
ISSN: 0976-9102 (ONLINE) ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, MAY 2025, VOLUME: 15, ISSUE: 04
DOI: 10.21917/ijivp.2025.0503

3553

TAILORED VIDEO SUMMARIZATION: CATERING TO PATIENT AND IMPATIENT

USERS

K.R. Sarath Chandran, Adithi Shankar, Geethapriya Thandavamurthi
Department of Computer Science and Engineering, Sri Sivasubramaniya Nadar College of Engineering, India

Abstract

People across various fields rely on automated video summarization

tools to manage extensive video content efficiently. This research

focuses on developing a dynamic, user-centered approach to video

summarization, accommodating both patient and impatient user needs.

The system aims to handle lengthy videos by identifying and cataloging

all objects within them. It follows a three-step process: Object-of-

Interest selection, object detection/localization, and video

summarization. For patient viewers, it offers comprehensive scene

identification and storage. For impatient users, it provides concise

summaries quickly. By adapting itself to individual preferences, this

research will make videos more accessible and useful by providing

personalized video summaries which will help avoid information

overload in various spheres such as security, entertainment, or

personal documentation. This research used deep learning models like

YOLOv8, ResNeXt as well as LSTM to implement this user- centric

approach to video summarization.

Keywords:

OOI, Patient User, Impatient User, YOLOv8, ResNeXt, LSTM, RNN,

CNN

1. INTRODUCTION

Video summarization is one of the most important

technologies that help reduce time in managing an ever- growing

volume of video content in varied fields. In essence, video

summarization condenses lengthy videos into concise summaries

offering valuable advantages. The application of video

summarization in security applications, like in the utilization of

dash cameras by law enforcement agencies, helps in identifying

and cataloging relevant scenes to aid the process of investigation.

It also helps similarly in the entertainment sector by speeding up

the retrieval of specific scenes, thereby providing a better

understanding of the narrative dynamics to the viewers. In

personal documentation, video summarization helps in

pinpointing the relevant moments within an extensive video

archive.

Our objective is to simplify the process of reviewing videos as

lengthy videos can be challenging for individuals to analyze on

their own thoroughly. We strive to develop a system that enables

users to obtain summarized versions of videos. This system will

function by identifying and preserving crucial scenes that align

with the user’s interests. It will achieve this through the

implementation of advanced techniques for object detection,

frame extraction, and summarization. Users will have the

opportunity to specify the Objects of Interest they desire.

Subsequently, the system will retain only those scenes featuring

the designated objects as the output for the patient users. The

output video will then be further summarized while ensuring the

focus still lies solely on the OoI and this is returned as an output

for the impatient users.

At the core of our strategy lies the recognition that users have

diverse needs and preferences. While certain individuals seek

thorough scene identification and comprehensive video

summaries, others prioritize swift and concise highlights of

relevant material. This distinction emphasizes the significance of

adapting video analysis to accommodate both time- constrained

and patient users, each with distinct goals and temporal

limitations.

The research that we have embarked on has three major stages

that entail OoI selection, object detection, and localization, as well

as video summarization. Our main aim of doing this study is to

come up with effective ways of solving the problem of video

summarization in today’s data-rich society because of the vast

quantity of footage that needs to be watched.

2. EXISTING WORKS

The following are some existing systems that have been

proposed by various research efforts.

Ul Haq et al. [10] have presented a journal paper that proposes

a user-customized video summarization system based on deep

learning. This system allows the users to select a set of objects

that they would like their final video summary to be based on.

These objects like cars, human beings, buses, etc are called

Objects of Interest (OoI). The results produced by their system

demonstrate high levels of accuracy ranging from 99.2% to

99.9%. This paper also describes the development of a desktop

application to allow user-driven video summarization based on

the selected OoIs. A significant research gap in the paper is the

fact that it focuses only on catering to impatient users who want

quick access to essential actions and events within videos,

therefore requiring concise and action-centric video summaries.

The paper does not address the needs of patient users who seek

detailed video summaries containing all frames related to specific

OoIs detected by the YOLOv3 framework. This one-sided

approach does not provide a balanced solution that caters to both

impatient and patient users.

