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Abstract 

Slim-object detection is one of the challenging problems in image 

processing because the shape (or bounding box) of a slim object 

changes a lot according to the viewpoint.  However, so far there has 

been a lot of investigations on small-object detection problems. In 

addition, most of investigations were focused on effective feature 

extractions. However, only with the effective feature extraction slim-

object detection problems are not manipulated properly because of the 

large-scale varying proportions of bounding boxes. In general, most of 

single-shot detectors use anchors to detect several objects at a grid cell. 

However, those grid anchors are not distributed properly. In order to 

make the best use of anchors, a new anchor (called adaptive anchor) is 

proposed in this paper. The major difference between grid anchors and 

adaptive anchors is that the strides of adaptive anchors do not depend 

upon the shapes of feature maps. In order to estimate the efficiency of 

adaptive anchors we trained tie detection models (using grid anchors 

and adaptive anchors). Training results shows that the adaptive 

anchors are more suitable than grid anchors for slim-object detections. 
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1. INTRODUCTION 

Object detection is one of the most popular and useful tasks 

for computer vision. Especially, the rapid progress in deep-

learning made a great improvement in the efficiency of object-

detection systems.  Most object detection systems based upon 

deep-learning can be divided into two classes: two-stage detectors 

[1] and one-stage [2] [3] detectors. In general, two-stage detectors 

can achieve high detection accuracy compared with the one-stage 

detectors but the running speed is low. For example, YOLO [2] 

achieved very high running speed but the performance was not 

satisfactory compared with Region of Interest (ROI) based 

methods which is the first step of the two-stage detectors. 

However, SSD [3] which is one of the two-stage detectors uses 

multiple feature maps at different resolutions obtains a relative 

balance between accuracy and efficiency. However, multiple 

feature maps at different resolutions are useful for detecting 

objects with varying shapes and sizes, the higher resolution 

feature maps in SSD have little high-level semantic information. 

Thus, SSD could not detect small object properly. 

In general, in order to detect small object precisely both high-

level and low-level semantic information are required. That is 

because although an object is very small, in major cases it does 

not exist alone. By using Feature Pyramid (FP) [4] low-resolution, 

semantically strong features can be combined with high-

resolution, semantically weak features. However, the top-down 

pathway in FP cannot preserve accurate object localization due to 

the shift-effect of pooling. Bi-directional FP can maintain some 

meaningful information, which can be essential to small object 

detection from shallow layers [5]-[7]. BiFPN [8] can detect small 

objects more accurately with higher efficiency, but this structure 

still cannot keep up accurate detection of both small and large 

object. Therefore, Parallel Residual Bi-Fusion Feature Pyramid 

Network (PRB-FPN) [9] was proposed, and it achieved state-of-

the-art performance on the UAVDT17 and MS COCO datasets. 

The idea of YOLOv1 is to use a grid cell to be responsible for 

detecting an object which has the center inside that grid cell. 

Therefore, when two or more objects which have the center inside 

the same grid cell, the prediction may be flawed. To address this 

problem, later versions of YOLO (YOLOv2 [10], YOLOv3 [11] 

etc.) and SSD introduced the idea of anchor box which allows a 

grid cell to predict more than one object. Anchor box is a list of 

predefined boxes that best match the desired objects. The 

bounding boxes were not only predicted based on ground truth 

boxes but also predefined k anchor boxes. Therefore, the detection 

accuracy of anchor-based model should depend upon setting 

anchor boxes. YOLOv2 has improved by almost 5% mAP with 

anchor  boxes. However, in many cases, investigations on anchors 

mainly focus on shape of anchors because the distributions of 

anchors are determined by feature maps. This means some 

anchors have same strides although their shapes are different each 

other. However, in order to generate efficient anchors, it needs to 

be considered on distributions of anchors as well as shapes of 

anchors. 

 

(a) Examples of grid anchors 

 

(b) Examples of adaptive anchors 

Fig.1. Examples of grid and adaptive anchors 

Therefore, in this paper, a new type of anchor (adaptive 

anchor, whose strides only depend on their shapes) is proposed. 

