless, due to the surface curvature, this method was less 

significant. Moreover, [11] advanced DI-based melanoma 

detection using DL. To perform melanoma lesion classification, 

the DCNN was used. This model had higher superiority. 

However, owing to the presence of hair artifacts, this model was 

less significant. Similarly, [15] applied a multi-classification of 

SC based on DL. Primarily, the DI was subjected to the Visual 

Geometry Group (VGG)-16 and CNN, which classified the SC 

efficiently. Nevertheless, this model had biased outcomes. Then, 

[16] utilized Vision Transformer (ViT) and CNN for skin disease 

classification. Here, the segmentation and augmentation were 

integrated with ViT. Then, CNN was utilized for skin disease 

classification. However, diverse skin tones were not considered, 

thus reducing the overall performance. Meanwhile, in [17], the 

attention mechanism and Swin Transform were utilized for skin 

cancer diagnosis. The Hybrid Shifted Window Multi-head Self-

Attention (HSW-MSA) technique was utilized to improve the 

training efficiency. On the other hand, the bias errors were not 

rectified. Next, the prevailing [18] utilized attention-based Dual-

path Feature Fusion (DFF) for automatic skin lesion 

segmentation. At first, the lesion boundaries were identified. 

Next, the context learning was done using Multiscale Feature 

Selection (MFS). The semantic and facial features were integrated 

using DFF. Yet, the end-to-end detection of lesions was difficult 

to detect. Moreover, the [19] presented DL-based skin lesion 

segmentation using skin color bias. The Fitzpatric technique was 

utilized for detecting skin tone. Then, by using the U-Net and 

Deep Neural Network (DNN), the segmentation was carried out. 

But, the unknown data could not be analyzed. In the meantime, 

the [20] presented Federated Learning for skin lesion diagnosis. 

Initially, the skin images were collected, and the features were 

extracted. Then, the CNN was utilized along with Federated 

Learning for SC identification. Thus, the model aggregated the 

global server and updated the SC types for accurate classification. 

However, the unknown data could not be analyzed properly. 
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3. PROPOSED FRAMEWORK FOR MULTI-

CLASS SKIN CANCER CLASSIFICATION 

Here, by using DI, a novel DICEPN-CLUN-based 

pitting/crusting ratio estimation and multiclass SC classification 

is implemented. A novel Contrast-Discus Transform Limited 

Adaptive Histogram Equalization (CDTLAHE) is used to 

perform contrast enhancement, thereby enhancing the surface 

features. In Fig.1, the proposed methodology’s architecture is 

given. 

 

Fig.1. The conceptual framework of the proposed approach 

3.1 ISIC-2019 DATASET 

Primarily, the ISIC-2019 dataset is gathered. The ISIC-2019 

dataset contains a collection of DI ( )h regarding various types 

of SC.  

 
1 2, ,h H    =     Here, 1h to H=  (1) 

Here, H implies the number of input DI. 

3.2 IMAGE PRE-PROCESSING 

Then, to enhance the model’s performance, the 
h is pre-

processed. The actual dimensions of all the images in the 
h is 

transformed into the same dimensions in image resizing. Next, by 

using the median filter, the noise presented in the resized images 

( ) is eliminated.  

 ( ) ( ) ( ) , , | , pqF p q median x y x y =   (2) 

where, F signifies the filtered value with intensity pixel ( ),p q , 

median specifies the median operation,  represents the intensity 

values of the pixel at the location ( ),x y in the neighborhood, and 

pq signifies the window pixel. Then, the 1 tot T= number of 

F is subjected to the proposed CDTLAHE. The Contrast-

Limited Adaptive Histogram Equalization (CLAHE) is 

computationally efficient. Nevertheless, it has suboptimal 

enhancement results. Then, to choose the clip limit ( )lim , the 

proposed work introduces the Discus Transform (DT). Primarily, 

the filtered image F is divided into numerous tiles. Next, the 

histogram ( ) is computed.  

  , 0, 1pF p p q =    −  (3) 
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Then, from the clipped histogram ( )'' , the normalized 

cumulative distribution ( ) is calculated.  

 ( ) ( )''

11 2
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p p
D D


=

= 


  (6) 

where, 
p denotes the number of pixels, and

1 2D D specify the 

dimensions. According to ( )p , each pixel intensity in the tile is 

mapped to the enhanced intensity level. To form a single 

enhanced image ( ) , all the interpolated values are combined 

together. 

3.3 HAIR REMOVAL PROCESS 

Initially, the  is converted into a grayscale image ( )G . 

