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Abstract 

The degradation of image quality due to noise, blur, and low contrast 

remains a significant challenge in various imaging applications, 

particularly in medical diagnostics, remote sensing, and surveillance. 

Effective restoration of such images is essential to enhance visual 

clarity and extract meaningful information. Conventional techniques 

often struggle to balance noise reduction and detail preservation. To 

address these limitations, this study proposes an advanced multiframe 

image restoration approach combining Contrast Limited Adaptive 

Histogram Equalization (CLAHE) and Deep Belief Networks (DBN). 

CLAHE is employed to enhance contrast adaptively, improving 

visibility in regions with varying luminance. Subsequently, DBN, a 

deep learning model, is applied to refine the reconstruction process by 

leveraging its feature extraction and noise suppression capabilities. 

This combination ensures that the restored images retain fine details 

while effectively mitigating noise and distortions. Experimental 

evaluation was conducted on a dataset of 500 degraded images, 

including medical scans and natural scenes. The proposed method 

achieved a Peak Signal-to-Noise Ratio (PSNR) of 36.2 dB, a Structural 

Similarity Index (SSIM) of 0.92, and a contrast improvement rate of 

48%, surpassing traditional methods like Bilateral Filtering and 

Wavelet Transform. Processing time per image was maintained at an 

efficient 1.8 seconds, ensuring practicality for real-time applications. 

This novel integration of CLAHE and DBN shows significant 

advancements in multiframe image restoration, making it a valuable 

tool for applications requiring enhanced image quality. The approach 

combines the strengths of contrast enhancement and deep learning-

based reconstruction, paving the way for improved image analysis and 

decision-making in critical domains. 
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1. INTRODUCTION 

Image restoration plays a crucial role in many fields such as 

medical imaging, remote sensing, and surveillance, where high-

quality visual data is vital for analysis and decision-making. 

Degraded images, caused by noise, blur, or low contrast, 

significantly hinder the performance of automated systems, 

leading to inaccurate interpretations and diagnostics. In particular, 

medical imaging, where clear details are paramount, demands 

effective restoration techniques to enhance image quality and aid 

in disease diagnosis [1]. Conventional methods like filtering and 

wavelet transforms have been widely used for image restoration 

but often fall short when it comes to balancing noise reduction 

and preserving intricate details [2]. To address these issues, 

modern approaches have focused on combining traditional 

techniques with advanced computational methods such as deep 

learning. 

One promising technique is Contrast Limited Adaptive 

Histogram Equalization (CLAHE), which enhances image 

contrast in localized regions. CLAHE is particularly effective in 

adjusting brightness and contrast in low-light conditions, 

improving the overall visibility of image features [3]. However, 

the challenge lies in integrating such techniques with more 

advanced, data-driven methods like deep belief networks (DBN), 

which are capable of learning complex patterns from large 

datasets. This combination offers potential benefits, especially 

when applied to multiframe restoration, where multiple degraded 

frames are used to reconstruct a single enhanced image. 

Despite the advancements in image restoration techniques, 

several challenges remain in achieving optimal restoration 

quality. One significant challenge is the efficient preservation of 

fine details while mitigating noise and artifacts. Traditional 

methods like filtering often lead to oversmoothing, which can 

erase important image details, while deep learning-based methods 

may not always generalize well to unseen types of noise [4]. 

Furthermore, the integration of classical methods with modern 

deep learning models is still a challenging task, especially when 

optimizing parameters to balance their complementary strengths 

[5]. Another obstacle is the computational overhead associated 

with advanced restoration methods, as they can be 

computationally expensive, making real-time applications 

difficult [6]. 

Moreover, image degradation is often variable across different 

regions of an image, requiring an adaptive approach to restoration. 

A technique like CLAHE addresses this by applying localized 

contrast enhancement but integrating it seamlessly with deep 

learning models remains a technical challenge [7]. Finally, the 

task of working with multiframe data introduces additional 

complexities in terms of alignment, registration, and the accurate 

combination of information from multiple frames without 

introducing artifacts or blurring. 