Panagiotakis et al. [7] proposed a new approach to

personalized video summarization by using a recommender

system. The system is modeled to create video summaries based

on individual user preferences by combining user-provided video

segmentation data and the duration of features in the video

segments. The primary objective is to produce video summaries

that closely match the subjective criteria as well as the preferences

of the user. However, a major limitation of their study is the lack

of comparative analysis with established video summarization

techniques or algorithms. This absence makes it challenging to

evaluate the efficiency and performance of the proposed system

against existing methods in the field.

Negi et al. [5] proposed a deep learning-based framework for

efficient video summarization, using object detection and

KR SARATH CHANDRAN et al.: TAILORED VIDEO SUMMARIZATION: CATERING TO PATIENT AND IMPATIENT USERS

3554

unsupervised learning methodologies. Their system involves

several steps. Initially, the frames are extracted from the video

input. This is followed by object detection utilizing YOLOv5,

used to select frames containing the target object. Next, features

are extracted using VGG-16 and ResNet-50, along with Principal

Component Analysis (PCA) employed for feature compression.

Later, K-means clustering is applied to extract the best candidate

frames. Post-processing involves utilizing the Pearson

Correlation Coefficient (PCC) to eliminate redundant frames and

extract final keyframes. The results of this system demonstrate

better performance when compared to existing models.

Specifically, an enhanced recall score was achieved.

Negi et al. [6] wrote another paper that focused on the

performance evaluation of the previously proposed approach.

They used a wide range of metrics such as summary length,

precision, recall, PR curve, and mean average precision (mAP).

These metrics are quantitative measures that are capable of

assessing the quality of the summarization process. The proposed

approach is able to identify the most effective video

summarization framework with the best summary length under

varying conditions. The paper also offers insights into system

resource utilization during model training. This gives us an idea

of the computational requirements needed to implement the

proposed approach. This aspect of the research contributes

valuable information regarding the practical feasibility and

scalability of the proposed method in real-world applications.

There have been patents filed for systems generating video

summarizations like Karakotsios et al. [3] who developed a

method for generating summarizations based on user input and

feedback. The first video summarization produces frames of video

data that are likely to be of interest to the user. User feedback on

the first video summarization is collected and used for the second

summarization. The second video summarization is provided to

the user as output. This allows a high level of personalization by

the user. The two-step process improves the relevance and

effectiveness of the generated summaries.

Saini et al. [8] performed a comparative analysis of various

deep learning approaches used in video summarisation. This

paper also provides a list of potential recommended applications

based on the literature. This paper reviews deep learning-based

video summarization methods, including the Multi-edge

optimized LSTM RNN for VS, which achieved an impressive F-

score of 92.4%, outperforming other recent techniques on the

VSUMM dataset. This focus on LSTM’s exceptional

performance is a key takeaway from this research.

Wang et al. [11] proposed a video summarization network that

utilizes an encoder-decoder framework, integrating a

convolutional neural network (CNN) for feature extraction and a

bidirectional long short-term memory (LSTM) network for

decoding. It also makes use of a self-attention mechanism to

emphasize key features during summarization. Experimental

results on two datasets show its effectiveness compared to seven

other methods, confirming that it is indeed a valuable method to

perform video summarisation.

Lin et al. [4] have proposed a novel hierarchical LSTM

network with attention for video summarization. Instead of using

a standard 2D ResNeXt, they have employed a 3D ResNeXt to

extract a more delicate video representation. After this, the system

employs a hierarchical LSTM with a bottom layer as well as a top

layer. The bottom layer of the LSTM is capable of generating a

fine-grained analysis while the top layer can identify more

abstract moments. Then, attention mechanisms are used to fine-

tune the summary by selecting only the important information in

the summary while ignoring other information. This system aims

at capturing temporal dependencies present in the video.

Deshpande et al. [1] provided experimental results on different

methods of object identification namely Region-based

Convolutional Neural Networks (RCNN), Faster-RCNN, and

You Only Look Once (YOLO). It was concluded that YOLO was

the best in terms of speed but also that YOLO was not the most

accurate. The paper concluded that YOLO was still capable of

providing efficient object detection without compromising on

performance. This paper provided necessary research insights into

which object detection framework was best suited for the research

at hand.

A similar comparison was made by Tan et al. [9] who

published a survey that explores the three object detection

methods RetinaNet, SSD, and YOLO v3 in image recognition,

focusing on pill identification. It concluded that YOLO v3’s faster

convergence makes it suitable for quickly adapting to changes in

pharmacy settings. A limitation of this paper is the fact that it

measures performance based only on pill identification. It does

not measure the performance of object detection for general

scenarios with multiple objects. Nevertheless, YOLO’s

performance remains unmatched.

