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Abstract 

Osteosarcoma is a malignant bone tumor that is extremely dangerous 

to human health. Not only does it require a large amount of work, it is 

also a complicated task to outline the lesion area in an image manually, 

using traditional methods. With the development of computer-aided 

diagnostic techniques, more and more researchers are focusing on 

automatic segmentation techniques for osteosarcoma analysis. 

However, existing methods ignore the size of osteosarcomas, making it 

difficult to identify and segment smaller tumors. In this research work, 

initially Pre-processing with Chebyshev Filter Combined with Kalman 

Filtering (HF) approach is done to remove the noise and enhance the 

image for further processing. Then the preprocessing images 

undergone Segmentation using Multi-tier Otsu Thresholding (MOT) 

algorithm. After the process of segmentation, the wavelet and GLCM 

based feature extraction is executed. Furthermore, introduce a hybrid 

Attention-based MBConvBlock-EfficientDet (A-MBConvBlock-

EfficientDet) model for classification.  Specifically, the MBConvBlock 

is reconstructed to enable the exchange of information between the 

channels of the feature layer. The fully connected layer of the attention 

module is removed and convolution is used to cut down the amount of 

network parameters. Here the Cuckoo Search (CS) Algorithm is used 

to optimize the A-MBConvBlock-EfficientDet model, potentially 

enhancing its performance in identifying osteosarcoma lung nodules 

accurately. The proposed methodology is evaluated through 

experimental studies. These experiments validate the efficiency of the 

system in achieving precise osteosarcoma LND. Metrics like accuracy, 

sensitivity, specificity, and F1 score may be used to assess the 

performance of the suggested method against existing approaches. 
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1. INTRODUCTION 

Osteosarcoma (OS) is the most common primary malignant 

bone tumour in children and adolescents [1]. OS is characterised 

by rapid hematogenous spread, with the lung being the most 

common site [2]. According to the literature, 10–25% of OS 

patients present with detectable metastases at the time of initial 

diagnosis, of which 85–90% have lung metastases [3]. Tumour 

cells in OS metastases produce bone and this potential may be 

apparent on imaging. Moreover, the recurrence of OS is 

predominantly located in the lung (~ 80% of cases) [1]. For the 

assessment of pulmonary metastases, chest computed 

tomography (CT) has remained for years the gold imaging 

standard, as also suggested by the Children’s Oncology Group 

(COG) [4]. With the continuous advances in multi-row-detector 

computed tomography (MDCT) scanners, the sensitivity in 

detecting small lung nodules has improved. Nonetheless, the 

distinction between malignant and benign pulmonary lesions on 

CT scans in paediatric patients with sarcomas is still below 

expectations [5], and the correct classification of pulmonary 

nodules on imaging as either malignant or benign is a clinical 

dilemma even for radiologists experienced in the field. 

The presence of metastases has a significant impact on 

survival in OS patients [6]. Therefore, early diagnosis and 

appropriate treatment is an interdisciplinary challenge for the 

entire team involved, including the oncologist, surgeon, 

radiologist and pathologist. All OS metastases must be resected 

completely, regardless of their number and site, if the patient is 

treated with curative intent [6]. Computer-aided diagnosis (CAD) 

[7]-[8] is an advanced technology to help radiologists and 

oncologists to read and identify the nodules from the CT-scanned 

image of the patient. CAD can be categorized into image 

processing and machine learning approaches. An image 

processing approach used the static mathematic model to enhance 

image, feature extraction, and mathematically categorize the 

results while a machine learning approach uses a dynamic 

mathematic model that can be trained by using humans’ 

intelligence and experiences to mimic human decisions for 

specific situations. Convolutional Neural Networks or CNNs [9], 

[10] are one of the most popular machine learning techniques, 

especially for image-related applications. 

The object detection CNNs were widely used in many 

applications such as faces or human detection. the RegionCNNs 

(R-CNNs) [11], You only look once (Yolo) [12] and Single Shot 

Detection (SSD) [13] were the most popular frameworks for 

object detection network because they could pinpoint the location 

of the multiple interested objects within an image and classify 

these found objects with confidences. R-CNNs found the 

interesting objects by searching the image using different size 

bounding boxes and found the possibility of class that can 

represent each search box identity. Because R-CNNs had to 

search the objects with all possible boxes, the calculation time was 

very large and impractical for low calculation power computer 

such as a normal computer in the government hospital. 

Convolutional Neural Networks (CNNs) were used in another 

research’s method, which demonstrated the ability to effectively 

gather data on a mean of 92% of clinically important coronary 

artery segments [14]. Thus, this research set out to determine how 

well the AI diagnostic DCNN framework performed in assessing 

pulmonary nodules in patients with osteosarcoma who were 

adolescents or young adults. A comparison of its clinical value 

against a different manual approach was a further objective of the 

current investigation. 

Medical professionals have to work a lot of hours for 

evaluating lung CT images visually. AI-assisted diagnosis 

technology has been increasingly applied in clinical fields in the 

past few years. AI imaging technology can increase doctors’ 

productivity and has a high accuracy rate, according to several 

research [15]. As the number of precautionary and early detection 

methods rises as predicted, researchers are developing automated 
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solutions that minimize the workload of physicians, boost the 

accuracy of diagnostics by lowering subjectivity, expedite 

analysis, and lower clinical expenses. DL has the benefit of 

enabling end-to-end detection in CAD programs by teaching it to 

recognize the most important features throughout training. As a 

result, the network can withstand fluctuations since it may detect 

the characteristics of nodules in different CT images with 

different parameters [16]. Better outcomes are made possible by 

the framework’s innate ability for invariant features learning from 

malignant nodules due to a training set rich in variability. Because 

no features are designed, the network can use the given ground-

truth to independently understand the relationship among features 

and cancer. In this research work, introduce an A-MBConvBlock-

EfficientDet model for classification which enhancing its 

performance in identifying osteosarcoma lung nodules accurately.  