The Fig.1 shows the examples of grid and adaptive anchors and 

the difference between them. The distribution of grid anchors 

depends upon the feature maps because the grid cells and grid 



O CHUNG-HYOK et al.: SINGLE-SHOT DETECTOR USING ADAPTIVE ANCHORS 

3614 

anchors have the same centers which is represented as red circle 

in Fig.1). However, the distribution of adaptive anchors never 

depends upon feature maps. Thus, the width strides and height 

strides of adaptive anchors may be different unlike the grid 

anchors (The width and height strides of grid anchor are the same 

as grid cell size). 

The main contributions of this paper are as follows. Section2 

briefly reviews related works about deep architectures for object 

detection and anchor boxes. Section3 describes proposed method: 

adaptive anchor and feature map reconstruction. Section4 reports 

the experiments. 

2. RELATED WORK 

2.1 PARALLEL RESIDUAL BI-FUSION FEATURE 

PYRAMID NETWORK (PRB-FPN) 

The main architecture of PRB-FPN is depicted in Fig.2.  

 

Fig.2. Overview of PRB-FPN 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig.3. Bi-Fusion architecture 

In general, detecting small objects is more difficult than 

detecting large objects because both high-level and low-level 

features are required to discriminate and localize small objects 

among background and other objects. In order to collect 

semantically rich features from high-level and low-level, FP is 

widely used, but FP cannot preserve accurate localization for 

small objects due to pooling and quantization. Bi-Fusion module, 

which is a concurrent fusion of contextual features from adjacent 

layers specially designed for improving small object detection. 

However, these modules still lack capabilities in detecting larger 

objects. Therefore, [9] proposed an effective Parallel-FP fusion 

design to tackle this difficult problem of object detection 

considering all object scales. Parallel-FP fusion, which is done by 

creating multiple bi-fusion paths can keeps tracks of features that 

are suitable to detect objects of all sizes (including tiny and large 

objects).  

The Fig.3 shows the PRB-FPN architecture in detail. The 

number of bi-fusion modules (N) is 3 in Fig.3 however in practice 

N is optional. As can be seen in Fig.2.2(a), each bi-fusion module 

contains concatenation and re-organization (CORE) blocks, 

bottom-up fusion module (BFM) blocks and skip connections. 

The CORE blocks depicted in Fig.2.2(b) make it possible to 

concatenate semantic features from top layers and spatially rich 

localization features from bottom layers. The Fig.2.2(c) shows the 

re-organization method. By using re-organization, it is possible to 

extract more relative features from broader area. The BFM blocks 

in Fig.3(d) can be regarded as the special form of CORE. To avoid 

using too many dithering operations like point-wise convolutions 

and to avoid computationally expensive operations like pooling 

and addition, an 1×1 depth-wise convolution is adopted in the 

CORE module. The 1×1 depth-wise convolution in CORE is very 

different from most of SoTA bi-directional methods [6] [7] [13]. 

That is because in SoTA bi-directional methods, the feature fusion 

is carried out by concatenating all feature maps. Therefore, their 

simple concatenations result in a large feature map proportional 

to the total feature size. In contrast, the 1×1 conv filter in CORE 

is automatically learned, such that features can be fused more 

effectively via a feature map of fixed size. 

2.2 ANCHOR BOXES AND ASSIGNMENT 

Anchor boxes are the list of predefined boxes allows a grid 

cell to detect more than an object. In addition, setting anchor 

boxes affects the model accuracy directly because the prediction 

confidences and bounding boxes of objects are calculated based 

on anchor boxes. However, in the earlier, anchor boxes were 

selected depending on experience or presumption. Instead of 

manually picking out the best-fit anchor boxes, used k-means 

clustering algorithm [2] [11] [14] [15] [16] on the training set 

bounding boxes to cluster bounding boxes of similar shapes. To 

get the best efficient anchors, in [2], the average IOU between 

bounding boxes of total objects in training set and centroid. Here, 

IOU is calculated as follows. 

 
1 1 1 1 1box ( , , , )x y w h=  (1) 

 
2 2 2 2 2box ( , , , )x y w h=  (2) 

 
1 2 1 1 2 2

1 2

1 2 1 1 2 2

max( , , , )
inter

min( , , , )
w

x x x w x w
w w

x x x w x w

+ + 
= + −  

− + + 
 (3) 



ISSN: 0976-9102 (ONLINE)                                                                                                   ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, MAY 2025, VOLUME: 15, ISSUE: 04 

3615 

 
1 2 1 1 2 2

1 2

1 2 1 1 2 2

max( , , , )
inter

min( , , , )
h

y y y h y h
h h

y y y h y h

+ + 
= + −  

− + + 
  (4) 

 
1 1 2 2

inter inter
IoU

inter inter

w h

w hw h w h


=

 +  − 
 (5) 

With various choices for 𝑘, 𝑘 = 5 gives a good tradeoff for 

recall vs complexity of the model in VOC and COCO. The Fig.4 

show the mean average IOU according to the number of clusters. 

