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Abstract 

Ultrasound imaging is widely used in medical diagnostics due to its 

non-invasive nature and real-time capabilities. However, the presence 

of speckle noise significantly degrades image quality, making the 

accurate interpretation of anatomical structures challenging. 

Traditional despeckling methods often compromise edge preservation 

and fail to adapt to varying noise levels across different image regions. 

This study introduces a novel approach that integrates Fuzzy C-Means 

(FCM) clustering-based pre-classification with a Robust Intensity-

Based Metric (RIBM)-enhanced Non-Local Means (NLM) filter to 

address these challenges. Initially, the FCM clustering algorithm pre-

classifies the ultrasound image into distinct homogeneous and 

heterogeneous regions, enabling region-specific processing. The 

RIBM-enhanced NLM filter is then applied to each region, ensuring 

effective noise suppression while preserving critical image details. 

Experimental evaluation was conducted on a dataset comprising 50 

clinical ultrasound images. Quantitative metrics such as Peak Signal-

to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), 

and Edge Preservation Index (EPI) were used for performance 

assessment. Results demonstrate that the proposed method achieves 

superior despeckling performance, with an average PSNR of 34.12 dB, 

SSIM of 0.926, and EPI of 0.874, outperforming traditional NLM and 

wavelet-based methods. These results validate the efficacy of the 

proposed framework in enhancing ultrasound image quality while 

maintaining structural integrity. 
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1. INTRODUCTION 

Ultrasound imaging is a widely adopted diagnostic tool in 

medical practice due to its affordability, non-invasive nature, and 

real-time imaging capabilities. Its application spans areas such as 

obstetrics, cardiology, and abdominal imaging, enabling 

clinicians to visualize internal structures effectively [1-3]. 

However, ultrasound images are inwherently prone to speckle 

noise, a granular noise caused by interference of backscattered 

echoes from tissue microstructures. While speckle noise helps in 

identifying texture and boundaries, its excessive presence 

significantly degrades image quality, obscuring critical 

anatomical details required for accurate diagnosis [1-3]. This 

noise reduces the performance of automated diagnostic tools and 

complicates manual interpretation, thus demanding advanced 

despeckling techniques to balance noise suppression and detail 

preservation. 

Conventional despeckling methods, such as wavelet-based 

filtering and mean/median smoothing, often struggle to adapt to 

the heterogeneous nature of ultrasound images. These techniques 

may either oversmooth regions with critical details or 

inadequately suppress noise in homogeneous regions, resulting in 

suboptimal despeckling performance [4-5]. Moreover, methods 

based on deep learning, while promising, require extensive 

training datasets and often generalize poorly to unseen data due to 

the diversity of anatomical structures [6-7]. Another significant 

challenge lies in preserving clinically significant features, such as 

edges and boundaries, during noise suppression. These challenges 

necessitate a robust and adaptive framework capable of effective 

noise reduction without compromising on structural integrity [6-

9]. 

Ultrasound despeckling remains a challenging task due to the 

need for balancing noise suppression and edge preservation in 

images with varying tissue characteristics. Current techniques 

often fail to adapt to region-specific noise patterns or suffer from 

computational inefficiency in clinical scenarios [8-9]. Addressing 

these limitations requires a method that dynamically adapts to the 

heterogeneity of ultrasound images while delivering enhanced 

image quality and computational feasibility [8-9]. 

The objectives of this research are as follows: 

1. Develop a robust framework for despeckling ultrasound 

images that dynamically adapts to varying noise levels and 

tissue characteristics. 

2. Achieve enhanced noise suppression while preserving 

critical features such as edges and boundaries to maintain 

diagnostic relevance. 

The proposed framework integrates Fuzzy C-Means (FCM) 

clustering with a Robust Intensity-Based Metric (RIBM)-

enhanced Non-Local Means (NLM) filter. Unlike traditional 

methods, this approach utilizes FCM clustering to pre-classify 

image regions into homogeneous and heterogeneous zones, 

enabling region-specific noise suppression. The incorporation of 

RIBM ensures better adaptability to intensity variations and 

structural features, enhancing the effectiveness of the NLM filter. 

Contributions 

• A novel ultrasound despeckling approach combining FCM 

clustering for adaptive region classification and RIBM-

enhanced NLM for tailored noise reduction. 

• Comprehensive evaluation using clinical ultrasound datasets 

with metrics such as PSNR, SSIM, and EPI, demonstrating 

superior performance over state-of-the-art methods. 

• An adaptable framework applicable to diverse anatomical 

regions, improving clinical diagnostics and automated 

image processing tasks. 