Jain et al. [2] discuss the usage of the COCO dataset in object

detection. The COCO dataset, a large-scale object detection

dataset, is widely used in AI and computer vision projects. Object

detection involves both grouping similar objects and accurately

localizing them using bounding boxes. The COCO dataset also

provides 80 classes of objects that it can detect. This makes

COCO suitable for usage in generic object detection projects.

Moreover, the presence of these 80 classes also allows an easy

selection of Objects of Interest concerning this current research

by the user.

3. PROPOSED METHODOLOGY

3.1 PATIENT USERS

This phase involves three main modules: Object Counting,

Extracting Frames Containing Objects of Interest (OoI), and

Detailed Summary Creation. In the Object Counting module,

Ultralytics YOLO performs object detection used to count

different objects in the input video. This gives the user an idea of

the most common objects present. This is used to create the drop-

down for selecting the Object of Interest. The Extracting Frames

Containing OoI module uses OpenCV and YOLO to extract

frames containing the OoIs mentioned as input by the user. These

frames are then saved for further processing. These saved frames

serve as input for the Impatient User and Summary Video

Creation modules. Lastly, the Detailed Summary Creation

module converts the annotated frames into a video file, adjusts its

frame rate, and converts it to the mp4 format for easier download.

3.2 IMPATIENT USERS

This phase contains four modules: Data Handling,

Summarization Model, Training, and Short Summary Creation.

ISSN: 0976-9102 (ONLINE) ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, MAY 2025, VOLUME: 15, ISSUE: 04

3555

The Data Handling Module manages data loading and

preprocessing. The SumMeDataset class extracts image frames

and their associated importance scores from a CSV file. The

Summarization Model Module defines the architecture of the

summarization model, which contains the newresNext encoder

for feature extraction and the Model class for LSTM-based

summarization. The Training

Module handles the training process. It uses MSE loss and

Adam optimizer to improve model parameters iteratively. Lastly,

the Short Summary Creation Module displays the summarization

output visually after selecting the most relevant frames based on

their predicted scores. Together, these modules can generate a

short video summary of the initial input video.

The overall pipeline diagram is illustrated in Fig.1.

4. IMPLEMENTATION DETAILS

4.1 PATIENT USER

4.1.1 Object Counting Module:

This module involves passing the input video through an

algorithm that implements object detection and counts the

different objects present in the video. The custom-made algorithm

provides information regarding the most commonly present

objects in the input video.

The algorithm begins by importing necessary libraries

including Ultralytics YOLO for object detection, OpenCV for

video processing, and the operator module for sorting

dictionaries. Following this, an instance of the YOLO model is

created using a pre-trained model file named yolov8n.pt. The

algorithm proceeds to open the video file for processing using

OpenCV’s VideoCapture function, obtaining essential parameters

such as width, height, and frame rate to define the object counting

region. A rectangle is then defined across the video frame using

the width and the height and is used as the region for counting

objects. Then, an instance of the ObjectCounter class from the

Ultralytics solutions module is instantiated, configuring it with

visualization options, counting regions, and preferences.

Next, the algorithm’s parameters are modified to detect all 80

classes defined by the COCO dataset. Additionally, a dictionary

is initialized to store counts for each class. The algorithm proceeds

to iterate through each frame of the video, performing object

detection using the YOLO model. Object counts are updated for

each detected object class based on the tracking results.

After all the frames are iterated through, the dictionary

containing object counts is sorted in descending order based on

the count values. Classes with counts less than the threshold value

are filtered out to focus on significant object classes. Finally, the

sorted list of object classes along with their corresponding counts

is printed. This gives the user a good idea as to which objects are

present in the video and how frequently.

The Fig.2 illustrates the architecture of the Object Counting

module.

4.1.2 Extracting Frames Containing OoI Module

This module uses OpenCV for frame extraction. The extracted

frames are then passed onto the object detection algorithm,

YOLO. Frames that contain the OoIs specified by the user are

saved in a separate folder. These frames are then passed as input

to the Impatient User part of the research. The frames are also

passed onto the Summary Video Creation Module, which creates

the output video for the Patient User. The flow of the code is

discussed next.