The primary problem addressed in this research is the effective 

restoration of degraded images while maintaining their fine 

details and minimizing noise. This is particularly crucial for high-

stakes applications like medical imaging, where the quality of 

images directly impacts decision-making processes. While 

existing methods show promise, there is still a need for a 

comprehensive approach that combines the best of classical 

enhancement techniques with advanced learning-based methods. 

Furthermore, the challenge lies in developing a system that can 

process multiple frames simultaneously, effectively utilizing 

multiframe data to enhance image quality while minimizing 

computational overhead [8]. 

The objectives of this study are: To develop a multiframe 

image restoration method that combines CLAHE for contrast 
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enhancement with DBN for deep learning-based reconstruction. 

To evaluate the effectiveness of the proposed method in terms of 

visual quality, noise reduction, and preservation of fine details 

across various types of degraded images. 

The novelty of this work lies in the integration of CLAHE with 

DBN, an innovative combination that leverages both adaptive 

contrast enhancement and deep learning-based feature extraction 

for superior restoration. By applying CLAHE first to improve 

local contrast and then using DBN for further reconstruction, this 

method ensures that image details are preserved while noise and 

distortions are reduced. The multiframe approach, in which 

multiple degraded frames are used to reconstruct a high-quality 

image, is a significant step forward in improving image 

restoration. This methodology offers a balance between 

computational efficiency and restoration quality, making it 

suitable for real-time applications in various fields.  

2. RELATED WORKS 

Contrast Limited Adaptive Histogram Equalization (CLAHE) 

is widely recognized for its ability to enhance local contrast, 

particularly in images suffering from low visibility or non-

uniform illumination. The technique has been successfully 

applied in various image processing fields, especially where clear 

differentiation of features is crucial, such as in medical imaging 

and satellite data analysis [9]. However, despite its advantages, 

CLAHE alone has limitations in dealing with noise and distortion. 

Researchers have explored hybrid approaches that combine 

CLAHE with other techniques like wavelet transforms and edge-

preserving filters to address this issue, but these methods often 

struggle with balancing noise reduction and detail preservation 

[10]. Moreover, when dealing with multiframe data, CLAHE 

must be adapted to handle the temporal aspects of the frames, 

making it a complex task for traditional methods. 

Deep learning methods, particularly Convolutional Neural 

Networks (CNNs), have showd significant improvements in 

image restoration by learning to reconstruct clean images from 

degraded ones. Deep Belief Networks (DBN), another form of 

deep learning architecture, have been explored in image 

restoration for their ability to capture hierarchical features and 

model complex patterns in data [11]. DBNs have shown promise 

in applications such as denoising, inpainting, and super-

resolution, where they can effectively learn from large datasets of 

degraded and clean images. However, integrating DBNs with 

traditional methods like CLAHE has not been widely explored, 

creating an opportunity for further investigation. 

The use of multiframe data for image restoration has been 

extensively studied, especially in the context of motion blur and 

noise reduction. By combining information from multiple frames, 

multiframe restoration methods can achieve superior results by 

compensating for the deficiencies of individual frames. 

Techniques such as optical flow, image registration, and 

averaging have been employed to align and combine frames for 

improved restoration quality. However, challenges remain in 

optimizing the fusion of information without introducing artifacts 

or compromising image sharpness. Recent studies have 

introduced deep learning approaches for multiframe image 

restoration, which can enhance the reconstruction process by 

learning spatial-temporal features from multiple frames [12]. 

These methods show promise but often come with increased 

computational costs and complexity, which limits their 

applicability in real-time scenarios. 

Thus, while existing methods like CLAHE and deep learning 

techniques have shown promise individually, the combination of 

these methods for multiframe image restoration remains 

underexplored. This study seeks to address this gap by integrating 

CLAHE with DBN for enhanced image restoration in multiframe 

scenarios, thus providing a more effective solution to the 

challenges faced in current restoration techniques. 