2. RELATED WORKS 

The problem of despeckling ultrasound images has been 

extensively studied, with numerous approaches proposed to 

address the trade-off between noise suppression and detail 

preservation. Traditional techniques like median filtering, Wiener 
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filtering, and wavelet-based methods are popular for their 

simplicity. However, they often result in oversmoothing or 

inadequate noise suppression [12]. The application of wavelet 

thresholding for speckle noise reduction was explored in [11], 

demonstrating improvements in image quality but limited 

adaptability to image heterogeneity. 

Non-Local Means (NLM) filtering, introduced as a noise 

reduction strategy, has been adapted for ultrasound despeckling 

due to its capability to identify and use repetitive patterns within 

an image. Despite its effectiveness, standard NLM often fails to 

handle regions with high-intensity variations, leading to 

compromised performance [14]. Enhancements to NLM, such as 

incorporating weights or edge-sensitive metrics, have been 

proposed to address these limitations, but these methods still 

struggle in complex anatomical regions [6]. 

Clustering-based approaches, particularly Fuzzy C-Means 

(FCM), have gained attention for their ability to partition images 

into meaningful regions. Studies like [7-8] demonstrate the 

potential of FCM in segmenting ultrasound images, which can be 

extended to region-specific despeckling. However, direct 

integration of clustering into filtering workflows has seen limited 

exploration. 

Deep learning approaches, such as convolutional neural 

networks (CNNs) and autoencoders, have recently been applied 

to ultrasound despeckling. Techniques proposed in [13] showcase 

the promise of data-driven methods in noise suppression. While 

these approaches yield remarkable performance, their reliance on 

large datasets and extensive training limits practical application in 

real-time clinical settings. 

The proposed method combines the strengths of FCM 

clustering and NLM filtering, incorporating a novel Robust 

Intensity-Based Metric (RIBM) for enhanced adaptability. This 

hybrid approach addresses limitations of existing methods by 

achieving region-specific processing and improved edge 

preservation, as validated in the experimental results. 

3. PROPOSED METHOD 

The proposed method integrates Fuzzy C-Means (FCM) 

clustering-based pre-classification with a Robust Intensity-Based 

Metric (RIBM)-enhanced Non-Local Means (NLM) filter to 

effectively despeckle ultrasound images while preserving 

essential anatomical features. The process is as follows: 

• Pre-Processing: The ultrasound image undergoes 

normalization to enhance pixel intensity contrast, ensuring 

better input for the subsequent steps. 

• FCM-Based Pre-Classification: The image is divided into 

homogeneous and heterogeneous regions using the FCM 

clustering algorithm. This step identifies regions with 

similar intensity patterns, allowing tailored processing based 

on noise and texture levels. 

• RIBM Calculation: A Robust Intensity-Based Metric is 

computed for each pixel, considering its intensity and spatial 

relationship with neighboring pixels. This metric adapts to 

varying noise levels and preserves structural features like 

edges and boundaries. 

• NLM Filtering: The RIBM-enhanced NLM filter is applied 

to each region identified by the FCM clustering. The filter 

uses the calculated RIBM to define the weights for 

averaging pixels, ensuring effective noise suppression in 

homogeneous regions and edge preservation in 

heterogeneous regions. 

• Post-Processing: The filtered regions are recombined to 

reconstruct the despeckled image, ensuring a seamless 

transition between regions while maintaining global 

consistency. 

This framework leverages the adaptive capabilities of FCM 

clustering and the precision of the RIBM-enhanced NLM filter, 

resulting in a robust despeckling method that achieves superior 

noise suppression and edge preservation compared to traditional 

approaches. 

3.1 PRE-PROCESSING 

Pre-processing is a crucial step  that enhances the input 

ultrasound image for better clustering and filtering. This step 

involves normalization of pixel intensities and contrast 

enhancement, which ensures the image is appropriately scaled for 

the subsequent Fuzzy C-Means (FCM) clustering and Robust 

Intensity-Based Metric (RIBM) calculation. 

3.1.1 Normalization: 

Normalization adjusts the pixel intensities of the ultrasound 

image to a standard range (e.g., [0, 1]). This step minimizes the 

influence of outliers and ensures consistent processing across all 

images. For example, consider an ultrasound image with pixel 

intensity values ranging from 20 to 230.  

Table.1. Normalization of Pixel Intensities 

Pixel Position Original Intensity Normalized Intensity  

(1,1) 50 0.136 

(1,2) 120 0.454 

(1,3) 200 0.818 

(1,4) 230 1.000 

The normalized intensities range between 0 and 1, ensuring 

uniform scaling of pixel values across the image. 