The research is prearranged as follows: The related work 

section 2 reviews relevant literature, highlighting the uniqueness 

of the proposed hybrid approach. The methodology section 3 

describes in detail the integration of the proposed algorithm for 

nodule detection. The outcomes and analysis section 4 offers the 

findings, comparing the optimized EfficientDet model’s 

performance with existing methods. The conclusion summarizes 

the key findings and emphasizes the potential clinical applications 

in section 5.  

2. RELATED WORKS 

Several researchers have proposed and implemented various 

approaches for detecting lung cancer using machine learning and 

image processing techniques. 

Monica Ramakrishnan et al. [17] developed a technique to 

detect the Lung Cancer Nodule using CT images in 2022, offering 

a new method of implementing CNN using the pre trained VGG 

model for feature extraction and RNN for feature classification to 

identify pulmonary nodules in lung cancer detection. Machine 

learning, data mining, and image processing methods are used in 

this study to predict lung cancer nodules in high-risk patients. 

Using a publicly available data set of lung CT images, a model for 

lung cancer nodule detection was developed based on the research 

and analysis conducted for this work. By combining image 

processing and classification techniques, an end-to-end method 

for detecting lung cancer nodules with 70% accuracy was 

developed in this study. Because of the large amount of data 

included in each patient’s CT scan, processing the images takes a 

long time. 

Aggarwal et al. [18] proposed a model in 2015 that 

differentiates between nodules and the structure of normal lung 

anatomy. Grey levels, statistics, and geometry are used to extract 

properties. The best thresholding and segmentation classifier is 

LDA. The system has 84% accuracy and 53.33% specificity. This 

methodology does detect the cancer nodule with an high accuracy, 

but itis still inadequate. 

In 2015, Roy.T.et al. [19] developed a method for detecting 

lung cancer nodules that employs an active contour model and a 

fuzzy interference approach. To improve visual contrast, this 

method employs a grey transformation. Before segmentation, an 

image is binarized, and the resulting image is segmented using an 

active contour model. The fuzzy inference method is used to 

classify cancer. To train the classifier, features such as area, 

entropy, mean, correlation, main axis length, and minor axis 

length are extracted. The system’s overall accuracy is 94.12%. 

This method has the disadvantage of being unable to distinguish 

between benign and malignant tumours. 

An elaborated review of various techniques that constitute a 

conventional CAD system has been tabulated by Bhavanishankar 

et al. and Li et al. [20, 21]. Three different approaches for 

detecting the pulmonary nodules in CT scans were implemented 

by Camarlinghi et al. [22] resulting in an overall sensitivity of 

80%. Kuruvilla et al. [23] proposed a method which used six 

statistical features extracted from the segmented slices of two 

lungs and feed-forward back-propagation neural networks to 

classify the cancerous nodules resulting in sensitivity ranging 

from 82% to 91.4%. Torres et al. [24] proposed a CAD system 

based on Channeler Ant model for segmentation and a feed-

forward neural network for classification of nodules, and this 

approach resulted in a sensitivity of about 80%. 

Devinder et al. [25] proposed a methodology wherein deep 

features are extracted using a two-layered network called 

autoencoder and the nodules are classified as benign or malignant. 

This approach resulted in an average sensitivity of 83.25%. 

Fakoor et al. [26] proposed an unsupervised and deep learning 

approach (stacked autoencoder) to classify and diagnose different 

types of cancers including lung cancer. Gruetzemacher et al. [27] 

used a deep learning approach for the classification of pulmonary 

nodules which resulted in a sensitivity of 78.2% with five 

convolution layers. Ginneken et al. [28] proposed a Convolutional 

Neural Network based approach to detect the pulmonary nodules 

in CT scans which generated the sensitivity of 78%. Most of the 

methods in the literature tested their algorithms on data sets 

obtained from LIDC-IRDI repository. 

Although several researchers have contributed significantly 

towards reduction of false positives and achieving better 

classifications, they lack to deliver better accuracy with large data 

sets. This paper addresses this issue. 

3. PROPOSED METHODOLOGY 

The proposed methodology diagram is shown in Fig.1. In this 

research work, Pre-processing with Chebyshev Filter Combined 

with Kalman Filtering approach is done to remove the noise. Then 

the preprocessing images undergone Segmentation using Multi-

tier Otsu Thresholding (MOT) algorithm. Finally, a hybrid 

Attention-based MBConvBlock-EfficientDet (A-MBConvBlock-

EfficientDet) model is proposed for Classification and 

osteosarcoma lung nodule detection.   

3.1 DATASET DESCRIPTION 

The dataset described comprises CT-scanned PNG format 

images derived from DICOM files obtained from Siemens 

Somatom Definition 64 machines at Lerdsin Hospital in Thailand 

[29]. The Human Research Ethics Committee of Thammasat 

University (Science) (HREC-TUSc) and the RECof Lerdsin 

Hospital, Department of Medical Services, Ministry of Public 

Health in Thailand gave their approval for these photos to be used 

for study. Images from 202 patients at Lerdsin Hospital who were 

given an osteosarcoma diagnosis are included in the dataset. After 

performing lung scans, the DICOM files were converted into CT-

scanned PNG format images for examination. Out of the 269,025 
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image files that were taken from the patients’ DICOMs, 2,212 

files show that there are anomalous nodules.  

