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Abstract 

High-definition (HD) video data imposes significant storage and 

bandwidth requirements, particularly in real-time applications such as 

video streaming and telemedicine. Wavelet-based video compression 

has emerged as a viable solution due to its multiresolution 

representation and scalability. Despite its advantages, traditional 

wavelet-based compression techniques suffer from spatial and 

temporal redundancy, especially for HD videos with complex motion 

dynamics. This redundancy leads to suboptimal compression efficiency 

and quality degradation. This paper proposes an improvised hybrid 

redundancy reduction framework that integrates motion-compensated 

temporal filtering (MCTF), adaptive lifting schemes (ALS), and 

directional intra-frame prediction (DIP) into the wavelet video codec. 

Additionally, a content-aware entropy coding module is introduced to 

adapt to varying motion intensities in HD sequences. The method 

includes a dynamic GOP (Group of Pictures) size selector based on 

scene complexity, further optimizing redundancy handling. The 

proposed method was benchmarked using standard HD video 

sequences (720p and 1080p) on MATLAB and compared with four 

existing hybrid methods: MC-EZBC, SPIHT-MCTF, H.264-DWT, and 

3D-SPIHT. Our method achieved a PSNR improvement of 1.8–2.5 dB, 

bitrate reduction of 12–17%, and SSIM improvement of 0.025–0.045 

on average. Subjective analysis also confirmed better perceptual 

quality, particularly in high-motion scenes. 
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1. INTRODUCTION 

. With the growing demand for high-definition (HD) and ultra-

high-definition (UHD) video content, efficient video compression 

has become critical to ensure smooth transmission and storage [1-

3]. Traditional video compression standards rely heavily on 

block-based motion compensation and transform coding 

techniques, which, while effective, often face limitations in 

managing the increased data volumes generated by HD videos. 

Wavelet-based video compression has emerged as a promising 

alternative due to its multi-resolution analysis capability, 

providing superior spatial scalability and better handling of image 

features like edges and textures [1,2]. 

Despite the advantages, wavelet-based video compression 

presents several challenges. One primary issue is the redundancy 

present both spatially and temporally in video sequences, which 

must be minimized for effective compression [4]. Additionally, 

accurately estimating motion in HD videos is computationally 

demanding and prone to errors in complex scenes, affecting the 

overall compression quality [5]. Moreover, efficient entropy 

coding that adapts to varying video statistics without incurring 

high computational overhead remains an open problem [6]. 

Current wavelet-based compression methods often suffer 

from suboptimal redundancy reduction, particularly in HD videos 

where spatial detail and motion complexity are high [7-9]. Many 

approaches fail to fully exploit directional correlations within 

wavelet sub-bands, leading to residual redundancies and lower 

compression efficiency [10-12]. Motion estimation techniques 

used in existing frameworks may not adequately handle the 

diverse motion patterns in HD content, resulting in degraded 

prediction and higher bitrates [13]. Furthermore, traditional 

entropy coding schemes either lack adaptivity or incur excessive 

computational costs [14,15]. These limitations highlight the need 

for a comprehensive method that addresses spatial and temporal 

redundancy reduction, motion estimation, and entropy coding in 

an integrated framework tailored for HD videos. 

This work aims to develop an improvised wavelet-based video 

compression algorithm for HD videos that: 

• Effectively reduces spatial and temporal redundancy by 

leveraging adaptive directional prediction within wavelet 

sub-bands. 

• Enhances motion estimation accuracy with an efficient 

block-based approach suited to HD video content. 

• Employs context-adaptive entropy coding to improve 

compression ratio without compromising complexity. 

• Provides superior video quality at reduced bitrates compared 

to existing hybrid and wavelet-based methods. 

The novelty lies in the adaptive directional prediction scheme 

that selects the optimal prediction mode (vertical, horizontal, 

diagonal, or DC) for each wavelet coefficient, thereby minimizing 

residual energy more effectively than fixed-direction models. 

Coupled with an enhanced preprocessing and motion estimation 

stage, the proposed method achieves significant bitrate savings 

and improved reconstruction quality. Additionally, the use of 

context-adaptive binary arithmetic coding ensures efficient 

entropy coding tailored to the statistics of predicted residuals. 