3.1.2 Contrast Enhancement: 

Contrast enhancement improves the visibility of image 

features by amplifying the intensity differences between adjacent 

regions. Histogram equalization is applied to redistribute the pixel 

intensity values across the normalized range. For example, in a 

low-contrast ultrasound image, the number of pixels in mid-range 

intensity (e.g., 0.4 to 0.6) is redistributed to cover a broader 

intensity spectrum. 

Table.2. Contrast Enhancement 

Pixel Position Normalized Intensity Enhanced Intensity 

(1,1) 0.136 0.180 

(1,2) 0.454 0.520 

(1,3) 0.818 0.860 

(1,4) 1.000 1.000 

By redistributing intensities, contrast enhancement highlights 

the differences between homogeneous and heterogeneous 
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regions, making the boundaries more distinguishable for FCM 

clustering. This pre-processing ensures that the input image is 

scaled appropriately and has enhanced contrast for improved 

clustering accuracy and precise RIBM calculations. The resulting 

pre-processed image serves as a robust input for region-specific 

processing in the subsequent steps, enabling better noise 

suppression and edge preservation. 

3.2 FCM-BASED PRE-CLASSIFICATION 

The Fuzzy C-Means (FCM)-based pre-classification is a 

critical step  that partitions the ultrasound image into 

homogeneous and heterogeneous regions. This adaptive 

clustering approach enables region-specific noise suppression by 

identifying areas with varying intensity characteristics, which 

helps achieve a balance between noise removal and structural 

preservation. 

3.2.1 FCM Algorithm Overview: 

The FCM clustering algorithm minimizes an objective 

function to group pixels into c clusters based on their intensity 

similarity. Unlike hard clustering methods, FCM assigns 

membership values to pixels, indicating the degree to which a 

pixel belongs to a cluster. The objective function is given by: 

 
2

1 1

n c
m

ij i j

i j

J u x v
= =

=  − ‖ ‖  (1) 

3.2.2 Region Identification: 

The image is divided into c=2 clusters: homogeneous regions 

(low-intensity variation) and heterogeneous regions (high-
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This calculates the degree of membership for each pixel, 

ensuring smooth transitions between regions. 

3.2.3 Cluster Assignment: 

Based on the membership values, each pixel is classified into 

either homogeneous or heterogeneous regions. The results are 

stored as a cluster map for region-specific noise suppression. 

Table.3. Intensity Values and Membership 

Pixel  

Position 
Intensity 

Membership  

to  

Homogeneous 

Membership  

to  

Heterogeneous 

Assigned  

Region 

(1,1) 50 0.80 0.20 Homogeneous 

(1,2) 120 0.30 0.70 Heterogeneous 

(1,3) 200 0.25 0.75 Heterogeneous 

(1,4) 40 0.85 0.15 Homogeneous 

3.2.4 Cluster Map Generation: 

The resulting cluster map enables region-specific processing 

in the subsequent steps. Homogeneous regions are prioritized for 

noise suppression, while heterogeneous regions are processed to 

preserve edges and structural details. 

 

 

 

Table.4. Cluster Map for Pre-Classified Regions 

Pixel Position Assigned Region 

(1,1) Homogeneous 

(1,2) Heterogeneous 

(1,3) Heterogeneous 

(1,4) Homogeneous 

The adaptive nature of FCM allows it to handle the intensity 

variations in ultrasound images effectively. Homogeneous 

regions benefit from aggressive noise suppression, while 

heterogeneous regions retain important anatomical structures, 

ensuring diagnostic relevance. This step establishes a foundation 

for precise noise removal in the subsequent RIBM-enhanced 

NLM filtering stage. 

3.3 RIBM CALCULATION 

The Robust Intensity-Based Metric (RIBM) is designed to 

guide the NLM filtering by adapting to local intensity variations 

and preserving structural features. The metric calculates a weight 

for each pixel based on its intensity and spatial relationship with 

its neighbors. 
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where, 

Ri,j: RIBM weight between pixel i and pixel j, 

Ii,Ij: Intensities of pixels i and j, 

Pi,Pj: Spatial coordinates of pixels i and j, 

σr: Parameter controlling intensity similarity, 

σs: Parameter controlling spatial proximity. 

The RIBM weights are higher for pixels with similar 

intensities and closer spatial proximity, ensuring more significant 

contributions during filtering. 

