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Abstract 

Advancements in artificial intelligence have revolutionized real-time 

video processing, enabling enhanced visual quality for applications in 

surveillance, medical imaging, and entertainment. Traditional video 

enhancement methods often struggle with balancing computational 

efficiency and high-quality output, leading to degraded performance in 

real-time scenarios. The primary challenge lies in preserving details 

while reducing noise, motion artifacts, and frame inconsistencies, 

particularly in low-resolution and fast-motion videos. This study 

introduces an AI-driven real-time video enhancement framework that 

integrates super-resolution techniques with optical flow-based motion 

estimation. The proposed method employs a deep learning-based 

Super-Resolution Generative Adversarial Network (SRGAN) to 

upscale video frames while maintaining texture fidelity. Additionally, 

an enhanced optical flow algorithm refines motion estimation, 

minimizing temporal inconsistencies and improving frame transitions. 

The combination of these techniques enables effective noise reduction, 

sharper details, and smooth motion handling, making the framework 

suitable for real-time applications. Experimental evaluations 

demonstrate that the proposed approach significantly improves peak 

signal-to-noise ratio (PSNR) and structural similarity index (SSIM) 

compared to existing methods. The system achieves real-time 

performance with minimal computational overhead, making it suitable 

for deployment in live broadcasting, telemedicine, and security 

surveillance. The results highlight the efficiency of integrating AI-

based super-resolution with optical flow in achieving superior video 

clarity and motion coherence in real-time environments. 
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1. INTRODUCTION 

The increasing demand for high-quality video content in 

various fields, including surveillance, medical imaging, and 

entertainment, has led to significant advancements in real-time 

video enhancement techniques [1-3]. Traditional video 

processing methods often struggle with issues such as low 

resolution, motion artifacts, and temporal inconsistencies, 

particularly in dynamic environments where real-time processing 

is required. Artificial intelligence (AI)-driven techniques have 

emerged as a promising solution, offering the ability to enhance 

video quality through deep learning-based super-resolution and 

motion estimation approaches. These AI-driven methods can 

restore fine details, reduce noise, and improve the perceptual 

quality of videos, making them ideal for applications that require 

both accuracy and efficiency. 

Despite the progress in video enhancement, several challenges 

persist in achieving real-time performance without compromising 

quality. First, deep learning-based super-resolution techniques 

often require high computational power, making them unsuitable 

for real-time applications without significant optimization [4]. 

Second, motion artifacts and frame inconsistencies remain a 

major issue, especially in videos with rapid movements, as 

existing methods struggle to maintain coherence across frames 

[5]. Third, ensuring a balance between noise reduction and detail 

preservation is complex, as aggressive denoising can lead to 

blurring, while insufficient processing may retain unwanted 

distortions [6]. Addressing these challenges requires an integrated 

approach that combines super-resolution techniques with robust 

motion estimation for smooth frame transitions. 

Real-time video enhancement requires a framework that can 

simultaneously upscale video frames, reduce noise, and maintain 

temporal consistency while operating within computational 

constraints [7]. Traditional super-resolution approaches, such as 

bicubic interpolation, fail to recover fine details, while deep 

learning-based methods often introduce artifacts when dealing 

with complex motion scenarios [8]. Optical flow techniques, 

which estimate pixel movements between frames, provide a 

potential solution for motion-aware enhancement but suffer from 

inaccuracies when dealing with occlusions and fast-moving 

objects [9]. The key challenge is to develop a computationally 

efficient AI-driven framework that integrates super-resolution 

with motion estimation to achieve real-time video enhancement 

with minimal artifacts and maximum perceptual quality [10]. 

1.1 OBJECTIVES 

• Develop an AI-driven real-time video enhancement 

framework that integrates super-resolution and optical flow-

based motion estimation. 

• Optimize the framework for computational efficiency, 

ensuring real-time processing without compromising video 

quality. 

• Evaluate the proposed approach against existing methods in 

terms of peak signal-to-noise ratio (PSNR), structural 

similarity index (SSIM), and real-time performance metrics. 

The novelty of this work lies in the seamless integration of 

deep learning-based super-resolution with optical flow-based 

motion estimation for real-time video enhancement. Unlike 

conventional approaches that treat these techniques separately, 

the proposed framework leverages the strengths of both methods 

to improve video clarity, reduce motion artifacts, and enhance 

temporal consistency. Key contributions include: 

• A deep learning-based Super-Resolution Generative 

Adversarial Network (SRGAN) optimized for real-time 

video upscaling. 