Extensive experimental validation against state-of-the-art 

methods like MC-EZBC, SPIHT-MCTF, H.264-DWT, and 3D-

SPIHT demonstrates the method’s superior performance in HD 

video compression, confirming its practical relevance. 

2. RELATED WORKS  

Wavelet-based video compression has attracted significant 

research interest due to its inherent multiresolution properties and 

potential for scalable video coding. Early works like MC-EZBC 

[8] combined motion-compensated temporal filtering with 

embedded zero-tree wavelet coding to exploit temporal 

redundancy effectively. While MC-EZBC showed promising 

compression efficiency, it struggled with complex motion 
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patterns and often produced suboptimal reconstruction quality for 

HD content. 

SPIHT-MCTF [9] enhanced embedded zero-tree wavelet 

coding by integrating motion-compensated temporal filtering 

with the SPIHT algorithm. This approach improved bit allocation 

and scalability but was limited by the fixed directional 

assumptions in wavelet sub-band prediction, resulting in residual 

redundancies especially in high-detail regions. Moreover, SPIHT-

MCTF’s performance deteriorated at higher bitrates typical of HD 

video. 

Hybrid methods such as H.264-DWT [10] combined the 

strengths of block-based motion compensation in H.264 with 

wavelet spatial decomposition to balance temporal and spatial 

compression. Despite achieving better compression ratios and 

quality than pure wavelet methods, H.264-DWT’s complexity 

and dependency on block matching algorithms introduced 

overheads and error propagation in scenes with complex motion. 

The 3D-SPIHT algorithm [11] extended SPIHT to the three-

dimensional wavelet domain, encoding spatio-temporal 

coefficients jointly to exploit both spatial and temporal 

correlations. This method improved compression performance 

but required significant computational resources and lacked 

adaptability to diverse directional features within wavelet sub-

bands. 

Other research focused on directional prediction techniques 

within the wavelet domain [12,13]. These methods aimed to 

reduce spatial redundancy by predicting coefficients along 

dominant edge directions. However, many were limited to fixed 

directional models, missing the adaptability required for complex 

HD video textures. The lack of integration with advanced motion 

estimation and entropy coding further constrained their practical 

applicability. 

Motion estimation advancements include block-matching 

algorithms optimized for HD videos [14]. Such methods improve 

prediction accuracy but often at the expense of computational 

complexity, necessitating trade-offs in real-time applications. 

Efficient integration with wavelet coding remains a challenge. 

Entropy coding approaches like CABAC and context-adaptive 

techniques have been explored extensively. While providing 

significant bit rate reductions, their effective application depends 

on accurate residual modeling and adaptive context selection, 

which many wavelet-based frameworks do not fully leverage. 

Thus, existing works provide valuable foundations but face 

limitations in fully exploiting directional spatial correlations, 

accurate motion estimation, and adaptive entropy coding within a 

unified HD video compression framework. This motivates the 

proposed method, which integrates these elements for improved 

compression performance. 

3. PROPOSED METHOD 

The proposed method integrates multiple strategies to reduce 

spatial and temporal redundancy more efficiently in HD video 

streams: 

• Uses motion-compensated temporal filtering (MCTF) to 

reduce inter-frame redundancy. 

• Applies adaptive lifting schemes (ALS) for better spatial 

wavelet decomposition. 

• Implements directional intra-prediction (DIP) to better 

capture edge orientation and texture. 

• Introduces a content-aware entropy coder that adapts 

encoding techniques based on motion activity and spatial 

complexity. 

• Employs a dynamic GOP selection mechanism based on 

scene analysis to optimize frame referencing. 

The overall process involves the following 

1. Preprocessing: Convert input video into YUV format and 

segment into GOPs using a dynamic GOP selector based 

on scene change detection. 

2. Motion Estimation: Perform block-based motion 

estimation between frames for temporal correlation using 

MCTF. 

3. Wavelet Decomposition: Apply 5/3 wavelet transform 

with adaptive lifting to spatially decompose each frame. 

4. Directional Prediction: Apply directional intra-

prediction within wavelet sub-bands to better encode 

textures. 

5. Entropy Coding: Use a content-aware entropy encoder 

(modified context-based adaptive arithmetic coding). 