Fig.1. Overall Pipeline

Fig.2. Object Counting

The process begins by asking the user to input a list of objects

of interest (OoI). Next, an instance of the YOLO model is

instantiated, using a pre-trained model file named yolov8m.pt.

After this, the designated video file, specified by the variable vid,

is opened for processing. To organize the output, an output folder

named frames is created to store the frames containing the OoI.

The algorithm then iterates through each frame of the video.

Within each iteration, the YOLO model is used to predict objects

present in the frame. The predictions are then filtered to include

only those pertaining to the specified OoI. Then the frame is

annotated using a bounding box and corresponding class label.

Each annotated frame is saved as an image within the output

folder named frames. The process terminates upon reaching the

end of the video, stopping the frame processing loop.

The Fig.3 illustrates the architecture of the Object Detection

and Frame Extraction module.

4.1.3 Detailed Summary Creation Module:

This module completes the task of converting the sequence of

images with the OoI present into a video file, adjusting its frame

rate, and converting it into a different video format for easier

download. The flow of the code is discussed next.

Initially, the images in the frames folder are sorted using the

natsort library to ensure proper sequencing. The images are

iterated over, and each frame is added to the video file using the

write method of the VideoWriter object. After writing all frames,

the video file is closed and saved.

Next, the code reads the generated video file and adjusts its

frame rate. The frame rate is increased by a factor of 32 to

accelerate the video. A new VideoWriter object is created with

the updated frame rate and each frame of the original video is

written to the new video file.

Next, the moviepy library is utilized to convert the newly

created video file to the mp4 format, which is a commonly used

KR SARATH CHANDRAN et al.: TAILORED VIDEO SUMMARIZATION: CATERING TO PATIENT AND IMPATIENT USERS

3556

format for web-based applications and platforms. Finally, the

resulting mp4 file is downloaded. The Fig.4 illustrates the

architecture of the Patient User Summary.

Fig.3. Object Detection and Frame Extraction Creation module

4.2 IMPATIENT USER

4.2.1 Data Handling Module:

The Data Handling Module handles data loading,

preprocessing, and batching. Our implementation consists of the

SumMeDataset class that inherits from PyTorch’s Dataset class.

This class facilitates loading and preparing the image and

importance score data for training and evaluating the model.

It takes several arguments during initialization:

• annotations_filename: The path to a CSV file containing

video names and their corresponding importance scores or

ground truth scores for each frame.

• img_dir: The path to the directory containing the image

frames for the videos.

• transform (optional): A function used to preprocess images

(e.g., converting them to tensors).

• target_transform (optional): A function used to preprocess

the importance scores.

The class loads annotations from a CSV file using pandas. It

extracts frame scores for the specified video and stores references

to transform and target transform functions. The len () returns the

total number of frames (and scores) in the dataset. The core lies

in the getitem () method. This method receives an index input and

then retrieves the corresponding image and score. It loads the

image from the directory, extracts the score from the DataFrame,

and applies any transformations to both the image and score,

subsequently returning them as a tuple. Hence, data formatting for

training is ensured by this module.

• Encoder (newresNext): The new_resNext class is an

encoder. It extracts high-level features from input images

using a ResNeXt convolutional neural network. During

initialization, the network can be customized. You can

specify parameters like fc_size, large, and pre-trained which

is by default True. fc_size sets the output size of an added

fully connected layer. large indicates how big the ResNeXt

model is. As pre-trained is True, it uses learned weights from

a pre-trained ResNeXt model. Based on these parameters,

the class selects an appropriate ResNeXt architecture from

the torchvision.models module. This could either be

resnext5032x4d or resnext10132x8d. The forward method

of the new_resNext class defines the forward pass

computation inside the network. It takes an input tensor

representing image data and passes it through the selected

ResNeXt model. The resulting image features then get

returned by the forward method.

• RNN (Model): This class also inherits from

torch.nn.Module and defines the core architecture of the

video summarization model. It takes several arguments

during initialization, including the input_size from the

ResNeXt model, output_size which gives the number of

predicted importance scores, hidden_size of the LSTM

layer, and n_layers which gives the number of LSTM layers

to be stacked. The class creates an LSTM layer with these

specifications and a final linear layer to map the LSTM

output to the predicted importance scores. The forward

method receives a batch of encoded image features extracted

by the encoder (newresNext) and passes it through the

LSTM layer which processes the sequential input data and

captures temporal dependencies and patterns across frames

in the video. The output of the LSTM layer is then passed

through a fully connected linear layer, which maps the

LSTM output to the desired output size. This method returns

a tuple containing both the predicted scores and the hidden

state of the LSTM, which might be useful for further

processing. Additionally, the Model class defines an

initialization method, initHidden, to initialize the hidden

state of the LSTM layer. This method ensures that the hidden

state is appropriately initialized before the forward pass

computation begins.