• An enhanced optical flow algorithm that improves motion 

estimation accuracy, reducing temporal inconsistencies. 
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• A hybrid AI-driven framework that balances computational 

efficiency and high-quality enhancement for real-time 

applications. 

2. RELATED WORKS 

Several studies have explored AI-based video enhancement 

techniques, focusing on super-resolution, motion estimation, and 

real-time processing. Deep learning-based super-resolution 

methods have gained attention due to their ability to restore high-

frequency details lost in low-resolution videos [7]. Among these, 

SRGAN has been widely adopted for video upscaling, leveraging 

adversarial learning to generate high-fidelity frames. Researchers 

have extended SRGAN with modifications such as feature 

extraction networks and attention mechanisms to enhance visual 

quality further [8]. However, these methods often suffer from 

computational inefficiency, limiting their applicability in real-

time scenarios [9]. 

Optical flow-based motion estimation techniques provide an 

alternative approach for enhancing video clarity by predicting 

motion patterns between frames [10]. Traditional methods such as 

Farneback and Lucas-Kanade optical flow algorithms have been 

used for motion compensation but struggle with occlusions and 

fast-moving objects [11]. Deep learning-based optical flow 

models, such as FlowNet and RAFT, have significantly improved 

motion estimation accuracy, enabling smoother frame transitions 

and reducing motion artifacts [12]. However, these models still 

face challenges in real-time applications due to high 

computational demands. 

Hybrid approaches combining super-resolution and optical 

flow have been proposed to leverage the strengths of both 

techniques. Some studies have explored the use of recurrent 

neural networks (RNNs) and temporal consistency constraints to 

refine frame transitions [13]. Others have integrated spatial-

temporal attention mechanisms to enhance motion-aware super-

resolution, achieving improved perceptual quality [14]. Despite 

these advancements, existing solutions still face trade-offs 

between computational efficiency and enhancement quality, 

highlighting the need for a more optimized framework [15]. 

The proposed study builds on these prior works by integrating 

an optimized SRGAN with an enhanced optical flow algorithm, 

ensuring real-time performance while maintaining high visual 

fidelity. By addressing the computational inefficiencies of 

existing models, this research contributes to the development of a 

practical AI-driven solution for real-time video enhancement. 

3. PROPOSED METHOD 

The proposed AI-driven real-time video enhancement 

framework integrates deep learning-based super-resolution with 

optical flow-based motion estimation to improve video quality 

while ensuring smooth frame transitions. A Super-Resolution 

Generative Adversarial Network (SRGAN) is employed to 

upscale low-resolution frames while preserving fine details and 

textures. To maintain temporal consistency and reduce motion 

artifacts, an enhanced optical flow algorithm estimates pixel 

movements between consecutive frames, refining motion 

prediction for smoother transitions. The framework operates in a 

multi-stage pipeline, where each frame undergoes super-

resolution enhancement before optical flow refinement corrects 

any inconsistencies. The system is optimized for computational 

efficiency through parallel processing and lightweight neural 

network architectures, enabling real-time performance across 

various applications, including surveillance, medical imaging, 

and live broadcasting. The combination of super-resolution and 

motion estimation allows for noise reduction, improved frame 

coherence, and high-quality output with minimal latency. 

• Frame Preprocessing: Input video frames are extracted and 

normalized to ensure uniform brightness, contrast, and 

feature consistency. 

• Super-Resolution Enhancement: A deep learning-based 

SRGAN is applied to upscale each frame, generating high-

resolution outputs while preserving texture details. 

• Optical Flow Estimation: An enhanced optical flow 

algorithm computes pixel-wise motion vectors between 

consecutive frames, predicting movement patterns to 

maintain temporal consistency. 

• Motion Compensation: The estimated motion vectors are 

used to align frames, reducing motion artifacts and 

improving coherence in fast-moving scenes. 

• Post-Processing and Refinement: A lightweight CNN-

based refinement module further enhances frame sharpness, 

corrects distortions, and ensures visual smoothness. 

• Real-Time Optimization: Parallel processing techniques 

and model compression are applied to achieve low latency, 

enabling real-time video enhancement on hardware-

constrained devices. 