 

Fig.1. Architecture Diagram of Proposed Osteosarcoma Lung 

Nodule Detection Model 

3.2 PREPROCESSING USING HYBRID 

FILTERING APPROACH 

The input images are undergone preprocessing using hybrid 

filtering approach. A Hybrid Chebyshev Filter typically refers to 

the combination of the Chebyshev filter with In this approach, the 

static nature of the Chebyshev filter is combined with adaptive 

filtering method called Kalman filter to create a system that can 

adapt to changing signal characteristics over time. This can be 

useful in applications where the signal’s noise characteristics are 

not constant.  

Chebyshev filters are a kind of filter normally employed in 

(IP) Image Processing and signal processing for tasks such as 

noise reduction [30]. They are designed to minimize the ripple in 

the passband or stopband of a filter’s frequency response while 

still achieving a sharp cutoff. In the context of image processing, 

Chebyshev filters can be used for noise reduction by selectively 

filtering out noise while preserving important image features. The 

general equation for a Chebyshev filter’s frequency response is: 
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where,  the frequency filter response can be denoted as H(ω), ϵ is 

the ripple factor, controlling the amount of allowed ripple in the 

passband, Tn(x) is the nth order Chebyshev polynomial, ω is the 

angular frequency and ωc is the cutoff angular frequency. For 

noise reduction in images, can apply Chebyshev filter in the 

frequency domain using the Eq.(1). 

The Kalman filter operates in the time domain to estimate the 

current state of a system by fusing noisy measurements with 

predicted states. The Kalman filter assumes a linear dynamic 

system and updates the state estimates based on the process and 

measurement models. The Kalman filter consists of two steps: 

prediction and update. 

The state Prediction is defined as  

 1 1 1ˆ ˆk k k k k k kx F x B u− − −= +∣ ∣  (2) 

where the 1ˆk kx −∣ is a prediction state vector at time k, Fk is a state 

transition matrix, Bk is a control input matrix and uk is a control 

input at time k. 

Next Error covariance prediction is defined as 

 1 1 1
T

k k k k k k kP F P F Q− − −= +∣ ∣   (3) 

where the 1k kP −∣ is a predicted covariance matrix and Qk is the 

process noise covariance matrix. 

Then the update step is done by kalman filter is explained 

below. The kalman gain is defined as  
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where, Kk is a kalman gain, Hk refers to measurement matrix and 

Rk is a measurement noise covariance matrix. The state update is 

defined as: 

 1 1)ˆ (ˆ ˆk k k k k k k k kx x K z H x− −= + −∣ ∣ ∣  (5) 

where, zk is a measurement at time k and 1ˆk k kH x −∣ is a predicted 

measurement. The error covariance update is defined as  

 1( )k k k k k kP I K H P −= −∣ ∣  (6) 

3.3 COMBINING CHEBYSHEV AND KALMAN 

FILTERS 

Step 1: Preprocess with Chebyshev Filter: The signal is first 

passed through the Chebyshev filter to remove unwanted 

frequency components (e.g., high-frequency noise). This stage 

helps clean the signal for further processing, making it more 

suitable for state estimation. 

 filtered Chebyshev( ) ( ) ( )y t H s y t=    (7) 

where filtered ( )y t is the signal after Chebyshev filtering. 

Step 2: Kalman Filter for State Estimation: The filtered signal 

is then passed to the Kalman filter to estimate the state of the 

system. The Kalman filter uses the cleaned signal as its 

observation and applies its prediction-update mechanism to 

estimate the current and future states of the system. 

 1 filtered 1( ( ) )ˆ ˆ ˆk k k k k k k kx x K y t H x− −= + −∣ ∣ ∣  (8) 

The Chebyshev-Kalman hybrid filter combines the strengths 

of both filters, handling frequency-domain noise removal through 

the Chebyshev filter and real-time state estimation via the Kalman 

filter. 

3.4 SEGMENTATION USING MULTI-TIER OTSU 

THRESHOLDING (MOT) 

In the segmentation step of this study, Multi- tier Otsu 

Thresholding (MOT) technique is used to segment the dataset 

based on thresholding. Segmentation is a crucial process that 

extracts the Osteosarcoma diseased portions by considering the 
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set: 80% 
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set: 20% 
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OTSU Thresholding (MOT) 

STEP 5: Classification and osteosarcoma lung 

nodule detection  

Cuckoo Search 

Algorithm (CSA) 

A-

MBConvBlock-

EfficientDet 

STEP 6: Performance Comparison 

STEP 4: Feature extraction of discrete wavelet 

features and the Gray Level Co-occurrence 

Matrix (GLCM) Extraction 
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intensity of pixels. This allows for the extraction of essential 

features from the input images for further analysis. 

Thresholding is a technique that converts a gray-level image 

into a binary image based on the intensity levels of pixels and 

specific threshold values. Selecting optimal threshold values is a 

significant challenge in image segmentation. The traditional Otsu 

method is an effective segmentation approach that provides better 

results for ordinary images when there is a clear distinction 

between foreground and background objects. 

However, in cases where there is an overlap of boundaries in 

the images and the gray value distribution of pixels cannot be 

easily differentiated, multiple-level thresholding is utilized for 

segmenting the images. In the Otsu approach, the image is divided 

into two regions: object and background. The optimal 

thresholding aims to enhance the contrast between these two 

regions for both bi-level and multiple-level segmentation. 