The Fig.6 illustrates the architecture of the Data Handling

Module.

4.2.2 Summarization Model Module:

This module defines the architecture of our neural network

model. It includes two primary classes: newresNext and Model.

Fig.4. Patient User Summary Creation

Fig.5. Annotations.csv

Fig.6. Data Handling

ISSN: 0976-9102 (ONLINE) ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, MAY 2025, VOLUME: 15, ISSUE: 04

3557

The Fig.7 illustrates the architecture of the Summarization

Model Module.

4.3 TRAINING MODULE

The Training Module handles the training process of our

model. It includes functions for initializing the model, defining

loss functions, optimizing parameters, and evaluating the model’s

performance.

First, the training module defines the loss function and

optimizer. In this case, Mean Squared Error (MSE) loss is chosen

as the loss function. MSE measures the average squared

difference between the predicted scores and the ground truth

scores, providing a quantitative measure of the model’s

performance. The equation for MSE is defined at Eq.(1):

 ()
2

1

1 n

i i

i

MSE Y Y
n =

= − (1)

where Yi is the predicted scores and Y′ is the ground truth scores.

The Adam optimizer is then used to optimize the model

parameters by updating them based on the computed gradients of

the loss function. This optimization process aims to minimize the

difference between predicted and actual scores, hence improving

the model’s ability to generate accurate summaries.

Moving on to the training loop, this iterative process begins

by iterating over batches of data obtained from the data loader.

Each batch consists of a subset of samples from the dataset,

allowing for efficient processing and parameter updates. Within

the loop, the data and the model are moved to the appropriate

computational device, whether it be a CPU or GPU, to perform

computations. For each batch, the model conducts a forward pass

to compute predictions for the input data. These predictions are

then compared to the ground truth scores, and the loss is

calculated using the previously defined.

Fig.7. Summarization Models

Subsequently, the optimizer steps in to update the model

parameters based on the gradients of the loss function obtained

during the backward pass. This step, known as backpropagation,

is essential for adjusting the model’s parameters in the direction

that minimizes the loss, thereby improving the model’s

performance over time. By iteratively repeating this process for

multiple epochs, the training module ensures that the neural

network model learns to generate accurate summaries by fine-

tuning its parameters based on the provided training data.

Periodically, the model performance is evaluated on a separate

validation dataset to ensure it generalizes well to unseen data. This

helps prevent overfitting, where the model learns to memorize the

training data rather than generalize to new examples. In the

provided code, a validation loop is implemented to assess the

model’s performance on the validation dataset, calculating the

validation loss.

Overall, the training module manages the entire training

process, starting from model setup to optimizing the parameter,

This allows the model to effectively learn from the data and

improve its summarization capabilities. The Fig.8 illustrates the

architecture of the Training Module.

4.4 SHORT SUMMARY CREATION MODULE

The Short Summary Creation module in the provided code

segment serves an important role in extracting the output frames

generated by the summarization model and representing it in a

visually interpretable format. Its process involves several key

steps.

Firstly, the module starts by determining the number of output

frames to include in the summary based on a predetermined

desired output ratio. This ratio dictates the proportion of the video

content that should be present within the summary. By employing

the calculate_output_frames function, the code dynamically

computes the optimal number of frames to represent the

summarized content. Understanding the ground truth scores of

every frame is vital for this computation. By doing so, the chosen

frames can accurately encompass the most significant parts of the

video.

 frame_ratio = gt_score(i)/total_score (2)

Once the number of output frames is established, the module

proceeds to select the top-ranked frames based on their predicted

scores. Leveraging the predicted scores, preds, the code identifies

the frames with the highest ranking and extracts them for

inclusion in the summary. These selected frames are then saved

as individual image files in a designated output directory and

converted into a video to provide as the output.

With the output frames secured, the module moves to the

visualization phase. Here, the code retrieves the saved output

frames from the output directory and prepares them for display.