Next, to highlight the hair, the morphological black hat operation 

is applied.  

 ( ) ( ) ( ), ,hat G G G  =    −    (7) 

 
( )

( )

0 40 ,

41 120 ,
mask hat

If px hair
B

If px normal lesions


== −
= → 

== −

 (8) 

where,  and  specify the dilation and erosion operations, 

respectively,   implies the structured element, and 
hat signifies 

the morphed images. Then, by assuming the threshold values, the 

binary mask ( )maskB is created from 
hat . To differentiate the hair 

and normal lesions, the pixel values ( )px like (0-40) and (41-120) 

are assumed, respectively. The hair region is eliminated from   

based on
maskB . Therefore, the hair-removed images are depicted 

as ( )  . 

3.4 LESION SEGMENTATION 

The legion region is accurately segmented from  
 based on 

the proposed ERHF-UNet. The UNet effectively segments the 

irregular regions. Nevertheless, the UNet has over-segmentation 

outcomes. Thus, to select the weight ( )weight , the proposed 

method employs the Exponential Rotated Happycat Function 

(ERHF). Initially, the  
 is fed into the encoder, which captures 

contextual features ( )map via convolution ( )Conv . 

 
( )

21
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exp
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v

weight mat

of
Bf


 



− 
 = + 

 
 (9) 
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weight mapConv =    (10) 

where, 
21Bf specifies the base function, 

mat notates the rotation 

matrix, 
vof illustrates the offset vector, and 

 signifies the 

constant value. Then, the dimensionality-reduced features Rd are 

transmitted to the bottleneck layer ( )Bot , which refines the 

features using the skip connections. Finally, the segmented lesion 

is mentioned as ( ) . From the
 , the 3D heat map ( )3DH is 

created to visualize the intensity values in the three dimensions, 

which aids in extracting the depth features. The 3D heat map 

preserves the spatial and contextual depth information. As this 

map shows volumetric representation, the distinguishing of 

benign and SC types becomes accurate. 

3.5 METADATA EXTRACTION 

Similarly, from the ISIC-2019 dataset, the Metadata ( ) is 

extracted, followed by pre-processing. To impute the missing 

values, the mean values of the non-missing information are used. 

Then, the feature values are converted into numerical format. 

Lastly, the numerical features are normalized. For normalization, 

the Z-score standardization technique, which converts all the 

features on the same scale, is used. Here, features ( ) like 

compactness, entropy, intensity mapping, color gradient, age, sex, 

and lesion location are extracted from 
 , 

3DH , and pre-

processed data
data  .  

3.6 PITTING/CRUSTING REGION 

IDENTIFICATION AND LOCALIZATION 

Essentially, the pitting and crusting reflect the depth of 

depressions and hardened structures, respectively. Here, by using 

the proposed FRQWIS, the PCR is identified from 
 . The 

Fuzzy Inference System (FIS) offers precise prediction owing to 

its adaptability. Nevertheless, the FIS has tuning difficulties. 

Therefore, to perform fuzzification, the proposed work introduces 

the Rational Quadratic Weibull Membership (RQWM). In 

fuzzification, the crisp data is converted into fuzzy data ( )Fuz . 

( )
( )

( )
2 2

1
exp

1 /

fuzzification

mem Fuz





 

−





  =  ⎯⎯⎯⎯→
+  −

 (11) 

where, 
mem specifies the RQWM, and  and signify the 

constant values. Next, the fuzzy rules ( )ule are framed as, 

 
( )

( )

60 120 ,

160 255 ,

If
ule

If 





== − 
 = 

== − 

 (12) 

By assuming the pixel value range ( ) as 60-120 and 160-

255, the pitting ( ) and crusting ( )  regions are identified, 

respectively. The thresholds (60–120 for pitting and 160–255 for 

crusting) are selected based on histogram analysis of annotated 

dermatological images, where these intensity ranges consistently 

represent the respective lesion types. Lastly, in the defuzzification 

unit, the fuzzy data is converted into crisp data. The pseudocode 

of proposed FRQWIS is presented below, 

Input: Segmented lesions
  

Output: PCR  

Begin 

Initialize
 , Fuz , ule and  

For 1 to each 
 do, 

   Perform fuzzification via RQWM, 

( )
( )

( )
2 2

1
exp

1 /

fuzzification

mem Fuz





 

−





  =  ⎯⎯⎯⎯→
+  −

 

   Execute rule base  

 
( )

( )

60 120 ,

160 255 ,

If
ule

If 





== − 
 = 

== − 

 

End For 

Return ( ) and ( )  

End 

Next, to localize the regions, the active contour is used. Here, 

by reducing the energy, the curve moves towards the object 

boundary (PCR). To capture the surface-level indicators of the 

lesions, the PCR ( )c  is estimated from PCR localized data

oc .  