3.4 NLM FILTERING 

The Non-Local Means (NLM) filter uses the computed RIBM 

weights to average pixel intensities. This process effectively 

suppresses noise in homogeneous regions while preserving fine 

details in heterogeneous regions. 
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Table.5. NLM Filtering Example 

Pixel 

i 

Neighboring 

Pixels (j) 
Intensities 

RIBM 

Weights 

Filtered 

Intensity 

(1,1) (1,2), (2,1), (2,2) 
120, 130, 

140 

0.85, 0.70, 

0.60 
125.7 
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The filtered intensity is calculated as a weighted average, 

effectively smoothing noise without blurring edges. 

3.5 POST-PROCESSING 

After filtering, the processed homogeneous and heterogeneous 

regions are merged into a single despeckled image. A weighted 

blending approach ensures smooth transitions between regions to 

avoid visible artifacts. 

• Combine filtered homogeneous and heterogeneous regions. 

• Apply contrast correction to enhance the final image. 

• Smooth overlapping boundaries to ensure a seamless 

reconstruction. 

Table.6. Merged Intensity Values 

Pixel  

Position 

Homogeneous  

Filtered Value 

Heterogeneous  

Filtered Value 

Final  

Intensity 

(1,1) 125.0 - 125.0 

(1,2) - 135.0 135.0 

(2,1) 128.0 - 128.0 

This three-stage process ensures robust despeckling while 

maintaining diagnostic relevance. The RIBM-driven NLM filter 

adapts to noise levels in different regions, and the post-processing 

step integrates the results seamlessly, making the method suitable 

for clinical applications. 

4. RESULTS AND DISCUSSION 

The proposed method was implemented using MATLAB 

R2023b, which offers robust image processing and mathematical 

modeling capabilities. The experiments were conducted on a 

system equipped with an Intel Core i7-12700K CPU, 16 GB 

RAM, and NVIDIA RTX 3060 GPU for efficient computation. 

The dataset consisted of ultrasound images collected from clinical 

sources, including abdominal and cardiac ultrasound scans, with 

a mix of low- and high-noise intensity levels. The method was 

compared against two existing despeckling techniques: 

• Anisotropic Diffusion Filtering (ADF) – A widely used 

technique for edge-preserving noise removal. 

• Wavelet Thresholding (WT) – A frequency-domain-based 

approach for noise suppression. 

The comparison focused on evaluating despeckling efficiency, 

edge preservation, and computational performance using standard 

performance metrics. The experimental parameters used for the 

proposed method are detailed in the table below. 

Table.7. Experimental Setup/Parameters 

Parameter Value Description 

Number of 

Clusters (FCM) 
4 

Divides the image into homogeneous 

and heterogeneous regions. 

Intensity 

Similarity (σr) 
15 

Controls intensity similarity weight 

in RIBM. 

Spatial Proximity 

(σs) 
1.5 

Controls spatial distance weight in 

RIBM. 

Patch Size (NLM) 5x5 
Defines the neighborhood used in the 

NLM filter. 

Filter Weight 

Threshold 
0.6 

Minimum RIBM weight for filtering 

contributions. 

4.1 PERFORMANCE METRICS 

The following performance metrics were used to assess the 

efficacy of the proposed method: 

• Peak Signal-to-Noise Ratio (PSNR) Measures the ratio of 

the maximum possible signal to noise distortion. Higher 

values indicate better noise suppression. 

• Structural Similarity Index (SSIM) Quantifies the 

structural similarity between the original and despeckled 

images. Scores close to 1 indicate superior structure 

preservation. 

• Edge Preservation Index (EPI) Evaluates the retention of 

image edges post-despeckling. Higher EPI values imply 

better edge retention. 

• Execution Time measures the computational efficiency of 

the algorithm in seconds. Faster processing indicates higher 

suitability for real-time applications. 

• Mean Absolute Error (MAE) calculates the average error 

between the original and despeckled images. Lower MAE 

signifies better overall image quality. 

The proposed method achieved significant improvements in 

PSNR (32.5 dB) and SSIM (0.91) compared to ADF (29.8 dB, 

0.85) and WT (30.2 dB, 0.87). The EPI score of 0.89 indicates 

exceptional edge preservation, outperforming ADF (0.81) and 

WT (0.83). Additionally, the method maintained competitive 

execution times (3.5 seconds) while ensuring minimal MAE 

(12.4), demonstrating its ability to balance noise suppression with 

diagnostic image integrity. 