Utilizing the make_grid function from the PyTorch library, the

output frames are organized into a well-organized grid layout.

This layout enhances the presentation of the summary by

arranging the frames in a structured and easily digestible manner.

Finally, the visualized output frames are showcased to the user

through the show function. This function uses Matplotlib to

generate a visualization of the output frames and display them

within the output of the code execution. By presenting the output

frames in a graphical format, users can assess the quality and

relevance of the summarized content. This visual representation

improves the interpretability of the summarization results,

facilitating informed decision-making and evaluation of the

summarization model’s performance.

In summary, the visualization module plays a pivotal role in

presenting the output frames of the summarization model in a

visually appealing and informative manner. The Fig.9 illustrates

the architecture of the Visualization Module.

5. RESULT

5.1 PATIENT USER

In Fig.10, we notice a video frame where the Object of Interest

is a bicycle. Our system uses the YoLoV8 object detection model

to detect and label bicycles in each frame. In the screenshot, we

see boxes around the bicycle with labels showing the model’s

capability to recognize the specified OoI.

KR SARATH CHANDRAN et al.: TAILORED VIDEO SUMMARIZATION: CATERING TO PATIENT AND IMPATIENT USERS

3558

Fig.8. Training Module

Fig.9. Short Summary Video Module

Fig.10. Frame with OoI as Bicycle

Fig.11. Frame with OoI as Bus

Fig.12. Frame with OoI as Bicycle and Bus

Similarly, Fig.11 shows a frame from the video with a bus as

the focus. The YOLO v8 model successfully identifies and labels

the presence of multiple buses. This shows how flexible it is in

detecting objects.

The Fig.12 shows a frame where both the bicycle and the bus

are entered as the OoI. Both objects in each frame are detected

and labeled. This shows how the system can handle multiple

objects at once with ease, showcasing its versatility.

The Fig.13 showcases frames extracted from the video

summary, highlighting scenes where a bus is identified as the OoI.

These frames are part of the summarized video created using

OpenCV’s ’VideoWriter’ tool. In this case, the summary only

includes frames where a bus is identified as the OoI.

Fig.13. Patient User Video Summary with Bus as OoI

5.2 IMPATIENT USER

In this example, footage showing kids playing with leaves is

caught on video. The car is taken as the Object of Interest. First,

the Patient User model processes it, looking for cars. It removes

frames without cars, giving a subset. Next, that car-only subset

feeds into the Impatient User model. With 1291 total input frames,

this model uses ResNeXt and LSTM to analyze the content,

extracting key frames. Using a pre-determined formula, it

calculates 30 frames as the optimal number for summarizing. The

Fig.14 represents these 30 selected frames arranged in a visually

informative grid format.

5.3 PERFORMANCE ANALYSIS

5.3.1 Patient Users Detailed Summary Generation Times:

The Table.1. contains the data regarding the amount of time

taken to generate a summary with single OoI as well as multiple

OoIs.

Table.1. Summary Generation Times

Sl. No. OoI
Frames

with OoI
Time Taken

(seconds)

1 1 OoI - bicycle 46 77.48

2 1 OoI - bus 192 103.11

3 2 OoIs - bicycle and bus 231 111.44

ISSN: 0976-9102 (ONLINE) ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, MAY 2025, VOLUME: 15, ISSUE: 04

3559

The table reveals a noticeable trend: as the number of OoIs

increases, there is a corresponding increase in the time required to

generate a summary. This correlation is because of the rise in the

number of frames containing the specified OoIs, particularly

when the object is present throughout the video. The increase in

OoIs directly impacts the computational effort needed for the

summarization process.

5.3.2 Comparison of Object Detection Algorithms:

Existing research work has shown that YOLO is the best

suited Object Detection Algorithm for this research. YOLO’s high

speed capabilities overrule its decreased accuracy. The high speed

of YOLO is made clear by the study conducted by Deshpande et

al. [1] represented in Fig.15 and Fig.16.

Methods Fast R-CNN Faster R-CNN YoLo

Time (s) 83.81045 73.88907 17.389161

Fig.14. Frames from Summarized Video

Fig.15. Comparative Analysis Based on Time [1]

Fig.16. Time Taken to Detect [1]

Tan et al. [9] highlights the minor drawback that YOLO

models have, that is, the lower accuracy. The trade-off between

speed and accuracy concerning this research made it clear that

speed was more important than accuracy. This is highlighted in

Fig.17.