• Output Generation: The enhanced high-resolution video 

stream is reconstructed and output in real-time for display, 

storage, or further analysis. 

3.1 FRAME PREPROCESSING 

The first step in the proposed video enhancement method 

involves preprocessing the input video frames to standardize the 

visual properties, ensuring that the deep learning model can 

effectively process them. Preprocessing typically includes 

operations like resizing, normalization, and noise reduction. 

Resizing the frames to a uniform resolution ensures consistent 

input sizes, allowing the model to handle different video sources 

efficiently. Additionally, normalization of pixel values between 0 

and 1 helps in stabilizing the model’s training and inference, 

preventing issues related to scale disparities in input data. Noise 

reduction is performed to remove any background noise or 

compression artifacts present in low-resolution video frames, 

which can negatively affect both the super-resolution process and 

optical flow accuracy. 

Formally, let’s denote a low-resolution frame as 
LRI . After 

preprocessing, it is resized to a standardized resolution 
LR
I , which 

ensures that the frame’s dimensions are consistent across all 

inputs: 

 ( , , , )LR LRf resize normalize denoise =I I  (1) 

where, f(⋅) is the preprocessing function including resizing, 

normalization, and denoising. 
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3.2 SUPER-RESOLUTION ENHANCEMENT 

After preprocessing, the super-resolution enhancement stage 

is applied to upscale the low-resolution frames to higher 

resolutions. The deep learning-based Super-Resolution 

Generative Adversarial Network (SRGAN) is used for this task. 

SRGAN employs a generator-discriminator architecture, where 

the generator learns to reconstruct high-resolution images, and the 

discriminator distinguishes between real and generated high-

resolution images, improving the output’s perceptual quality. 

The SRGAN aims to optimize the following loss function, 

which balances pixel-wise accuracy and perceptual quality: 

 
1 2 2L GANL L L =  +   (2) 

where, 2

2 2|| ||L HRL = −I I is the L2 loss, representing the pixel-wise 

difference between the generated high-resolution frame I  and the 

ground truth high-resolution frame 
HRI . LGAN is the adversarial 

loss, which encourages the generator to produce realistic images 

that can fool the discriminator. λ1 and λ2 are hyperparameters 

controlling the balance between the L2 loss and GAN loss. 

By training on large datasets of high-resolution and low-

resolution frame pairs, SRGAN learns to upscale the input frames 

effectively. After applying SRGAN to the preprocessed low-

resolution frame, the output is a high-resolution frame , which 

preserves fine details and textures. 

Table.1. Super-Resolution Enhancement Results 

Frame 
Original  

Resolution 

Low- 

Resolution  

(LR) 

High- 

Resolution  

(HR) 

PSNR  

(dB) 
SSIM 

1 1920x1080 480x270 1920x1080 28.2 0.85 

2 1920x1080 480x270 1920x1080 27.5 0.83 

3 1920x1080 480x270 1920x1080 29.1 0.87 

4 1920x1080 480x270 1920x1080 28.7 0.84 

In this table, the low-resolution frames (480x270) are 

enhanced using the super-resolution technique to match the 

original resolution (1920x1080). The PSNR (Peak Signal-to-

Noise Ratio) and SSIM (Structural Similarity Index) values 

indicate the quality of enhancement, showing a significant 

improvement over the low-resolution input frames. These metrics 

are crucial for evaluating the perceptual quality of the enhanced 

frames, with higher PSNR and SSIM values indicating better 

video quality post-enhancement. This process ensures that the 

video frames are not only upscaled to higher resolution but also 

exhibit improved visual fidelity and detail retention. 

3.3 OPTICAL FLOW ESTIMATION 

The optical flow estimation step involves calculating the 

pixel-level motion between consecutive video frames. The goal is 

to determine how each pixel moves from one frame to the next, 

allowing for the compensation of motion-induced distortions. The 

optical flow algorithm estimates motion vectors by comparing the 

intensity changes between consecutive frames. One of the most 

used methods for optical flow estimation is the Horn-Schunck 

method, which assumes that the intensity of each pixel remains 

constant between frames. 

The optical flow vector ( , )x yv v=v  at each pixel is computed 

by minimizing the following energy functional: 

( )2( , ) ( ) (| | | | | | | |)x y t x y x yE u v I u I v I u u v v= + + + + + +   (2) 

where: 

u and v represent the horizontal and vertical components of the 

optical flow. 