6. Bitstream Generation: Combine compressed motion 

vectors, wavelet coefficients, and entropy-coded data into 

the final bitstream. 

3.1 PREPROCESSING 

The preprocessing stage is critical for preparing the high-

definition (HD) video data before applying wavelet-based 

compression and redundancy reduction. It mainly involves color 

space conversion, GOP (Group of Pictures) segmentation, and 

scene complexity analysis for dynamic GOP size selection. 

3.1.1 Color Space Conversion: 

Most HD video sequences are originally encoded in RGB 

color format, which is not optimal for compression since the RGB 

channels are highly correlated. The preprocessing first converts 

the video frames from RGB to the YUV color space. This 

conversion decorrelates luminance (Y) and chrominance (U, V) 

components, allowing better compression efficiency. 

The conversion formulas are: 

 0.299 0.587 0.114Y R G B= + +  (1) 

 0.147 0.289 0.436U R G B= − − +  (2) 

 0.615 0.515 0.100V R G B= − −  (3) 

where R,G,B are the red, green, and blue pixel values, 

respectively, and Y,U,V are the corresponding luminance and 

chrominance components. 

3.1.2 GOP Segmentation and Dynamic GOP Size Selection: 

Next, the video sequence is segmented into GOPs. Instead of 

a fixed GOP size, the proposed method dynamically selects GOP 

length based on scene complexity to optimize temporal 

redundancy reduction. Complex scenes with rapid motion have 

smaller GOPs, while static or low-motion scenes have larger 

GOPs for better compression. 
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3.1.3 Scene Complexity Analysis: 

To decide the GOP size, scene complexity is computed using 

a simple metric based on frame differences. For two consecutive 

frames Ft and Ft−1, the frame difference Dt is: 

 1
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1
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t t t
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−
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= −
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  (4) 

where M×N is the frame resolution, and Ft(i,j) is the pixel 

intensity at position (i,j) in frame t. If Dt exceeds a predefined 

threshold T, the scene is considered complex, and a smaller GOP 

size is selected. 

Table.1. Frame difference metric and corresponding GOP size 

selection. 

Frame  

Index t 

Frame  

Difference Dt 

Scene  

Complexity 

GOP Size  

Selected 

1 → 2 5.2 Low 16 

2 → 3 18.4 High 8 

3 → 4 6.1 Low 16 

4 → 5 22.3 High 8 

As shown in Table.1, frames with a high frame difference 

(e.g., 18.4 and 22.3) correspond to complex scenes and thus use 

smaller GOP sizes to maintain compression quality. Frames with 

lower differences use larger GOP sizes for better compression 

efficiency. 

3.2 PROPOSED MOTION ESTIMATION 

Motion estimation (ME) is a fundamental step in video 

compression, especially for reducing temporal redundancy 

between successive frames. It identifies the movement of objects 

or regions from one frame to the next, enabling efficient motion-

compensated temporal filtering (MCTF) in the wavelet domain. 

 

Fig.1. Input Video [15] 

3.2.1 Block-Based Motion Estimation: 

The proposed method uses block-based motion estimation, 

where each frame is divided into non-overlapping blocks of fixed 

size (e.g., 16 × 16 pixels). For each block in the current frame Ft, 

the algorithm searches within a predefined window in the 

reference frame Ft−1 to find the best matching block. 

3.2.2 Matching Criterion: 

The similarity between blocks is measured using the Sum of 

Absolute Differences (SAD) metric: 

1 1

1

0 0

( ) | ( , ) ( , ) |
B B

t t x y

i j

SAD F x i y j F x i d y j d
− −

−

= =

= + + − + + + +d  (5) 

where, 

B = block size (e.g., 16), 

(x,y) = coordinates of the top-left pixel of the block in the current 

frame, 

( , )x yd d=d = displacement vector (motion vector), 

Ft and Ft−1 = current and reference frames, respectively. 

The motion vector d∗ is the displacement that minimizes the 

SAD within the search range: 

 * argmin ( )SAD=
d

d dS
 (6) 

where S  is the search window, e.g., ±32 pixels in both directions. 

3.2.3 Search Strategy: 

A full search within the ±32-pixel range is computationally 

expensive. Therefore, the proposed method employs a fast 

diamond search algorithm to efficiently approximate the best 

motion vector with fewer computations. 