The five centroids only represent the shape of base anchor 

boxes. However, in order to use those base anchor boxes for 

detection model they must be distributed properly according to 

their shapes over the image. This distribution of basic anchors is 

mainly determined by the feature maps. In the earlier versions of 

YOLO (YOLOv1, YOLOv2) after training the feature extractor, 

the predictions are made in the last layers of object detector. This 

means the distribution of basic anchors is not associated with the 

shapes of basic anchor boxes. In order to detect small objects 

precisely, not only the size of matching basic anchor should be 

relatively small but also, they should be distributed densely, while 

for the big objects, the size of matching basic anchor may be large, 

and their distribution may be relatively sparse. YOLO later 

versions from YOLOv3 and SSD use multi-scale feature maps, 

which uses different basic anchor boxes respectively. Therefore, 

shallow feature maps use small basic anchor boxes while deeper 

feature maps use large basic anchor boxes. 

 

Fig.4. Best-fit anchors of VOC and COCO dataset 

After distributing basic anchor boxes, anchor assigning tasks 

which determines matching objects for each anchor should be 

faced. Here, what should be emphasized is that an anchor has to 

be matched just only an object, not two or more. YOLOv2 assigns 

the bounding box not only to the grid cell but also to one of the 

anchor boxes which has the highest IOU with the ground truth 

box. 

3. PROPOSED METHOD 

3.1 ADAPTIVE ANCHOR BOXES 

Adaptive anchor boxes are made by distributing basic anchor 

boxes according to the shapes of basic anchor boxes. Because the 

shapes of basic anchor boxes are only depended on the shapes of 

targets, in major cases, basic anchor boxes for slim objects should 

contain at least a slim anchor box. In order to detect the target 

objects precisely wherever they are, the matching basic anchor 

boxes are distributed efficiently. The distribution of a basic 

anchor box mainly depends upon the strides (height stride and 

width stride) of it. Thus, if the strides of a basic anchor box are 

small, this anchor box should be distributed densely. Of course, if 

anchor boxes are distributed densely the detection accuracy can 

increase but the model complexity increases as well. Moreover, 

after the number of anchor boxes exceeds a certain value, the 

increase in model accuracy is much smaller compared to the 

increase in computational complexity. Therefore, the efficient 

anchor boxes mean that either wherever any object is located, at 

least one of the anchor boxes should be matched with that object 

or the number of anchor boxes should be as small as possible. 

Thus, in order to get the efficient anchor boxes, width strides and 

height strides should be the solution of the following non-liner 

optimization problem.  

Let’s suppose the basic anchor boxes are represented as 

ai=(awi, ahi) and strides of basic anchor boxes are represented as 

( )
____

, , 1,i i is sw sh i n= = . And the bounding boxes of target objects are 

represented as ( )
____

, , 1,i j jo ow oh j m= = . Here, n means number of 

basic anchor boxes and m means number of objects. Then the 

target function is denoted as follows. 

 
1

1 1
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m
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And the constraint functions are denoted as follows. 
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 min( , ), min( , )ij i j ij i jw aw ow h ah oh = =  (14) 

where,  cth is a threshold value, which determines whether an 

anchor matches or not with an object.  

Although there are many optimization algorithms [17]-[21], 

getting the solutions of this optimization problem is very 

complicated and challenging. Moreover, however, those solutions 

mainly depend upon the shapes of target objects 
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( )
____

, , 1,i j jo ow oh j m= =  in reality, the number of the shapes of 

objects is infinity. Therefore, it may be some useful to determine 

the strides of anchors ( )
____

, , 1,i i is sw sh i n= =  as manually and of 

cause should satisfy the following condition awi<ahi→swi<shi. 