 
( )

( )
loc

r
c

r 

 
  =      

 (13) 

Here, r and r signify the pitting area and area affected by 

crusting, respectively.  

3.7 SKIN CANCER CLASSIFICATION 

Lastly, the , 
 , and c  are inputted to the proposed 

DICEPN-CLUN, which classifies the eight types of SC. The 

DCNN has high scalability. Nevertheless, the DCNN has high 

computational costs and vanishing gradient issues. Therefore, the 

proposed method employs the Elastic-tanh Pooling Layer (EPL) 

( )pool and Cosinu-sigmoidal Linear Unit (CosLU) ( )Cos LU . 

Also, to handle atypical lesions, Incremental Learning (IL) is 

used. In Fig.2, the proposed DICEPN-CLUN architecture is 

presented. 

 

Fig.2. DICEPN-CLUN’s architecture 
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Initially, the inputs ( ) , such as ,
 , and c  are fed into 

the convolutional layer ( )Cl , which generates the feature map ( )

.   , , c  =      (14) 

 ( ) ( )( ) ( )Cos cosLU ig        =  +    (15) 

 
Cos LUCl wt =  →  (16) 

 ( ) ( )( )tanhpool Cl pooling Cl =  (17) 

where, and  imply the trainable parameters, and ig

represents the sigmoid activation. The CosLU 
Cos LU is a non-

linear activation function that helps in highlighting the minority 

class features. It also preserves the class-specific activation. 

Furthermore, the EPL output 
pool adapts dynamically to the local 

feature distribution. The Elastic-tanh pooling improves the 

stability and avoids sharp changes during backpropagation. Also, 

it incorporates a hyperbolic tangent non-linearity and boosts the 

discriminations across the visual patterns. Next, to transform 

pool into a 1d array ( ) , the flatten operation is applied. Then, 

the is inputted to the fully-connected layer ( )ful . 

 ( )Cosful LU wt s =   +  (18) 

Lastly, the output layer ( )Ot displays the classified SC 

outcome.  

 ( )
( )

max

exp

exp

ful

ful

fulL L

Sof






=


 (19) 

  , , , , , , ,Ot Mel Nv Bcc Ak Bkl Df Vasc Scc=  (20) 

where,
maxSof indicates the softmax function, Mel , , , ,Nv Bcc Ak , 

, ,Bkl Df Vasc and Scc signify the (1) melanoma, (2) melanocytic 

nevus, (3) basal cell carcinoma, (4) actinic keratosis, (5) benign 

keratosis, (6) dermatofibroma, (7) vascular lesion, and (8) 

squamous cell carcinoma, respectively, wt and s depict the 

weight and bias, respectively, and L depicts the number of 

classes.  

Here, Incremental Learning is utilized as a stability-aware 

update mechanism with metadata-aware feature fusion. The 

underrepresented skin tones are also processed by Incremental 

Learning. Hence, the SC classification becomes precise. Also, the 

EPL that preserves the deep features and CosLU activation, which 

supports the retention of previously learned representations, 

encourages smoother parameter updates during new task learning. 

Hence, this alleviates catastrophic forgetting by reducing the 

destructive overwriting of parameters during incremental updates. 

Therefore, the DICEPN-CLUN’s pseudo-code is given below, 

Input: ,
 and c   

Output: Classified SC Ot  

Begin 

Initialize ,
 , c  ,

Cos LU and 
maxSof  

For 1 to each input do, 

Evaluate convolutional layer, 
Cos LUCl wt =  →  

Apply ETP layer ( ) ( )( )tanhpool Cl pooling Cl =  

Perform fully-connected layer ( )Cosful LU wt s =   +  

Execute output layer 

End For 

Return  , , , , , , ,Ot Mel Nv Bcc Ak Bkl Df Vasc Scc=  

End 

In real-time clinical settings, skin cancer images are collected 

during the dermatological assessment by using dermoscopic 

imaging devices, such as digital dermatoscopes (FotoFinder, 

DermLite, and so on). The dermatologists capture the images of 

suspicious skin lesions as part of the routine diagnostic workflow. 

To ensure quality and consistency, the standardized imaging 

protocols are followed. 

• Consistent lighting and magnification for uniform 

dermoscopic visualization. 

• Proper lesion framing and focus to avoid artifacts. 