3.2.4 Motion Vector Field: 

After estimating motion vectors for all blocks in the frame, the 

motion vector field is constructed, which is later used in motion-

compensated temporal filtering and entropy coding. 

Table.2. Motion Vector Estimation for Blocks 

Block  

ID 

Block  

Coordinates (x,y) 

Best Motion  

Vector d∗ 

Minimum  

SAD Value 

1 (0,0) (3, -2) 1450 

2 (16,0) (0, 1) 1320 

3 (32,0) (-1, 0) 1485 

4 (0,16) (4, -3) 1580 

In Table.2, for each block, the best motion vector d∗ is the 

displacement that produces the lowest SAD, indicating the closest 

matching block in the reference frame. 

3.2.5 Motion Compensation: 

Once the motion vectors are estimated, the reference frame 

Ft−1 is shifted according to these vectors to predict the current 

frame Ft. The residual error (difference between predicted and 

actual blocks) is then processed through wavelet decomposition 

and entropy coding. 

3.3 PROPOSED WAVELET DECOMPOSITION 

Wavelet decomposition is a key step in the proposed video 

compression framework, used to transform spatial data of video 

frames into multiresolution sub-bands that allow efficient 

redundancy reduction. After motion compensation, each video 

frame undergoes spatial wavelet decomposition using an adaptive 

lifting scheme with the biorthogonal 5/3 wavelet filter. This 

transform breaks down the image into frequency sub-bands 

capturing coarse (low-frequency) and detailed (high-frequency) 

information. The discrete wavelet transform (DWT) decomposes 

an image I(x,y) into four sub-bands at each decomposition level: 

• LL (approximation - low frequency, horizontal & vertical) 

• LH (horizontal details - high frequency vertical, low 

frequency horizontal) 

• HL (vertical details - high frequency horizontal, low 

frequency vertical) 

• HH (diagonal details - high frequency both directions) 

At level l, the frame is decomposed as: 
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( ) ( ) ( ) ( ) ( ){ , , , }l l l l lI LL LH HL HH→  (7) 

The LL(l) sub-band is further decomposed for multi-level 

wavelet analysis (commonly 3 levels). 

 

Fig.2. Motion Estimation Videos collected for Wavelet 

Decomposition 

3.3.1 Adaptive Lifting Scheme: 

The lifting scheme implements the wavelet transform through 

three steps: split, predict, and update. The adaptive lifting 

modifies prediction and update filters dynamically based on local 

content to better preserve edges and textures. For a 1D signal x[n], 

splitting into even xe[n] and odd xo[n] samples: 

• Predict Step: 

      ( )o ed n x n P x n= −  (8) 

where P(⋅) the prediction operator, e.g., average of neighbors. 

• Update Step: 

      ( )es n x n U d n= +  (9) 

where U(⋅) is the update operator to maintain signal properties. 

This 1D process is applied first to rows, then columns to achieve 

2D decomposition. Wavelet decomposition concentrates energy 

mostly in the LL sub-band, while high-frequency sub-bands 

contain finer details. 

Table.3. Wavelet Sub-band Energy Distribution (% of total 

energy) 

Frame Number LL (%) LH (%) HL (%) HH (%) 

Frame 1 75.4 10.2 9.5 4.9 

Frame 2 73.1 11.0 10.0 5.9 

Frame 3 77.0 9.0 8.5 5.5 

As seen in Table 3, most of the frame's energy is captured in 

the LL sub-band, allowing efficient quantization and coding of 

high-frequency sub-bands, which typically contain less 

perceptually important data. 

4. PROPOSED DIRECTIONAL PREDICTION 

Directional prediction is applied to wavelet sub-band 

coefficients to exploit local spatial correlations and reduce 

redundancy further. This step enhances compression efficiency by 

predicting coefficient values based on their neighbors along 

dominant edge directions, thereby improving the representation 

of textures and edges in HD video frames. 

After wavelet decomposition, each high-frequency sub-band 

(LH, HL, HH) contains directional details that correspond to 

edges and textures aligned vertically, horizontally, or diagonally. 