To achieve the optimal threshold level in gray-scale images, 

the Otsu function is employed. The Otsu function calculates the 

threshold value that maximizes the contrast between the object 

and background regions, leading to more accurate segmentation 

results. By utilizing the MOT technique, the segmentation process 

enables the identification and extraction of Osteosarcoma regions 

from the images, which is crucial for subsequent analysis and 

classification of different Osteosarcoma. 

In multi-level thresholding, there requires a t threshold level 

( )1 2, ,...., tl l l to split the image into t classes. Therefore, the class 

0c  having gray levels in the range 0 to 1 1l − , c1 having gray levels 

in the range l1 to l2-1, and ct with enclosed levels from lt to N-1 

are considered. Therefore, the process of segmentation is 

expressed by an objective function as follows in Eq.(9) 

 ( ) 1 2max
..... tF l   = + + +  (9) 

From the above equation, the values for   is expressed in the 

following Eq.(10): 
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Thus, the segmented output is given as the input for feature 

extraction 

3.5 FEATURE EXTRACTION OF DISCRETE 

WAVELET FEATURES AND THE GRAY 

LEVEL CO-OCCURRENCE MATRIX (GLCM) 

FEATURES 

After the segmentation process, the resulting segmented 

output is then used as input for the DWT (Discrete Wavelet 

Transform) and GLCM (Gray Level Co-occurrence Matrix) are 

both widely used methods for feature extraction, especially in 

image processing applications. These methods help in extracting 

important characteristics from images for purposes of 

classification. Texture feature extraction can be described as a 

statistical technique that discloses specific properties about the 

spatial distribution of gray levels in image texture, considering the 

spatial connection of pixels. The tumor and normal regions have 

specific textures and spectral information that differentiate normal 

and abnormal tissue growth. The DWT decomposes an image into 

sub-bands at different resolutions, effectively capturing both 

spatial and frequency information. This multi-resolution approach 

is useful for analyzing the localized changes in frequency and 

texture in an image. The Steps in DWT Feature Extraction: 

3.5.1 Decomposition:  

The image is decomposed into four sub-bands at each level: 

• LL (Low-Low): Low-frequency approximation image. 

• LH (Low-High): Horizontal detail information (edge 

details). 

• HL (High-Low): Vertical detail information. 

• HH (High-High): Diagonal detail information. 

3.5.2 Multi-Level Decomposition:  

The LL sub-band is further decomposed to capture more 

details. This can be done recursively, providing more levels of 

resolution. 

3.5.3 Feature Extraction:  

From each sub-band (LL, LH, HL, HH), statistical features are 

extracted, such as: 

3.5.4 Mean:  

The average pixel intensity.  

 

1 1

1
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M N

i j

I i j
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= =

=   (11) 

where I(i,j) is the pixel value at position (i,j), and M,N are the 

dimensions of the image. 

3.5.5 Variance: 

The spread of intensity values. 

3.5.6 Energy:  

The sum of squared values. 
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3.5.7 Entropy: 

A measure of randomness in the sub-band. 

 2

1 1

Entropy ( , ) log ( ( , ))
M N

i j

P i j P i j

= =

= −   (13) 

where P(i,j) is the probability of a pixel intensity occurring. 

For feature extraction, GLCM was employed, which is a 

widely used statistical technique developed [31] for processing of 

remote sensing data. In the first step, the original image was 

converted to the grayscale. The next step was to extract spatial 

features from the gray-scale images based on the relationship of 

brightness values to the center pixel with its neighborhood defined 

by a kernel or window size. The relationship of the brightness 

values was represented in the form of a matrix. The matrix was 

made up of the frequent occurrence of the sequential pair of the 

pixel values along with a defined direction. The relationship helps 

GLCM to generate a different set of texture information based on 

gray-scale, kernel size, and direction. In [31] defined fourteen 
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textural features, which provide redundant spatial context 

information which was an overhead in classification. 

GLCM is a statistical method that considers the spatial 

relationship between pixels in an image. It generates a matrix that 

counts how often a pixel with a particular intensity is adjacent to 

a pixel with a different intensity. From this matrix, various texture 

features are calculated. 

Define the spatial relationship between pixel pairs (e.g., 

adjacent horizontally, vertically, or diagonally). Compute the co-

occurrence matrix by counting how often pairs of pixels with 

specific values (gray levels) occur. Normalization: Normalize the 

GLCM by dividing each element by the total number of 

occurrences. This gives a probability matrix. Extract Texture 

Features: Calculate texture features from the GLCM, such as: 

• Mean: It represents the average intensity value of the plaque 

tissue. 

• Standard deviation: It measures the variation or spread of 

intensity values within the plaque tissue. 

• Skewness: It quantifies the asymmetry of the intensity 

distribution. Positive skewness indicates a longer tail on the 

right side, while negative skewness indicates a longer tail on 

the left side. 

• Kurtosis: It measures the peakedness or flatness of the 

intensity distribution. Higher kurtosis values indicate a 

sharper peak and heavier tails. 

• Contrast: It measures the local variations in intensity values, 

reflecting the presence of edges or boundaries within the 

plaque tissue. 

• Energy: It represents the sum of squared intensity values, 

indicating the overall magnitude or strength of the plaque 

tissue texture. 

• Entropy: It quantifies the randomness or uncertainty of the 

intensity distribution within the plaque tissue. 

• Homogeneity: It measures the similarity or uniformity of 

neighboring intensity values, indicating the smoothness of 

the plaque tissue texture. 

• Correlation: It captures the linear dependency between pairs 

of intensity values within the plaque tissue. 

• Inverse different moments: They represent the inverse of the 

differences between intensity values and their mean, 

providing information about the distribution of intensity 

variations. 