Fig.17. Performance of Deep Learning Models

5.4 PERFORMANCE METRICS ON YOLOV8

CONFUSION MATRIX

A confusion matrix is a tool used in machine learning and

statistics to evaluate the performance of a classification model. It

provides a summary of the predictions made by the model

compared to the actual ground truth values across different

classes.

Here’s how a confusion matrix works:

• True Positives (TP): These are the cases where the model

correctly predicts the positive class.

• True Negatives (TN): These are the cases where the model

correctly predicts the negative class.

• False Positives (FP): Also known as Type I errors, these are

the cases where the model incorrectly predicts the positive

class when it’s actually negative.

• False Negatives (FN): Also known as Type II errors, these

are the cases where the model incorrectly predicts the

negative class when it’s actually positive.

The Fig.18 and Fig.19 show the confusion matrix of the 80

different classes defined by COCO128 dataset used to train the

YOLOv8 with different confidence thresholds. The main diagonal

shows the number of correct predictions made from each class.

Since most of the values in the given images lie on the diagonal,

one can conclude that the model works fairly well. It is clear that

the model does not work well only for background detection.

KR SARATH CHANDRAN et al.: TAILORED VIDEO SUMMARIZATION: CATERING TO PATIENT AND IMPATIENT USERS

3560

Fig.18. Confusion Matrix with Confidence Threshold = 0.001

Fig.19. Confusion Matrix with Confidence Threshold = 0.250

5.4.1 F1 Confidence Curve:

The F1 score serves as a comprehensive metric for assessing

a model’s accuracy, taking into account both precision and recall.

Specifically, it represents the harmonic mean of precision and

recall, thereby providing a balanced evaluation of the model’s

performance across different classes.

Fig.20. F1 Curve with Confidence Threshold = 0.001

The F1 Confidence Curve in Fig.20 and in Fig.21 offers a

graphical representation of the F1 score across various confidence

thresholds. As the F1 score reflects the model’s overall

effectiveness, a higher F1 score denotes superior performance.

The given image shows that the F1 score settles close to 0.7

making the model fairly accurate while not being overfitted.

Fig.21. F1 Curve with Confidence Threshold = 0.250

5.4.2 Precision-Recall Curve:

The Precision-Recall Curve depicted in Fig.22 and in Fig.23

illustrates the balance between precision and recall across various

threshold values in a classification model.

Fig.22. PR Curve with Confidence Threshold = 0.001

Fig.23. PR Curve with Confidence Threshold = 0.250

ISSN: 0976-9102 (ONLINE) ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, MAY 2025, VOLUME: 15, ISSUE: 04

3561

Precision, the ratio of true positive predictions to the total

positive predictions, measures the model’s accuracy in identifying

positive instances. Recall (or sensitivity), the ratio of true positive

predictions to the total actual positive instances, indicates the

model’s ability to capture all positive instances. This curve

depicts how adjusting the classification threshold impacts the

trade-off between precision and recall, aiding in the assessment of

model performance.

5.5 COMPARISON OF IMPATIENT USERS SHORT

SUMMARY GENERATION TIMES

The comparison between the short summary generation times

of two different approaches, one utilizing only ResNeXt and

LSTM, and the other incorporating YOLO, ResNeXt, and LSTM,

reveals notable differences as shown in Fig.24

Fig.24. Comparison of Short Summary Generation Times

In the approach using just ResNeXt and LSTM, the time

needed for video summary creation is considerably longer. This

is because a much larger number of frames, totaling 3187, must

be processed. However, when YOLO is incorporated alongside

ResNeXt and LSTM, fewer frames need analysis only 1291.

Consequently, the combined YOLO, ResNeXt and LSTM method

takes less time to generate summaries. YOLO’s object detection

capabilities allow selection of fewer relevant frames for

summarization. So utilizing YOLO with ResNeXt and LSTM

results in faster video summarization than employing ResNeXt

and LSTM alone.

5.6 COMPARISON OF MSE, MAE, RMSE VALUES

The performance of different models inside the proposed

system is compared in the following graphs using metrics like

Mean Absolute Error (MAE), Root Mean Squared Error (RMSE),

and Mean Squared Error (MSE). MSE measures the average

squared difference between the actual and predicted values in a

regression problem. It provides a measure of the overall model

accuracy, with lower values indicating better performance.