3. PROPOSED METHOD 

The proposed method combines CLAHE and DBN for 

multiframe image restoration as in Fig.1.  

 

Fig.1. CLAHE-DBN Multiframe Image Restoration 

The main goal is to enhance the quality of degraded images by 

improving local contrast, reducing noise, and preserving fine 

details. The method operates in two stages: the first involves the 

application of CLAHE to each frame of the multiframe data to 

improve local contrast and enhance the visibility of low-contrast 

regions. The second stage uses DBN to further process the 

enhanced frames, learning hierarchical features from the input 

frames and reconstructing a high-quality output image by 

minimizing residual noise and distortion. This approach leverages 

the advantages of both classical image enhancement and deep 

learning for superior restoration. The proposed steps involves the 

following: 

• Multiframe Acquisition: Collect a set of N degraded 

images (frames) that represent the same scene or object 

under different conditions (e.g., time, angle, or noise 

variation). 

• CLAHE Application: Apply CLAHE to each of the N 

frames. CLAHE enhances the local contrast in each frame 

by adjusting the pixel intensity distribution in localized 

regions. The clip limit is set to prevent over-amplification of 

Multiframe Acquisition 

CLAHE Application 
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Feature Extraction - DBN 

Multiframe Fusion 

Restored Image Output 
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noise, and the tile grid size is chosen to ensure effective local 

contrast enhancement. 

• Frame Registration: Align all the frames to ensure that they 

correspond to the same spatial regions. This is done through 

rigid image registration techniques to account for any 

motion or misalignment in the multiframe data. 

• Feature Extraction Using DBN: Input the enhanced frames 

into a Deep Belief Network (DBN). DBN, composed of 

multiple layers of Restricted Boltzmann Machines (RBM), 

learns hierarchical features from the input frames. The 

network is trained to recognize patterns in the frames, 

capturing both low-level features (like edges) and high-level 

features (such as textures). 

• Multiframe Fusion: After feature extraction, the DBN 

network combines the learned features from the multiple 

frames and reconstructs a high-quality output image. This 

step mitigates the effects of noise and distortion by 

leveraging information from all frames. 

• Restored Image Output: The final restored image is 

generated, offering a higher-quality version of the original 

degraded frames with improved contrast and reduced noise. 

Pseudocode: 

def multiframe_image_restoration(frames): 

    # Step 1: Initialize variables 

    restored_image = None 

    n_frames = len(frames) 

    # Step 2: Apply CLAHE to each frame 

    enhanced_frames = [] 

    for i in range(n_frames): 

        frame = frames[i] 

        enhanced_frame = apply_clahe(frame) 

        enhanced_frames.append(enhanced_frame) 

    # Step 3: Register frames (align them) 

    registered_frames = register_frames(enhanced_frames) 

    # Step 4: Extract features using Deep Belief Network 

    dbn_features = extract_features_using_dbn(registered_frames) 

    # Step 5: Fuse the features from multiple frames 

    fused_image = fuse_frames(dbn_features) 

    # Step 6: Return the restored image 

    return fused_image 

def apply_clahe(frame): 

    # Apply CLAHE to a single frame 

    clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8)) 

    return clahe.apply(frame) 

def register_frames(frames): 

    # Perform rigid image registration on multiple frames 

    # Assume registration function that aligns frames spatially 

    return aligned_frames 

def extract_features_using_dbn(frames): 

    # Use a trained DBN model to extract hierarchical features 

    # Placeholder function to represent feature extraction 

    return features 

def fuse_frames(features): 

    # Combine the features from frames to reconstruct final image 

    # This step involve a DL to fuse the data 

    return final_image 

3.1 MULTIFRAME ACQUISITION IN IMAGE 

RESTORATION 

The Multiframe Acquisition stage is crucial for gathering a set 

of images that will be used to restore a single high-quality image 

from multiple degraded frames. The goal of this step is to capture 

different views or time snapshots of the same scene or object 

under varying conditions, which allows for the synthesis of a more 

accurate and detailed image. This stage is especially beneficial 

when individual frames suffer from noise, blurriness, or low 

contrast, but when combined, they provide complementary 

information to restore a better image. In the proposed method, the 

multiframe acquisition process typically involves capturing NNN 

frames (where N is the number of frames used in the multiframe 

approach, usually between 3 to 5 for a balance between quality 

and computational cost). Each of these frames is affected by 

noise, blurring, and other distortions. These frames may come 

from the same scene but may differ due to motion, varying light 

conditions, or sensor noise. The frames are indexed as I1, I2,…, IN

, where each Ii represents a degraded version of the scene. 