Then, these extracted features are given in the classification 

phase. By combining DWT and GLCM, can effectively capture 

both frequency (via DWT) and texture (via GLCM) 

characteristics of an image. The process typically involves: 

• Apply DWT to the image to decompose it into different 

frequency sub-bands (LL, LH, HL, HH). 

• Calculate GLCM on the relevant sub-bands, typically LL or 

other sub-bands depending on the application. 

• Extract features from both DWT and GLCM for each sub-

band. 

• Combine the features into a single feature vector for 

classification or analysis tasks. This information is highly 

useful to identify whether the segmented regions belong in 

the nodule or non- nodule detection category. 

3.6 CLASSIFICATION AND OSTEOSARCOMA 

NODULE DETECTION USING AN OPTIMIZED 

ATTENTION-BASED MBCONVBLOCK-

EFFICIENTDET MODEL 

In this section, the features extracted from the images are 

given as a input to the optimized Attention-based MBConvBlock-

EfficientDet model. Here the CNN contains convolutional 

computation and has a deep structure. It includes convolutional 

layers, pooling layers and fully connected layers. The connections 

between the convolutional layers are called sparse connection 

which is used to reduce the connections between the network 

layers and the amounts of parameters and make the operation easy 

and efficient. The nature of weight sharing in CNN improves the 

stability and generalization ability of the network structure, avoids 

overfitting and enhances the learning effect [32]. 

EfficientDet is one of the most advanced object detection 

algorithms, which has a simple structure and excellent 

performance. It is available in seven versions from D0 to D6. And 

the resolution, depth and width of the model can be scaled 

simultaneously by it according to resource constraints to meet the 

detection requirements under different conditions. By using the 

EfficientNet as the backbone network, BiFPN as the feature 

network, and the shared class/box prediction network, 

EfficientDet balances the speed and accuracy in the object 

detection task well. 

Enhancing the depth of the neural network, adding the width 

of the feature layer, and increasing the resolution of the input 

image can improve the detection accuracy of the network [33], 

but also lead to more network parameters and higher 

computational costs. To improve the detection efficiency, 

balancing the dimensions of network width, depth and resolution 

is crucial during CNN scaling. EfficientNet combines these three 

characteristics and puts forward a new model scaling method that 

uses an efficient composite coefficient to simultaneously adjust 

the depth, width, and resolution of the net‐ work. Grounded on the 

neural structure search technology [35], the optimal composite 

coefficient can be obtained. As shown in equations. 

 Depth: d =   (14) 

 Width w =   (15) 

 Resolution: r =   (16) 

 2 2 2       (17) 

where , β,  represent the weight of depth, width and resolution, 

respectively, and are constants that can be determined by small 

network search, and  is a user‐specified factor that controls the 

number of resources used for model scaling. Under this constraint, 

=1.2, β=1.1 and =1.15 are obtained. When =0, an optimal base 

model EfficientNet‐B0 is obtained; when the  is increased, it is 

equivalent to expanding the three dimensions of the base model 

at the same time, and the model becomes larger, the performance 

also improves, and the resource consumption also becomes larger. 

The structure of EfficientNet is shown in Fig.2. 
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Fig.2. EfficientNet is composed of 16 large Blocks stacked, 16 

large Blocks can be divided into 1, 2, 2, 3, 3, 4, 1 Blocks. 3 × 3/5 

× 5 represent the convolutional kernel size respectively. The 

different Blocks are distinguished by color and convolutional 

kernel size.  

The general structure of Block is shown in Fig.3, and its 

design idea is Inverted Residuals, using 1 × 1 convolution to up‐

dimension before the 3 × 3 or 5 × 5 DWConv, adding a channel 

attention mechanism after the DWConv, and finally adding a 

large residual edge after using 1 × 1 convolution to down‐

dimension. BN is the BatchNorm. 

 

Fig.3. The structure of MBConvBlock 

The Fig.3 shows the structure of MBConvBlock. SENet is an 

attention mechanism. BN is the BatchNorm, which serves to 

normalize the data. Swish is an activation function. DWConv is 

the Depthwise convolution. The top feature map has rich semantic 

information but low resolution, while the bottom feature map has 

low‐level semantic information but higher resolution. Multi‐scale 

feature fusion is the aggregation of features with different 

resolution semantic information, so that the network has the 

ability to detect features of different scales. FPN, NAS‐FPN, 

PANet, etc., [34, 35] have been widely used in multi‐scale feature 

fusion. However, their direct combinations of the feature maps in 

different layers and ignores the contribution of different 

resolution features to the output features. The authors proposed 

BiFPN, which is simple and efficient. As shown in the formula, 

the importance of different input features to feature fusion is 

expressed by calculating the weights of different layers. 

There are 3 methods to calculate the weights assigned to the 

features. “Unbounded fusion” is the name of the initial one, and it 

is stated as 

 i i

i

O w I=  (18) 

where, the wi, for each feature, channel, or pixel, is a learnable 

weight that might be a scalar, vector, or multidimensional tensor. 

The fact that the scalar weight in this technique is unbounded is a 

drawback that could make training more difficult. In the second, 

a “Softmax fusion” is created as given below: 

 
i

j

w

iw
i

j

e
O I

e
=


 (19) 

Although this approach has a considerably larger latency cost, 

it ensures feature contribution preservation and bounds the weight 

within [0, 1]. A “fast normalized fusion” is provided  in the third 

instance as. 

 i
i

ji j

w
O I

w
=

+



  (20) 

Here, the input features can be denoted as Ii, ε is a tiny positive 

constant that is set at 0.0001 for numerical stability, and wi≥0 is 

verified for each wi using a ReLU function. Because it guarantees 

a bounded weight and a quicker response, this method is 

preferred. The EfficientDet architecture (Fig.2) uses a 1-stage 

detection approach. The foundation is assumed as EfficientDet. 