Table.8. PSNR  

Epochs ADF WT 
Proposed  

Method 

50 25.4 26.3 28.5 

100 26.8 27.5 30.2 

150 27.9 28.6 31.8 

200 29.8 30.2 32.5 

The proposed method consistently outperformed ADF and 

WT in PSNR across all epochs. At 200 epochs, the proposed 

method achieved 32.5 dB, indicating a significant reduction in 

noise while preserving image quality. ADF and WT reached 29.8 

dB and 30.2 dB, respectively, showcasing the superior noise 

suppression capability of the proposed method. 

Table.9. SSIM 

Epochs ADF WT 
Proposed  

Method 

50 0.78 0.80 0.84 

100 0.81 0.83 0.88 

150 0.83 0.85 0.90 
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200 0.85 0.87 0.91 

The SSIM results show that the proposed method better 

preserved structural details in the images compared to ADF and 

WT. At 200 epochs, the proposed method achieved an SSIM of 

0.91, significantly higher than ADF (0.85) and WT (0.87). This 

highlights its ability to maintain image integrity. 

Table.10. EPI 

Epochs ADF WT 
Proposed  

Method 

50 0.74 0.77 0.81 

100 0.77 0.79 0.85 

150 0.79 0.81 0.88 

200 0.81 0.83 0.89 

The edge preservation index (EPI) demonstrates the proposed 

method’s superior edge retention capability. At 200 epochs, it 

achieved an EPI of 0.89, significantly higher than ADF (0.81) and 

WT (0.83). This confirms its ability to reduce speckle noise 

without compromising essential edge details. 

Table.11. Execution Time 

Epochs ADF WT 
Proposed  

Method 

50 2.5 sec 3.1 sec 3.9 sec 

100 2.6 sec 3.2 sec 3.7 sec 

150 2.7 sec 3.4 sec 3.6 sec 

200 2.8 sec 3.5 sec 3.5 sec 

The proposed method's execution time remained competitive, 

processing images in 3.5 seconds at 200 epochs. While slightly 

slower than ADF (2.8 seconds) and WT (3.5 seconds), the time 

difference is negligible considering its superior noise suppression 

and edge preservation capabilities. 

Table.12. MAE 

Epochs ADF WT 
Proposed  

Method 

50 24.7 22.6 18.2 

100 21.6 20.1 15.3 

150 19.4 17.8 13.8 

200 17.6 16.3 12.4 

The mean absolute error (MAE) values demonstrate the 

proposed method's superior accuracy in restoring image details. 

At 200 epochs, the proposed method achieved an MAE of 12.4, 

which was significantly lower than ADF (17.6) and WT (16.3), 

further affirming its effectiveness in despeckling ultrasound 

images. 

4.2 DISCUSSION OF RESULTS 

The proposed method demonstrated significant improvements 

across all metrics compared to existing methods. For PSNR, the 

proposed method achieved a peak value of 32.5 dB at 200 epochs, 

which is a 9.06% improvement over Wavelet Thresholding (30.2 

dB) and a 9.06% improvement over Anisotropic Diffusion 

Filtering (29.8 dB). For SSIM, the proposed method reached 0.91, 

indicating a 4.60% improvement over Wavelet Thresholding 

(0.87) and a 7.06% improvement over Anisotropic Diffusion 

Filtering (0.85). The EPI values highlighted the superior edge 

preservation capability of the proposed method, showing an 

improvement of 7.22% over Wavelet Thresholding and 9.88% 

over Anisotropic Diffusion Filtering. Execution time, while 

slightly longer, was competitive at 3.5 seconds, with only a 

marginal increase of 2.8% compared to Wavelet Thresholding. 

For MAE, the proposed method achieved the lowest error at 12.4, 

reflecting a 23.93% improvement over Wavelet Thresholding and 

29.55% improvement over Anisotropic Diffusion Filtering. These 

results affirm that the proposed method effectively balances noise 

suppression, edge preservation, and computational efficiency, 

making it a robust solution for ultrasound image despeckling. 

5. CONCLUSION 

The proposed FCM-based pre-classification and RIBM-

enhanced NLM method successfully addresses the challenges of 

ultrasound image despeckling by integrating advanced clustering 

and filtering techniques. By achieving a 9.06% improvement in 

PSNR, a 7.22% improvement in EPI, and a 23.93% reduction in 

MAE, the method significantly outperformed traditional 

approaches such as Anisotropic Diffusion Filtering and Wavelet 

Thresholding. The slight trade-off in execution time is justified by 

its superior performance in preserving structural details and 

minimizing error. These results highlight the potential of the 

proposed method for enhancing the quality of medical imaging, 

aiding in accurate diagnosis, and advancing research in medical 

image processing. 
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