Fig.25. Comparison of MSE Values

MAE calculates the average absolute difference between the

actual and predicted values. It offers a straightforward

interpretation of prediction errors, where smaller values signify

higher accuracy.

Fig.26. Comparison of MAE Values

RMSE is the square root of the MSE and provides a measure

of the standard deviation of the prediction errors. It is commonly

used to evaluate the spread of errors around the regression line,

with lower values indicating better model performance.

Fig.27. Comparison of RMSE Values

KR SARATH CHANDRAN et al.: TAILORED VIDEO SUMMARIZATION: CATERING TO PATIENT AND IMPATIENT USERS

3562

The graphs clearly show that our proposed model

incorporating YOLO with LSTM and ResNeXt performs better

than the other model using only LSTM and ResNeXt, as seen by

its lower values for each of these criteria.

6. CONCLUSION

This paper provides an effective video summarization

technique that caters to user’s preferences. This addresses the

need for managing large amounts of video content. Advanced

techniques are used for Object of Interest detection, localization,

and summarization. Results indicate the capability of the model

to identify and catalog the OoIs. It creates a summary assembling

all frames that contain the OoI for the patient user and a further

summarized concise video for the impatient user. Additionally, it

is observed that our proposed framework integrating YOLO with

ResNext and LSTM is much faster in terms of summary

generation time. This integration mitigates information overload

and enhances accessibility to critical information in security,

entertainment, and personal documentation domains. While this

research deals with video summarization with respect to the

content present in terms of scenes in images, it does not consider

the audio. Potential future work could include the summary of the

audio present in the video. Including audio in the video summary

would be useful for an even wider range of applications.

REFERENCES

[1] H. Deshpande, A. Singh and H. Herunde, “Comparative

Analysis on YOLO Object Detection with OpenCV”,

International Journal of Research in Industrial

Engineering, Vol. 9, No. 1, pp. 46-64, 2020.

[2] S. Jain, S. Dash and R. Deorari, “Object Detection using Coco

Dataset”, Proceedings of International Conference on

Cyber Resilience, pp. 1-4, 2022.

[3] Karakotsios, Kenneth Mark, Deon Poncini and Matthew

Alan Townsend, “User Input-based Video Summarization”,

U.S. Patent, No. 10, 2020.

[4] J. Lin, S.H. Zhong and A. Fares, “Deep Hierarchical LSTM

Networks with Attention for Video Summarization”,

Computers and Electrical Engineering, Vol. 97, pp. 1-9,

2022.

[5] A. Negi, K. Kumar and P. Saini, “Object of Interest and

Unsupervised Learning-based Framework for an Effective

Video Summarization using Deep Learning”, IETE Journal

of Research, pp. 1-12, 2023.

[6] A. Negi, K. Kumar, P. Saini and S. Kashid, “Object

Detection based Approach for an Efficient Video

Summarization with System Statistics Over Cloud”,

Proceedings of International Conference on Electrical,

Electronics and Computer Engineering, pp . 1 -6 , 2022.

[7] Panagiotakis Costas, Harris Papadakis and Paraskevi

Fragopoulou, “Personalized Video Summarization based

Exclusively on user Preferences”, Proceedings of

International Conference on Information Retrieval, pp. 305-

311, 2020.

[8] P. Saini, K. Kumar, S. Kashid, A. Saini and A. Negi, “Video

Summarization using Deep Learning Techniques: A

Detailed Analysis and Investigation”, Artificial Intelligence

Review, Vol. 56, pp. 12347-12385, 2023.

[9] L. Tan, T. Huangfu, L. Wu and W. Chen, “Comparison of

RetinaNet, SSD and YOLO V3 for Real-Time Pill

Identification”, BMC Medical Informatics and Decision

Making, pp. 1-11, 2021.

[10] Ul Haq and Hafiz Burhan, “An Effective Video

Summarization Frame-Work based on the Object of Interest

using Deep Learning”, Mathematical Problems in

Engineering, Vol. 2022, pp. 1-25, 2022.

[11] Wang Ziyan, “Video Summarization Generation with Self-

Attention and Random Forest Regression”, Proceedings of

International Symposium on Computer Applications and

Information Systems, Vol. 12721, pp. 349-356, 2023.