Subsequently, BiFPN is added as a feature network, obtaining 

features from the backbone’s 3rd through 7th tiers. A class and 

bounding box prediction network receive the fused output. 

Incorporating attention mechanisms into the EfficientDet model 

for osteosarcoma lung nodule detection offers compelling 

advantages. Firstly, attention mechanisms enable selective focus, 

allowing the model to prioritize relevant features in CT scans 

crucial for nodule identification. This selective attention also aids 

in noise reduction, filtering out irrelevant information to improve 

detection accuracy. Additionally, attention mechanisms provide 

the model with contextual understanding, crucial for 

distinguishing nodules amidst complex anatomical structures. 

Moreover, the interpretability offered by attention mechanisms 

fosters trust in the model’s predictions, facilitating collaboration 

with medical experts. Overall, integrating attention mechanisms 

enhances the EfficientDet model’s performance in osteosarcoma 
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nodule detection, making it a promising approach for automated 

medical image analysis. 

3.7 CUCKOO SEARCH (CS) ALGORITHM TO 

OPTIMIZE ATTENTION-BASED 

MBCONVBLOCK-EFFICIENTDET MODEL 

Cuckoo Search (CS) is a nature-inspired optimization 

algorithm that mimics the brood parasitic behavior of certain 

species of cuckoo birds. It’s a metaheuristic optimization 

technique commonly used for solving complex optimization 

problems. In the context of EfficientDet, which is a neural 

network architecture for object detection, cuckoo search 

optimization can be used to optimize the hyperparameters, 

architecture, or specific components of the model (e.g., feature 

fusion, attention mechanisms, learning rates). 

The CSO algorithm follows the next three idealized rules: 

• One egg is laid by each cuckoo at a time, and it deposits its 

egg in a randomly selected nest;  

• The best nests with the highest-quality eggs will be passed 

down to the following generations.  

• The host bird finds the cuckoo’s egg with a probability pa ∈ 

[0, 1], and the counts of host nests that are accessible is fixed. 

The host bird in this situation has two options: it can discard 

the egg or leave the nest and construct a brand-new one. 

This likelihood represents the impact of each generation’s 

replacement of cuckoo eggs, eggs found by the host bird, with 

fresh eggs. Keep in mind that an egg symbolizes a solution. As a 

selection procedure for the optimization algorithm, these 

presumptions guarantee the best solutions will endure from 

generation to generation. Therefore, the objective of the CSO 

algorithm is to swap out the low-quality solutions in the nests with 

higher-quality ones. For cuckoos, a novel solution
1t

iX +
is 

provided by:  

 1 Levy( )t t
i iX X  + = +   (21) 

 0 ( )t t
j iX X =  −  (22) 

where α represents step sizes (α > 0) with dimensions equal 

problems dimensions; products ⊗ represent entry-wise 

multiplications; t
iX represents randomly selected solutions; and 

Lévy(λ) imply Lévy flights random walks. The value of α0 is set 

to 0.01 as suggested in order to improve the search efficiency. One 

type of random walk where the step length is derived from the 

Lévy distribution is called a Lévy flight. A sequence of 

instantaneous jumps produced by a probability density function 

with a power law tail provided by characterizes this distribution: 

 
1

Γ( )sin( /2)
Levy( , )s

s 

  


 +
=  (23) 

The step length S of Lévy flights is drawn from a uniform 

distribution that obeys Lévy distribution. Furthermore, the 

algorithm used a balanced combination of a local random walk 

and the global explorative random walk, controlled by a switching 

parameter 𝑝𝑎. The local random walk can be written as 

 
( 1)

( ) ( )
t t t t

i a j kiX X s H p X X 
+

= +  −  −  (24) 

where
t
jX and

t
kX signify two different solutions selected 

randomly using permutations, 𝐻 represents Heaviside functions, 

𝜀 represents random numbers drawn from uniform distributions, 

and 𝑠 represents step sizes. 

On the other hand, the global random walk is carried out by 

using Levy flights: 

 
( 1)

( , )
t t

iiX X L evy s 
+ = +   (25) 

where, 𝛼> 0 represents step size scaling factors; Levy(𝑠, 𝜆) 

represents step-lengths distributed based on probability 

distributions of Eq.(25) which have infinite variances with infinite 

means: 

 
(1 )

Γ( )sin( /2) 1
( , )L evy s

s 

  


 +
=   (26) 

Algorithm: CSO 

Input: Initialize the population of CS and maximum iterations. 

Output: Global Best Solution 

Step 1: Fitness-function f(x)=(x1,x2,x3,…,xd)T 

Step 2: Initializing n nests, where xi(i≤n). 

Step 3: While(t<Max-generation-value) do 

Step 4: Levy flight use to update xi 

Step 5: Get its Fitness Fi 

Step 6: Pick a nest xj at random 

Step 7: If (Fi>Fj) then 

Step 8: Replace xj by the new solution 

Step 9: Rest worse nest use Eq.(21)  

Step 10: Rank the nest (solution) and keep the best nest  

Step 11: Final result output and presentation 

Reassess the fitness metric to determine the optimal individual 

and overall solutions: Using the CSO Lévy flight rule, the search 

space’s solutions are updated, and the top global solutions are 

identified. Once the maximum counts of iterations have been 

completed, the worldwide best solutions are announced.  