After setting anchor strides, the anchor boxes are obtained as 

follows. 

 anchor boxes {basic anchor maps }, 1, ,i i n= =    (15) 
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3.2 RECONSTRUCTING MULTI-SCALE FEATURE 

MAPS 

As it is mentioned before, the distribution of every basic 

anchor box (anchor map) is different each other. Therefore, 

feature maps have to be different each other because feature maps 

have to be matched with anchor maps. The Fig.5 shows the basic 

feature maps and adaptive feature maps which has the same 

shapes of anchor maps. Those feature maps are calculated from 

final feature pyramid (basic feature maps of Fig.5) like the 

following steps. 

 

Fig.5. Overview of adaptive feature map 

First: Choosing the matching feature map. 

Let’s suppose the shapes of feature pyramid are 

( )
_____

, 1,i i lm m i n = and the shapes of anchor maps are 

( )
_____

, 1,j jnaw nah j n = . Here, nl means number of feature map 

layers and 𝑛 means number of basic anchors, and if the index i 

increases the feature map size mi decreases. Then the index of 

matching feature map of a basic anchor box of index j is calculated 

as follows. 

 max max( , )j j ja nax nay=  (18) 

 max( ) { (1, ), }k jU j k k nl m na=  ∣  (19) 
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Second: Calculating matching feature maps. 

The final purpose is that generate new feature maps matching 

with anchor maps respectively, from feature pyramid. Through 

the first step, the semi-matching feature maps are determined by 

finding matching layer index l(j) but still remains final step to 

transform the sizes of semi-matching features into the sizes of 

anchor maps. One simple way is that resize the matching semi-

matching feature map as the size of corresponding anchor map. 

However, before resizing an additional convolution layer is added 

in order to keep some important information which can represent 

the special character of slim object. The convolution size and 

strides are determined as follows. 

 
size if l=       (21) 

 ( )sizemax 1,i icsw f sw=         (22) 

 ( )sizemax 1,i icsh f sh=        (23) 

 
size 1i icw f aw=    +   (24) 

 
size 1i ich f ah=    +  (25) 

4. TRAINING AND RESULT 

4.1 DATASET AND BASIC ANCHORS 

 

Fig.6. Excepted images and bounding box difference between 

original and re-defined. 

As a slim object, the tie is selected in this paper. Thus, the 

image database is made by selecting tie containing images from 

COCO 2017 Dataset [12] except very crowed images. In addition, 

the bounding boxes of ties are re-defined so tight that the model 

can be trained with slim object. The Fig.6 shows some examples 

of our database. 

Green rectangles of Fig.6(a) represents the re-defined 

bounding boxes of ties while the red boxes represent the original 

bounding boxes. By re-defining original bounding boxes models 

can be trained with slimmer objects. The Fig.6(b) shows the 

excepted images in which ties are overlapped each other. In this 

case, it’s hard to detect bounding boxes of ties individually and 

also it makes the model unstable during training. The Table.1 

shows the property of our database in detail. 

a) Examples of database and their labels 

b) Examples of excepted images 
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Table 1. Database detail 

Name Number of images Number of bounding boxes 

Training 3260 5234 

Testing 389 535 

For training, original images are re-sized as 384×384 (the 

input size of model). However, before re-sizing, in order to keep 

the ratios of bounding boxes the sizes of width and height are 

fixed as the maximum of them by using zero padding. The Fig.7. 

shows the input images. 

  

Fig.7. Training samples 

The basic anchors are generated by using k-means clustering 

algorithm. In this paper k is set as 9 and the result is as follows. 

ratios = [0.62, 0.34, 0.26, 0.18, 1.03, 0.5, 1.12, 0.3, 1.73] 

scales = [0.07, 0.1, 0.14, 0.19, 0.16, 0.25, 0.33, 0.41, 0.52] 

4.2 EXPERIMENTING 

The efficiency of a model is measured by AP (Average 

Precision) AP50, AP75, APsmall, APmedium and APlarge which 

is defined as follows. 

 
9

0

1
(0.5 0.05)

10 i

P P i
=

= +   (26) 

 
50 75(0.5), (0.75)AP P AP P= =   (27) 

Precision P(c) is denoted as follows. 

 
( )

( )
( ) ( )

TP c
P c

TP c FP c
=

+
  (28) 

where, TP(c) means the bounding boxes (BB) that the intersection 

over union (IoU) with the ground truth (GT) is above threshold c, 

and FP(c) represents the BB that the IoU with GT is below c or 

the BB that have IoU with a GT that has already been detected.  