Directional prediction estimates each coefficient using adjacent 

coefficients along specific directions: 

• Vertical Prediction (V) 

• Horizontal Prediction (H) 

• Diagonal Prediction (D) 

• DC (Mean) Prediction 

The best prediction direction is chosen adaptively for each 

coefficient or block based on minimizing prediction error. 

Let C(i,j) denote the coefficient at position (i,j) in a high-

frequency sub-band. The predicted coefficient ˆ( , )C i j in each 

direction is: 

• Vertical Prediction: ˆ ( , ) ( 1, )VC i j C i j= −  

• Horizontal Prediction: ˆ ( , ) ( , 1)HC i j C i j= −  

• Diagonal Prediction: ˆ ( , ) ( 1, 1)DC i j C i j= − −  

• DC Prediction: 
( , )

1ˆ ( , ) ( , )DC

m n

C i j C m n
N 

= 
N

 

where N is the set of neighboring coefficients, typically the top, 

left, and top-left neighbors, and N is the number of neighbors 

used. 

The prediction error for each direction is computed as: 

 ˆ| ( , ) ( , ) |D DE C i j C i j= −  (10) 

where { , , , }D V H D DC . 

The direction D∗ that minimizes this error is selected: 

 * argminD DD E=  (11) 

This adaptive selection allows the predictor to follow edge 

orientations locally, reducing residuals before entropy coding. 

Table.4. Prediction errors for different directions for coefficients  

Coefficient  

Position 

(i,j) 

Actual 

C(i,j) 
ˆ

VC
 
EV ˆ

HC
  
EH ˆ

DC
 
ED ˆ

DCC
 
EDC 

Selected  

Direction  

D∗ 

(10,10) 25 23 2 20 5 24 1 22 3 
Diagonal 

(D) 

(10,11) 30 28 2 29 1 27 3 28 2 
Horizontal 

(H) 

(11,10) 18 20 2 15 3 17 1 17 1 
Diagonal  

(D)/DC 

In Table.4, the predicted coefficients and their absolute errors 

EDE_DED are calculated for each candidate direction. The 

direction with the smallest error is selected as the best predictor, 

minimizing the residual to be encoded. 

5. PROPOSED ENTROPY CODING 
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Entropy coding is the final step in the compression pipeline 

that efficiently encodes the prediction residuals and wavelet 

coefficients into a compact binary format. It exploits the statistical 

properties of the data, assigning shorter codes to frequently 

occurring symbols and longer codes to rare ones, thereby reducing 

the overall bit rate. 

5.1 CONTEXT-ADAPTIVE BINARY ARITHMETIC 

CODING (CABAC) 

The proposed method employs Context-Adaptive Binary 

Arithmetic Coding (CABAC), a state-of-the-art entropy coding 

technique widely used in video compression standards like 

H.264/AVC and HEVC. CABAC achieves high compression 

efficiency by: 

• Binarizing symbols into binary strings. 

• Using context models to predict the probability of each 

binary symbol adaptively. 

• Encoding symbols with arithmetic coding based on the 

estimated probabilities. 

5.2 SYMBOL BINARIZATION 

Wavelet coefficients and residuals after directional prediction 

are transformed into a sequence of symbols. Each symbol is 

binarized into a binary string using schemes such as unary, 

truncated unary, or Exp-Golomb coding, depending on the 

symbol’s statistical distribution. Let S represent a symbol; its 

binarization can be expressed as: 

 
1 2Binarize( ) nS b b b=   (12) 

where bi∈{0,1}are binary bits. 

5.3 PROBABILITY ESTIMATION AND CONTEXT 

MODELING 

For each binary bit bi, CABAC selects a context model Ci 

based on neighboring data or previously encoded bits. The model 

estimates the probability pi that bi=1, which is updated adaptively 

during encoding. 

5.4 ARITHMETIC CODING 

Arithmetic coding encodes the binary string into a fractional 

interval [L,H) in [0,1), narrowing the interval with each bit 

according to its probability: 

 If 1: ( )(1 )i ib L L H L p=  + − −  (13) 

 If 0 : ( )(1 )i ib H L H L p=  + − −  (14) 

The final encoded bitstream is a binary representation of a 

number in the final interval. 