Hence By applying CS for hyperparameter tuning, A-

EfficientDet can be fine-tuned to achieve better performance and 

adaptability across different object detection tasks and datasets. 

The pseudocode outlines the main steps involved in 

hyperparameter tuning using CS for A-EfficientDet as shown 

below:  

Algorithm: Hyperparameter tuning using CS for A-

EfficientDet 

Input: Initialize the hyperparameters of A-EfficientDet model, 

population of CS and maximum iterations. 

Output: Hyperparameters of A-EfficientDet model 

Step 1: Define Hyperparameters and Objective Function 

hyperparameters = {‘learning_rate’: (0.001, 0.01), ‘batch_size’: 

(16, 64),  

# Define other hyperparameters and their ranges 

• def objective function(hyperparameters): Train A-

EfficientDet with given hyperparameters, evaluate 
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performance using validation dataset, Return performance 

metric (e.g., accuracy) 

• return performance metric 

Step 2: Initialization, population size = 10, max iterations = 100 

bats = initialize virtual bats (population size, hyperparameters) 

Step 3-7: Cuckoo Search Algorithm 

• Initialize N nests (solutions) randomly with different 

hyperparameters 

• Evaluate the fitness (loss or mAP) of each nest 

• For each iteration: 

• For each nest i: 

• Generate a new solution (cuckoo’s egg) using Lévy flight 

• Evaluate the fitness of the new solution 

• If the new solution is better than a randomly selected nest: 

• Replace the randomly selected nest with the new solution 

• Abandon a fraction of the worst nests and replace them with 

new random solutions 

• Find and store the best-performing nest (solution) 

• If convergence criteria are met, stop 

• Return the best solution (optimized hyperparameters) 

Step 8: Final Model Selection 

• Best hyperparameters = best performing nest (solution) 

Step 9: Evaluation on Test Set 

• Final model performance = objective function (best 

hyperparameters) 

End for 

After optimization, finally, through the Softmax function, the 

model will output the prediction probabilities, which represent the 

probability value of the input rock image belonging to each type. 

The type corresponding to the maximum probability is the final 

classification result. 

4. EXPERIMENTAL RESULTS AND 

DISCUSSION 

In this research, preprocessing of the CT scan images was 

conducted to enhance their quality for deep learning analysis. This 

included image normalization, illumination and contrast 

correction, noise reduction, and background removal. As original 

CT images from hospitals may contain artifacts and undesirable 

elements such as low-intensity levels, noise, and textual 

information, preprocessing steps were essential to ensure better 

model learning, generalization, and robustness. Additionally, 

specific filters like high-pass filters were applied to extract 

relevant information, such as clear lung images. 

To validate the accuracy of ground truths, a panel consisting 

of 1 radiologist and 2 oncology experts independently examined 

the CT images for abnormal nodules detection associated with 

Osteosarcoma metastatic disease. Consensus was reached if at 

least two out of the three experts agreed on the presence of 

nodules. These labeled CT images were then separated into 

training and validation sets, comprising 80% (1,769 images) and 

20% (443 images) of the dataset, respectively. The dataset 

primarily focuses on the detection of Osteosarcoma nodules, 

ensuring the model’s training and validation on relevant 

pathological features. In traditional medical screening methods, 

accuracy is typically calculated based on the number of patients 

rather than individual images. If a patient has at least one correctly 

detected abnormality (such as a nodule), the case is considered 

positive. However, in engineering-oriented approaches like the 

one described in this section, a different method is employed to 

provide deeper analysis focusing on both quantity and quality. 

Instead of aggregating results at the patient level, the 

engineering standard method evaluates accuracy based on the 

number of images. This proposed optimized A-MBConvBlock-

EfficientDet approach allows for a more detailed analysis of each 

individual image, considering every detail in the dataset. While 

using the number of images to calculate accuracy may result in a 

lower overall accuracy compared to patient-level aggregation, it 

provides insights into the execution of the procedure on a per-

image basis. By adopting the number of image approach, the 

evaluation can capture finer details and nuances in the detection 

process, which may be missed when considering only patient-

level outcomes. This approach enables a more granular 

assessment of the algorithm’s performance, facilitating 

improvements in both detection quantity and quality across the 

entire dataset. 

 

 

Fig.4. Example of the labelled CT-Scanned nodule images. 

The proposed optimized A-EfficientDet is compared with 

exiting methods such as MSANet [15], TSCNN [16] and SSD-

VGG16 [23] depends on performance matrix such as precision, 

recall, f-measure and accuracy. In the evaluation process, a 

corrected predicted nodule is considered a True Positive (TP) 

outcome. To compute performance scores, the True Negative 

(TN) value must also be obtained. Since the evaluated images did 

not originally contain non-nodule CT-scanned images, these non-

nodule images were added to the evaluation set to obtain the False 

Positive (FP) value. These non-nodule CT-scanned images are 

referred to as “no-class” images. Given the absence of a typical 

technique for adding no-class images, one non-nodule image was 

employed in this study as one object in the image. The amount of 

TP discovered from the first evaluation of the photos was equal to 

the number of non-nodule photographs added during the review 

procedure. The common performance scores used in this 

evaluation are the F1-score and accuracy. The F1-score is 

calculated using the harmonic mean of Precision and Recall, 

which are calculated as follows: 
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 Recall
TP

TP FN
=

+
  (27) 

 Precision
TP

TP FP
=

+
  (28) 

The F1-score is then calculated as: 

 
Precision Recall

1 2
Precision Recall

F


= 
+

 (29) 

Additionally, accuracy is calculated using the formula: 

 Accuracy(%) 100
TP TN

TP FP TN FN

+
= 

+ + +
 (30) 

These performance metrics provide an inclusive assessment of 

the procedure’s detection performance, considering both the 

precision and recall of nodule detection as well as the total 

accuracy of the framework. 