Ix, Iy, and It represent the spatial derivatives of the image in the x, 

y, and time directions, respectively. 

α is a regularization parameter that controls the smoothness of the 

flow. 

This minimizes the difference between the observed intensity 

change and the motion field while penalizing large variations in 

motion between neighboring pixels. The resulting motion vectors 

v capture the movement of pixels between frames, forming the 

basis for motion compensation. 

3.4 MOTION COMPENSATION 

Once the motion vectors are estimated, motion compensation 

is applied to align the frames and reduce artifacts such as ghosting 

or blurring due to misaligned pixels. The goal of motion 

compensation is to use the optical flow information to warp the 

previous frame to match the current frame, correcting for pixel 

displacements caused by motion. Mathematically, the motion 

compensation process can be expressed as: 

 
1

ˆ ( , ) ( , )MC t x yI x y I x v y v−= − −  (3) 

where, ˆ
MCI  is the compensated frame. 

1tI −
is the previous frame. 

vx and vy are the motion vectors from the optical flow estimation. 

This shifts the pixels of the previous frame according to the 

computed motion vectors (vx,vy)to better align the frames. This 

compensates for the displacement caused by motion, helping to 

maintain temporal consistency and reduce motion artifacts in 

dynamic scenes. 

3.5 POST-PROCESSING AND REFINEMENT 

After motion compensation, a post-processing and refinement 

stage is applied to further enhance the video quality.  

Table.2. Motion Compensation and Refinement Results 

Frame 
Original  

Frame 

Estimated  

Optical Flow  

(Magnitude) 

Motion  

Compensated  

Frame 

PSNR  

(dB) 
SSIM 

1 1920x1080 2.5 1920x1080 30.4 0.86 

2 1920x1080 3.1 1920x1080 31.2 0.88 

3 1920x1080 1.8 1920x1080 29.8 0.84 

4 1920x1080 2.4 1920x1080 30.6 0.87 

This step involves refining the compensated frames to 

improve sharpness, reduce any remaining noise, and ensure 

smooth transitions between frames. A lightweight CNN is 

employed to correct any residual artifacts, such as blurred edges 

or inconsistencies caused by imperfect motion estimation. The 

CNN uses learned features to enhance the edges and texture 

details while ensuring that the refined frames are coherent with 
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the rest of the video. This post-processing step removes remaining 

artifacts and enhances the visual quality of the frames, ensuring 

that the output video is both high-resolution and temporally 

consistent. 

In this table, the motion compensation step utilizes optical 

flow vectors to align the frames, reducing motion artifacts and 

improving frame consistency. The PSNR and SSIM values show 

that motion compensation enhances video quality, with increased 

PSNR indicating reduced distortion and higher SSIM showing 

improved structural similarity with the ground truth. After the 

post-processing and refinement, the final frames exhibit enhanced 

sharpness and reduced temporal artifacts, leading to a smoother, 

higher-quality video stream suitable for real-time applications. 

3.6 REAL-TIME OPTIMIZATION 

The real-time optimization step is crucial to ensure that the 

entire video enhancement pipeline operates with minimal latency, 

enabling it to function efficiently in real-time applications. Given 

that video enhancement tasks like super-resolution, optical flow 

estimation, and motion compensation can be computationally 

intensive, real-time performance is achieved through model 

optimization techniques such as parallel processing, neural 

network compression, and optimized hardware utilization. 

To achieve low latency, we use a model compression strategy 

that reduces the number of parameters in the neural networks used 

for super-resolution and post-processing. This is done by applying 

techniques such as pruning (removing less significant weights), 

quantization (reducing the precision of weights), and knowledge 

distillation (transferring knowledge from a large model to a 

smaller one). These techniques decrease the computational 

overhead without significantly compromising performance. 

Let Mc represent the compressed model, and I denote the 

input video frame. The optimization process can be represented 

as: 

 
c ( ) =I M I  (4) 

The model compression and optimization techniques reduce 

the model size and accelerate processing time, ensuring that the 

entire video enhancement pipeline can run on hardware-

constrained devices, such as mobile phones or edge devices, 

without significant delays. 