AP (small, medium, large) these are essentially the same as 

AP above, but sliced by the size of the bounding boxes. The small 

one is only computing AP for bounding boxes that are small (area 

< 32×32 pixels). Medium is for bounding boxes with 32×32 < 

area < 96×96. Large is for area > 96×96 (in reality the 

implementation for large is 96×96 < area < 1e5×1e5). These 

metrics allow to get a sense if a model is performing better or 

worse in specific sizes of bounding boxes. In order to evaluate the 

efficiency of adaptive anchors several models defined as follows 

are trained. 

Table.2. Model details 

Name Model-1 Model-2 Model-3 Model-4 

Back bone Mobilenet-v1 

Feature  

extractor 
PRB-FPN 

Anchor type Grid Adaptive 

Strides None (0.3, 0.3) (0.5,0.5) (0.5,0.5) 

IoU threshold 0.3 0.3 0.3 0.3 

Reconstructions  

feature map 
None 

Adding conv  

+ Resizing 

Adding conv  

+ Resizing 
Resizing 

Number of  

anchors 
2916 2791 1636 1636 

The Table.2 shows the main properties of different models 

which is compared with each other. Here, “Strides” = (0.3, 0.3) 

means that the width and height strides of a basic anchor are the 

30% of its size. However, those models have same backbone and 

feature map layers, the efficiencies of models become different 

according to the training strategy. Of course, number of methods 

(include setting hyper-parameters, designing architectures, image 

pre-processing and so on) can affect the efficiencies of models 

however, in this paper we focus on distributing anchors. 

Following figures show the comparisons of different models. 

 

Fig.8. Comparison model-1 with model-2 

The Fig.8 shows model-3 is better than model-1 in all terms 

except APlarge and especially APsmall of model-3 is much better 

than model-1 though the number of anchors is smaller than 

model-1. This is because adaptive anchors are distributed more 

efficiently than grid anchors. The Table.3 shows the distributions 

of basic anchors. 

 

a) AP b) APlarge 

c) APmedium d) APsmall 

e) AP50 f) AP75 

Model-1 Model-2 
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Table.3. Distributions of basic anchors of model-1, model-2 and 

model-3 

Type Model-1 Model-2 Model-3 

anchor1 (0.07,0.62) 24×24 33×32 33×22 

anchor2 (0.1,0.34) 24×24 33×18 33×11 

anchor3 (0.14,0.26) 24×24 32×10 28×7 

anchor4 (0.19,0.18) 24×24 32×6 24×4 

anchor5 (0.16,1.03) 12×12 19×19 12×12 

anchor6 (0.25,0.5) 12×12 17×8 11×5 

anchor7 (0.33,1.12) 12×12 8×9 5×6 

anchor8 (0.41,0.3) 12×12 13×3 8×2 

anchor9 (0.52,1.73) 6×6 3×7 2×5 

 

Fig.9. Comparison model-1 with model-3. 

It can be regarded that the anchor1 and anchor2 are 

responsible for small objects and from anchor3 to anchor 6 are 

responsible for medium objects. And the rest of anchors is 

responsible for large objects. However, the number of anchors for 

small objects of model-2 is a little greater than model-1 the 

accuracy of model-2 is much higher than model-1. Moreover, 

although the number of anchors for medium objects of model-2 is 

much smaller than model-1 the accuracy is higher than model-1. 

The Fig.10 shows the estimation results of model-1 and 

model-3. However, the number of anchors of model-3 (1636) is 

much smaller than model-1 (2916) the estimation result is better 

than model-1. This means that adaptive anchors are distributed 

more properly than grid anchors and it is possible to train a faster 

model because adaptive anchor-based models are able to maintain 

the detection accuracy like grid anchor-based models with much 

smaller number of anchors. 

The Fig.10 shows the estimation results of model-3 and 

model-4. From this figure it become clear that adding an 

additional convolution layer before resizing feature map increases 

the small objects detection accuracy. 

 

Fig.10. Comparison model-3 with model-4 

5. CONCLUSION 

For the anchor-based object detection tasks, distribution of 

basic anchors is also important as well as shapes of anchors. We 

present a new adaptive anchor which is designed to optimize the 

number of anchors and to increase the utility of anchors. A 

number of evaluations shows that adaptive anchors grid anchors 

in terms of accuracy and speed. 
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