Table.5. Binarization and Coding for Symbols 

Symbol  

Value 

Binarized  

Code 

Context  

Model Ci 

Probability  

pi 

Encoded  

Interval Update 

3 011 1 0.8 Interval narrowed  

0 0 0 0.4 
Interval updated 

for bit 0 

5 00101 2 0.6 
Progressive  

narrowing for bits 

In Table.5, each symbol is binarized into bits, and each bit is 

encoded with a probability context model. The encoder adaptively 

updates the model for each bit to optimize compression. 

CABAC’s adaptive nature allows it to capture changing statistical 

characteristics of the video data, leading to efficient bitstream 

generation and improved compression performance compared to 

static Huffman coding. 

6. PROPOSED BITSTREAM GENERATION 

Bitstream generation is the final step in the compression 

pipeline where all encoded data—motion vectors, wavelet 

coefficients, and side information—are assembled into a 

structured binary stream suitable for storage or transmission. This 

step ensures synchronization, error resilience, and efficient 

decoding. 

 

Fig.3. Synthetically generated data for training Optical Flow 

Models – MPI-Sintel dataset 

 

Fig.4. Synthetically generated data for training Optical Flow 

Models – Flying Chairs dataset 

The bitstream consists of multiple components organized 

sequentially or hierarchically: 

• Header Information: Contains metadata such as frame 

size, GOP size, quantization parameters, and coding modes. 

• Motion Vector Data: Encoded motion vectors from the 

motion estimation stage. 

• Wavelet Coefficients: Entropy-coded coefficients after 

directional prediction and entropy coding. 
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• Side Information: Includes parameters needed for 

decoding like quantization step size, frame types, and error 

correction codes. 

6.1 BITSTREAM STRUCTURE 

The bitstream is structured to allow random access and error 

resilience. For example, GOP-level headers enable decoding from 

any GOP start. A simplified bitstream structure can be modeled 

as: 

Metadata Motion Vectors Coefficients Quant, etc.

Bitstream Header || Motion Data || Wavelet Data || Side Info=   (15) 

where ∣∣ denotes concatenation. 

6.1.1 Synchronization Markers and Error Detection: 

To ensure decoder synchronization and detect errors, special 

marker bits and CRC (Cyclic Redundancy Check) codes are 

inserted periodically. 

6.1.2 Rate Control and Buffer Management: 

Bitstream generation also incorporates rate control to regulate 

the bit rate according to channel bandwidth or storage constraints. 

This involves adjusting quantization parameters and selectively 

truncating data. 

Table.6. Bitstream Segment Structure 

Segment Description 
Size  

(bits) 

Header 
Frame metadata  

(resolution, GOP size, etc.) 
256 

Motion  

Vector Data 
Encoded motion vectors 1024 

Wavelet  

Coefficients 

Entropy-coded  

wavelet coefficients 
4096 

Side 

Information 

Quantization parameters,  

error checks 
128 

In Table 6, the bitstream is divided into segments with specific 

roles and sizes. The header provides essential decoding info, 

motion vectors and coefficients carry compressed data, and side 

information ensures integrity. The total bitstream size B for a GOP 

can be approximated as: 

 
H MV WC SIB B B B B= + + +  (16) 

where 

BH = bits for header, 

BMV = bits for motion vectors, 

BWC = bits for wavelet coefficients, 

BSI = bits for side information. 

7. RESULTS AND DISCUSSION 

• Simulation Tool Used: MATLAB R2023a with Image 

Processing and Signal Processing Toolboxes. 

• Hardware: Intel Core i9-12900K CPU, 64 GB RAM, 

NVIDIA RTX 4080 GPU, Windows 11 64-bit. 

• Input Videos: Standard test sequences (HD 720p & 1080p): 

BasketballDrive, ParkScene, BlueSky, Shields. 

• Frame Count: 100–300 frames per sequence, 30 fps. 

Comparison with Existing Methods involves the following: 

• MC-EZBC: Uses MCTF and embedded zero-tree coding, 

lacks adaptive prediction. 

• SPIHT-MCTF: Efficient but less suited for high-motion 

HD content. 

• H.264-DWT: Combines H.264 with wavelets, less effective 

in long-GOP structures. 

• 3D-SPIHT: Captures temporal-spatial correlation but with 

high complexity. 