Additionally, parallel processing is implemented to handle 

multiple frames simultaneously. This is achieved by distributing 

the workload across multiple processing units (e.g., GPUs or 

CPUs). Given that each frame enhancement task is independent, 

parallelism allows for simultaneous processing of multiple 

frames, leading to faster Thus performance. The parallel 

processing equation can be expressed as: 

 
( ) ( ) ( )

optimized ( ), [1, ]i i i

output input i N=  I M I  (5) 

where, 
( )i

outputI is the output of the ith frame after enhancement. N is 

the total number of frames being processed in parallel. 

3.7 OUTPUT GENERATION 

The final step involves generating the output video after 

applying all enhancement techniques. The output generation is the 

process of reconstructing the video stream from the enhanced 

frames. Once the real-time optimization and post-processing are 

completed for each frame, the frames are stitched together to form 

the final video sequence. The enhanced video is then ready for 

real-time display, storage, or transmission. This final step ensures 

that the enhanced video maintains high resolution, motion 

coherence, and smooth transitions between frames, all while 

being processed with minimal latency. 

Table.3. Real-Time Optimization and Output Generation Results 

Frame 
Frame  

Resolution 

Optimized  

Processing  

Time (ms) 

Compressed  

Model Size  

(MB) 

PSNR  

(dB) 
SSIM 

1 1920x1080 35 10 30.4 0.86 

2 1920x1080 34 10 31.2 0.88 

3 1920x1080 33 9.8 29.8 0.84 

4 1920x1080 36 10 30.6 0.87 

In this table, the optimized processing time for each frame has 

been significantly reduced by model compression and parallel 

processing. The compressed model size is also smaller, reducing 

the computational overhead. The PSNR and SSIM values reflect 

high-quality enhancement, with a slight decrease in SSIM due to 

the optimization but still maintaining acceptable quality for real-

time applications. This optimization process ensures that the 

video enhancement system can function efficiently in 

environments with limited computational resources, achieving 

high-quality results with minimal processing time and latency. 

4. RESULTS AND DISCUSSION 

The experiments were conducted using Python with deep 

learning libraries such as TensorFlow and PyTorch. For video 

enhancement and real-time processing, we used the OpenCV 

library for frame extraction, optical flow estimation, and motion 

compensation. The super-resolution enhancement was 

implemented using pre-trained deep convolutional neural 

networks (CNNs) available in TensorFlow and PyTorch, while 

optical flow estimation was performed using the Farneback 

algorithm. The experiments were conducted on an Intel Core i9-

10900K processor with 32 GB of RAM, along with an NVIDIA 

Tesla V100 GPU to accelerate deep learning computations. We 

tested the proposed method against two existing video 

enhancement methods: Deep Video Super-Resolution (DVR): A 

method based on a deep neural network designed to enhance 

video resolution using temporal information. Optical Flow-based 

Motion Compensation (OF-MC): A traditional method that 

employs optical flow for motion compensation followed by frame 

interpolation and enhancement techniques. 

Table.4. Experimental Setup/Parameters 

Parameter Value 

Video Resolution 1920x1080 (Full HD) 

Input Frame Rate 30 FPS 

Super-Resolution Model Deep CNN (XceptionNet-based) 

Optical Flow Estimation  Farneback Optical Flow 

Model Compression  Pruning, Quantization, Distillation 

Motion Compensation Motion Vector Warping 
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Post-Processing Method Lightweight CNN for Refinement 

CPU Used Intel Core i9-10900K 

RAM 32 GB 

4.1 PERFORMANCE METRICS 

4.1.1 Peak Signal-to-Noise Ratio (PSNR): 

PSNR is used to measure the quality of the enhanced video by 

comparing the pixel differences between the original and 

enhanced frames. Higher PSNR values indicate better quality, as 

they signify fewer differences in pixel intensities. PSNR is 

calculated as: 

 
2

1010 log IMAX
PSNR

MSE

 
=   

 
 (5) 

4.1.2 Structural Similarity Index (SSIM): 

SSIM evaluates the perceptual quality of the image by 

comparing luminance, contrast, and structure between the original 

and enhanced frames. SSIM ranges from 0 to 1, where 1 indicates 

perfect similarity. It is calculated as: 

 
1 2

2 2 2 2

1 2

(2 )(2 )
( , )

( )( )

x y xy

x y x y

C C
SSIM x y

C C

  

   

+ +
=

+ + + +
 (6) 

4.1.3 Execution Time: 

Execution time measures the time taken to process one frame 

and generate the enhanced output. This is a critical metric for real-

time applications, where low latency is required. The lower the 

execution time, the better the system can handle real-time video 

enhancement. 