• Metadata annotation, including patient age, sex, lesion 

location, and preliminary diagnosis. 

Before the collection of images, all participating institutions 

undergo approval by the Institutional Review Board or other 

equivalent ethics committee’s clearance.  The clearance is only 

given to the patient who has given consent for imaging and data 

usage. Therefore, the proposed work had better efficiency. 

However, the real-time practical applicability and deployment 

challenges include: 

• Deploying the model across diverse medical centers 

introduces heterogeneity in hardware capabilities. 

• The system is prone to intermittent device connectivity, 

especially in remote settings. Hence, these device dropouts 

delay the inconsistency in SC detection. 

• Clinical trust is also a challenge due to image sharing. 

4. RESULTS AND DISCUSSION 

4.1 DATASET DESCRIPTION 

The proposed approach is tested on the ISIC-2019,  

HAM10000, and PH² datasets using Python with 80% of the data 

for training and 20% for testing. The hardware requirements of 

the proposed system include, 

• Processor: Intel i5/core i7 

• CPU speed: 3.20 GHz 

• OS: Windows 10 

• System Type: 64 bit 

• RAM: 16 GB 

• GPU: NVIDIA GeForce GTX 1660 or AMD Radeon RX 

590 
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Table.1. Image results 

Sample / 

Process 
Melanoma 

Melanocytic  

Nevus 

Benign  

keratosis 

Vascular  

lesion 

Input 

    

Resizing 

    

Denosing 

    

Contrast 

enhancement 
    

HR 

    

Lesion 

segmentation 
    

The image results of the proposed approach are exhibited in 

Table.1.  

4.2 PERFORMANCE ASSESSMENT 

Here, the performance analysis is done.  

 

Fig.3. Performance analysis for pitting/ 

crusting region identification 

 

Fig.4. Performance validation of the proposed DICEPN-CLUN 

The performance of the proposed FRQWIS and the 

conventional algorithms like FIS, sigmoid-fuzzy, trapezoidal-

fuzzy, and triangular-fuzzy is validated in Fig.3. For fuzzification, 

defuzzification, and rule generation, the proposed FRQWIS took 

463ms, 465ms, and 680ms, while the existing algorithms took 

954ms, 956ms, and 1093ms, respectively. Thus, owing to the 

presence of RQWM, the proposed method had low time 

complexity. 

 

Fig.5. Training time analysis 

The performance analysis for SC classification is presented in 

Fig.4 and Fig.5. The proposed DICEPN-CLUN’s performance is 

weighed against the prevailing algorithms like DCNN, 

Probabilistic Neural Network (PNN), Spiking Neural Network 

(SNN), along with Multi-Layer Perceptron (MLP). For accuracy, 

precision, recall, f-measure, sensitivity, specificity, and training 

time, the proposed DICEPN-CLUN achieved 99.9046%, 

98.9873%, 98.9873%, 98.9773%, 98.9873%, 98.9222%, and 

58974ms, respectively. Nevertheless, the existing algorithms 

attained lower accuracy, precision, recall, f-measure, sensitivity, 

and specificity and higher training time than the proposed 

classifier. Therefore, owing to the presence of CosLU, the 

proposed method had higher supremacy. 

Table.2. Cohen’s kappa 

Algorithm Cohen's Kappa 

Proposed DICEPN-CLUN 0.9963 

DCNN 0.9217 

PNN 0.8456 

SNN 0.7937 

MLP 0.7139 

In Table 2, Cohen’s kappa of the proposed DICEPN-CLUN is 

analyzed. For Cohen’s kappa, the proposed DICEPN-CLUN 

attained 0.9963, whereas the existing MLP achieved 0.7139. 

Here, the proposed work had better efficacy. 

In Fig.6, the proposed ERHF-UNet’s performance is 

compared with prevailing UNet, Active Contour (AC), Region-

Convolutional Neural Network (R-CNN), along with Faster R-

CNN. The proposed ERHF-UNet achieved a dice score of 0.9824, 

silhouette score of 0.98239, Mean Absolute Error (MAE) of 

0.0148, and Root Mean Squared Error (RMSE) of 0.258. 
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Moreover, the traditional UNet obtained a dice score, silhouette 

score,  MAE, and RMSE of 0.7333, 0.92278, 0.0851, and 0.483, 

respectively. Therefore, the proposed work had fewer errors.  