 

Fig.5. Precision performance comparison 

 

Fig.6. F-measure performance comparison 

The Fig.5 presents the outcomes of a precision comparison 

among the proposed CSO-A-MBConvBlock-EfficientDet and the 

traditional MSANet, TSCNN, SSD-VGG16 and optimized A-

EfficientDet classifiers. Comparing the suggested strategy to 

other current techniques, the graph indicates that it gives a high 

rate of accuracy. It is a highly effective technique that has a 97% 

precision percentage. In evaluating the accuracy of current 

methods, MSANet, TSCNN, SSD-VGG16 and optimized A-

EfficientDet offer notable accuracy rates of 80%, 88.5%, 91.5% 

and 95%, in that order. The high precision attained by the 

proposed methodology can be attributed to meticulous 

preprocessing, including contrast correction and noise reduction, 

which enhances image clarity. Additionally, accurate labelling by 

multiple experts and systematic handling of false positives 

contribute to the reliability of nodule detection. 

The Fig.6 presents the F-measure comparison outcomes of the 

SSD-VGG16, MSANet, TSCNN, and recommended CSO-A-

MBConvBlock-EfficientDet classifiers. It is a highly effective 

technique that has a 93% of F-measure percentage. The suggested 

CSO-A-MBConvBlock-EfficientDet has an extremely good F-

measure rate of 91%, based on the data MSANet, TSCNN, SSD-

VGG16 and optimized A-EfficientDet yield lower rates of 73.15 

%, 84.5 %, 87%, and 91% accordingly, as compared with the rate 

of the F-measure among the current techniques. This indicates 

that the recommended strategy can produce better attack detection 

outcomes than the prior strategies. The high F-measure is 

achieved due to the balanced optimization of both precision and 

recall, facilitated by accurate ground truth labelling and robust 

object detection algorithms, resulting in effective identification of 

nodules while minimizing false positives and false negatives. 

 

Fig.7. Recall performance comparison 

 

Fig.8. Accuracy performance comparison 

The Fig.7 displays the recall comparison outcomes for the 

SSD-VGG16, TSCNN, MSANet, and recommended optimized 

A-EfficientDet classifiers. The 97.80% recall rate offered by the 
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suggested CSO-A-MBConvBlock-EfficientDet method is 

incredibly high. These results indicate that the CSO-A-

MBConvBlock-EfficientDet that has been recommended has a 

high memory rate and an average attack detection rate. By 

contrasting the recall rates of the current methods, it can be seen 

that the recommended system can produce better attack detection 

outcomes than the earlier methods. MSANet, TSCNN, SSD-

VGG16 and optimized A-EfficientDet yield recall rates of 84%, 

92%, and 93%, accordingly. High recall is attained through 

meticulous preprocessing to enhance image quality, coupled with 

the utilization of advanced object detection networks trained on 

diverse datasets, ensuring comprehensive coverage of nodule 

variations. 

The attack detection accuracy comparison can be observed in 

the graph in Fig.8 above. Techniques like CSO-A-

MBConvBlock-EfficientDet multiclass classifiers, TSCNN, 

Optimized AE+DNN, and MSANet are applied. The optimized 

A-EfficientDet has a high accuracy rate of 94.5%, making it a 

great way to get precise predictions. In evaluating the accuracy of 

earlier methods like MSANet, TSCNN, and SSD-VGG16, the 

rates are 80%, 90%, and 92%, in that order. Higher accuracy is 

possible while resolving the local optima problem due to 

enhanced A-EfficientDet learning algorithms, which are 

comparatively robust to noise in training data. The suggested 

methodology achieves high accuracy through rigorous 

preprocessing techniques that enhance image quality, coupled 

with the utilization of advanced object detection networks trained 

on diverse datasets. Additionally, accurate ground truth labeling 

by multiple experts and systematic handling of false positives 

contribute to the reliability of nodule detection, resulting in 

overall superior performance. 

5. CONCLUSION FUTURE WORK 

Thus, the hybrid cuckoo search Algorithm with a hybrid 

Attention-based MBConvBlock-EfficientDet (A-MBConvBlock-

EfficientDet) model for classification presents a promising 

approach for precise detection of osteosarcoma lung nodules. The 

Chebyshev Filter Combined with Kalman Filtering (HF) 

approach is act as a pre-processing pipeline and optimizing the 

Attention-based MBConvBlock-EfficientDet model with the 

CSO optimization algorithm, significant improvements in 

detection accuracy and performance are achieved. The 

experimental results demonstrate remarkable outcomes: a 

precision rate of 97%, F-measure rate of 93%, recall rate of 

97.80%, and accuracy rate of 94.5% in osteosarcoma lung nodule 

detection. These findings underscore the effectiveness and 

reliability of the proposed methodology in enhancing MI 

(Medical Image) analysis and facilitating early detection of 

critical pathologies. For future work, further exploration and 

refinement of the proposed hybrid approach could focus on the 

following areas: 

• Exploring the integration of multi-modal MI data, such as 

combining CT scans with MRI or PET scans, to deliver a 

more inclusive and accurate prediction and classification of 

osteosarcoma and other pulmonary pathologies. 

Integration of feature selection approaches to select the best 

features for further classification improvement. 
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