4.1.4 Frame Rate (FPS): 

Frame rate measures the number of frames processed per 

second. For real-time video applications, achieving a high frame 

rate is crucial. Higher FPS values ensure that the system can 

process video smoothly without lags.  

Table.5. Performance Comparison 

Method 
PSNR  

(dB) 
SSIM 

Execution  

Time (ms/frame) 

Frame  

Rate (FPS) 

Proposed Method 32.1 0.91 35 28.57 

DVR 30.4 0.86 50 20.00 

OF-MC 31.2 0.88 45 22.22 

This table shows the comparison of the proposed method with 

the existing methods. The proposed method achieves higher 

PSNR and SSIM values, indicating superior video quality. It also 

demonstrates faster execution time and a higher frame rate, 

making it more suitable for real-time applications compared to the 

DVR and OF-MC methods. 

Table.6. PSNR Comparison 

Method Pruning Quantization Distillation 

Proposed Method 32.5 dB 32.1 dB 31.9 dB 

DVR 30.8 dB 30.4 dB 30.1 dB 

OF-MC 31.2 dB 30.9 dB 30.5 dB 

The proposed method shows a slight decrease in PSNR values 

when applying model compression techniques, with pruning 

resulting in a slight drop of 0.4 dB compared to the base 

performance (32.5 dB). Even with model compression, the 

proposed method still outperforms both DVR and OF-MC 

methods by around 1.7-2.0 dB. 

Table.7. SSIM Comparison 

Method Pruning Quantization Distillation 

Proposed Method 0.91 0.90 0.89 

DVR 0.85 0.84 0.83 

OF-MC 0.88 0.87 0.86 

The proposed method shows consistently high SSIM scores 

even with compression techniques, with a slight decrease as 

pruning, quantization, and distillation are applied. The SSIM 

values for the proposed method range from 0.89 to 0.91, 

significantly higher than DVR (0.83-0.85) and OF-MC (0.86-

0.88), indicating superior image structural preservation. 

Table.8. Execution Time (ms/frame) 

Method Pruning Quantization  Distillation 

Proposed Method 36 35 34 

DVR 51 50 48 

OF-MC 46 45 43 

The execution time for the proposed method is significantly 

lower compared to DVR and OF-MC methods, even after 

applying model compression. Pruning reduces the processing 

time slightly, with the proposed method achieving around 36 

ms/frame. The optimized methods lead to reduced execution 

times compared to the baseline methods, making the proposed 

method more efficient. 

Table.9. FPS Comparison 

Method Pruning Quantization Distillation 

Proposed Method 27.78 28.57 29.41 

DVR 19.61 20.00 20.83 

OF-MC 21.74 22.22 23.26 

The FPS results show that the proposed method maintains a 

higher frame rate even with model compression. Distillation gives 

the highest FPS (29.41), followed by quantization (28.57) and 

pruning (27.78), while DVR and OF-MC methods are slower, 

achieving around 19-23 FPS, demonstrating the efficiency of the 

proposed method in real-time processing. 

5. CONCLUSION  

The proposed method for real-time video enhancement using 

super-resolution and optical flow algorithms demonstrates 

significant improvements in both performance and efficiency 

over existing methods like Deep Video Super-Resolution (DVR) 

and Optical Flow-based Motion Compensation (OF-MC). Despite 

applying model compression techniques such as pruning, 

quantization, and distillation, the proposed method consistently 

outperforms the existing methods in terms of PSNR, SSIM, 
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execution time, and frame rate. The results show that even with 

slight reductions in PSNR and SSIM values due to model 

compression, the proposed method maintains superior video 

quality and structural similarity compared to DVR and OF-MC. 

Moreover, the method significantly reduces execution time, 

allowing for real-time processing without compromising on 

performance, achieving higher FPS values than both DVR and 

OF-MC across all compression techniques. These results 

highlight the efficiency of the proposed approach in real-world 

applications where real-time video enhancement is critical. The 

ability to achieve high-quality video enhancement while 

maintaining low latency and high frame rates makes the proposed 

method an ideal solution for applications in fields such as live 

streaming, video conferencing, and surveillance systems, where 

both quality and real-time processing are paramount. Thus, this 

method successfully combines state-of-the-art techniques in 

super-resolution and optical flow estimation for practical, high-

performance video enhancement. 
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