 

Fig.6. Performance validation for lesion segmentation 

Table.3. Dataset validation 

Dataset/ 

Metrics 

DICEPN

-CLUN 
DCNN PNN SNN MLP 

ISIC-

2019 

Accuracy  

(%) 
99.9 95.3 92.2 90.4 88.3 

Precision  

(%) 
98.99 95.3 92.3 90.4 88.6 

HAM10

000 

Accuracy  

(%) 
99.87 95.2 92.1 90.1 88.1 

Precision  

(%) 
98.78 95.1 91.9 89.9 88.3 

PH² 

Accuracy  

(%) 
99.67 94.9 91.6 89.7 87.9 

Precision  

(%) 
98.54 94.8 91.4 89.4 88 

The validation of datasets like ISIC-2019, HAM10000, and 

PH² for SC detection is given in Table 3. While using the ISIC-

2019 dataset, the proposed DICEPN-CLUN and the existing 

DCNN, PNN, SNN, and MLP detected the SC with accuracy and 

precision values of 99.9%, 95.3%, 92.2%, 90.4%, and 88.3% and 

98.99%, 95.3%, 92.3%, 90.4%, and 88.6%, respectively. 

Likewise, while using the HAM10000 dataset, the proposed 

DICEPN-CLUN and the existing DCNN, PNN, SNN, and MLP 

detected the SC with accuracy and precision values of 99.87%, 

95.2%, 92.1%, 90.1%, and 88.1% and 98.78%, 95.1%, 91.9%, 

89.9%, and 88.3%, correspondingly. Also, during the usage of the 

PH² dataset, the proposed method achieved an accuracy of 

99.67% and a precision of 98.54%, whereas the existing 

techniques attained lower accuracy and precision values. Thus, 

regarding the datasets, such as ISIC-2019, HAM10000, and PH², 

the proposed model attained better performance in SC detection 

by comparing the proposed classifier with the existing models. 

4.3 COMPARATIVE EVALUATION 

Here, the comparative assessment of the proposed work 

(DICEPN-CLUN) is done by comparing it with existing 

techniques like Federated Learning-based CNN [20], CNN [21], 

hyper parameter-optimized full resolution convolutional network 

[22], deep neural network with modified EfficientNet [23], 

DCNN [24], and hybrid DL [25]. The proposed DICEPN-CLUN 

obtained an accuracy of 99.9046%, precision of 98.9873%, and 

sensitivity of 98.9873%. However, the prevailing [20] attained an 

accuracy, precision, and recall of 96.6%, 96.7%, and 92.6%, 

respectively. Also, the existing [25] had accuracy, precision, and 

sensitivity of 96.10%, 88.69%, and 88.90%, respectively. 

Therefore, the proposed model had effective performance in SC 

classification. 

4.4 K-FOLD VALIDATION  

In this phase, the K-Fold cross-validation is used to assess the 

generalizability of the dataset used in this work. This validation 

helps to reduce the overfitting issue and improves the 

performance of the model for unseen data.  

 

Fig.7. K-Fold Cross Validation Analysis 

As depicted in Fig.7, the K-Fold cross-validation, such as 1st, 

2nd, 3rd, 4th, and 5th Fold for the ISIC-2019 dataset attained training 

accuracies of 98.96%, 99.04%, 99.32%, 99.53%, and 99.78% and 

validation accuracies of 97.97%, 98.12%, 98.48%, 98.89%, and 

98.91%, respectively. Hence, the proposed DICEPN-CLUN 

classifier performed better across different K-Folds, thus showing 

more stable and realistic estimates regarding SC classification. 

4.5 STATISTICAL ANALYSIS 

The validation of the proposed work regarding the statistical 

analysis is illustrated in Fig.8. 

The p-value of 0.0210 with a threshold of 0.0461 indicated 

that the proposed system’s observed results were unlikely due to 

the random variations. This p-value also proved that the proposed 

work showed statistical improvements. Hence, the efficacy of the 

proposed approach validated the robustness of the model. 
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Fig.8. Statistical Performance Analysis 

5. CONCLUSION 

In this paper, a robust DICEPN-CLUN-based pitting/crusting 

ratio estimation and multiclass SC classification using 

dermoscopy images was proposed. The pitting/crusting ratio was 

efficiently estimated in the proposed work. Furthermore, the eight 

categories of SC were classified by the proposed DICEPN-

CLUN. As per the evaluation outcomes, the proposed work 

obtained accuracy and MAE of 99.9046% and 0.0148, 

respectively. Overall, in SC classification, the proposed work had 

promising findings.  

5.1 FUTURE SCOPE  

Multimodalities will include Reflectance Confocal 

Microscopy (RCM) and histopathological images in the future to 

classify the SC. 
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