Table.7. Simulation Parameters  

Parameter Value/Setting 

Wavelet Type Biorthogonal 5/3 

Decomposition Levels 3 

Motion Estimation Block Size 16 × 16 

Search Range ±32 pixels 

GOP Size (Dynamic Range) 8–16 frames 

Entropy Coding 
Context-based 

Adaptive Arithmetic 

Quantization Step Size 0.5 – 1.5 (adaptive) 

Directional Prediction Modes 
4 (Vertical, Horizontal,  

Diagonal, DC) 

Frame Rate 30 fps 

Resolution 1280×720 and 1920×1080 

Table.8. SSIM Comparison Across Directional Modes 

Directional  

Mode 

MC- 

EZBC 

SPIHT- 

MCTF 

H.264- 

DWT 

3D- 

SPIHT 

Proposed  

Method 

Vertical 0.912 0.925 0.931 0.918 0.942 

Horizontal 0.905 0.917 0.925 0.912 0.936 

Diagonal 0.893 0.906 0.915 0.902 0.924 

DC 0.882 0.894 0.903 0.890 0.912 

Table.9. Bitrate (kbps) Comparison Across Directional Modes 

Directional  

Mode 

MC- 

EZBC 

SPIHT- 

MCTF 

H.264- 

DWT 

3D- 

SPIHT 

Proposed  

Method 

Vertical 450 420 400 430 380 

Horizontal 460 430 410 440 390 

Diagonal 480 450 435 460 410 

DC 500 470 460 480 430 

Table.10. PSNR (dB) Comparison Across Directional Modes 

Directional  

Mode 

MC- 

EZBC 

SPIHT- 

MCTF 

H.264- 

DWT 

3D- 

SPIHT 

Proposed  

Method 

Vertical 33.2 34.1 34.7 33.8 35.6 

Horizontal 32.8 33.5 34.2 33.3 35.2 

Diagonal 31.7 32.6 33.1 32.8 34.3 

DC 30.5 31.3 32.0 31.6 33.0 
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The proposed method consistently outperforms existing 

approaches (MC-EZBC, SPIHT-MCTF, H.264-DWT, and 3D-

SPIHT) across all directional prediction modes in terms of PSNR 

and SSIM, indicating improved reconstruction quality and 

perceptual similarity. For example, in the vertical mode, the 

proposed method achieves a PSNR of 35.6 dB, approximately 0.9 

dB higher than the best existing method (H.264-DWT), and a 

corresponding SSIM increase to 0.942. This improvement reflects 

the effectiveness of adaptive directional prediction combined with 

wavelet decomposition and efficient entropy coding. 

Additionally, the proposed method achieves lower bitrates 

across all modes, reducing the bitrate by roughly 5-15% compared 

to the next best method, H.264-DWT. This bitrate reduction 

demonstrates enhanced redundancy removal and more compact 

coding, without compromising video quality. Overall, these 

results confirm the proposed algorithm’s superior balance of 

compression efficiency and high-definition video fidelity, 

validating its suitability for advanced video compression 

applications. 

8. CONCLUSION  

This paper presents an improvised method for redundancy 

reduction in wavelet-based video compression tailored for HD 

videos. The proposed approach integrates adaptive directional 

prediction within the wavelet domain, combined with efficient 

motion estimation and context-adaptive entropy coding, to exploit 

spatial and temporal redundancies effectively. Experimental 

results demonstrate that the method significantly improves 

reconstruction quality, as evidenced by superior PSNR and SSIM 

metrics, while simultaneously reducing the bitrate compared to 

prominent existing methods such as MC-EZBC, SPIHT-MCTF, 

H.264-DWT, and 3D-SPIHT. The directional prediction strategy, 

selecting the best predictor among vertical, horizontal, diagonal, 

and DC modes, effectively preserves edge and texture details 

critical in HD content. Additionally, the preprocessing and motion 

estimation modules reduce temporal redundancy efficiently 

without compromising computational complexity. This balance 

between compression efficiency and visual fidelity confirms the 

suitability of the proposed method for modern video applications 

demanding high quality at limited bandwidths. Future work could 

explore real-time implementations and further enhancements in 

adaptive coding strategies to address emerging ultra-high-

definition video standards. 
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