Mathematically, the relationship between the degraded frames 

and the original image I0 (the ideal, high-quality image) can be 

modeled as: 

 Ii=f(I0,ni,mi) (1) 

Since each of these frames captures slightly different 

information due to variations in the degradation process, 

combining them can provide a more accurate representation of the 

original scene. The restoration process involves reducing the 

noise ni and motion artifacts mi through advanced image 

processing techniques, which ultimately leads to a clearer and 

sharper output. A key challenge in this stage is that these frames 

may not be perfectly aligned, especially in dynamic scenes where 

the object or camera might be in motion. To address this, frame 

registration is typically performed in the next step (registration 

step) to align these frames spatially, ensuring that the combined 

information corresponds correctly across all frames. Thus, the 

multiframe acquisition stage is vital for ensuring that enough 

information is collected from various degraded sources, which is 

then used in subsequent steps (such as frame registration, feature 

extraction, and fusion) to restore the high-quality image. This 

process leverages the redundancy of multiple views or time 

samples, making it more resilient to noise and blurring compared 

to using a single frame. 

3.2 CLAHE AND FRAME REGISTRATION  

The first step in enhancing the image quality in our proposed 

method is to apply CLAHE. CLAHE is a localized contrast 

enhancement technique that is particularly useful for improving 

the visibility of low-contrast regions in images, which is 

especially important in cases of degraded frames. The core idea 

behind CLAHE is to apply histogram equalization to small, non-

overlapping regions of the image (called tiles) and then combine 

them. This allows for local contrast enhancement while avoiding 
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the amplification of noise, which is common with traditional 

histogram equalization. Mathematically, the CLAHE process can 

be broken down into the following steps: 

• Division of the image into tiles: The image I is divided into 

smaller, square tiles, each of size T×T, where T is a chosen 

tile size (e.g., 8x8 pixels). Let the set of tiles be denoted as 

{T1,T2,…,Tk}, where k is the total number of tiles in the 

image. 

 
1

k
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i

I T
=

=  (2) 

• Histogram equalization within each tile: For each tile Ti, 

a histogram Hi of pixel intensities is computed. The 

histogram is then equalized by transforming the pixel 

intensities according to the cumulative distribution function 

(CDF) of the histogram. This process adjusts the pixel values 

to distribute them more evenly across the entire intensity 

range. Let the pixel intensity at position x in tile Ti be 

denoted as px, and the equalized intensity as px′. The CDF 

C(px) for the pixel intensity px is computed, and the 

transformed intensity is given by: 

 ( )x xp C p =  (3) 

• Clipping the histogram: CLAHE introduces a clip limit C’ 

to prevent the over-amplification of noise. The clip limit 

constrains the peak of the histogram so that no pixel value 

exceeds a certain threshold. The clipped histogram ensures 

that no individual region gets excessively enhanced, which 

could lead to noise amplification. 

 min( , ')i iH H C =  (4) 

• Interpolation and merging tiles: After processing each tile, 

the tiles are reassembled into a complete image. Bilinear 

interpolation is applied at the borders of tiles to smooth the 

transition between neighboring tiles and avoid visible seams 

in the final output. 
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Through CLAHE, each frame is enhanced locally, improving 

the visibility of finer details while preventing excessive noise 

amplification in uniformly bright or dark areas. 

3.3 FRAME REGISTRATION 

Once each frame has been enhanced using CLAHE, the next 

critical step is frame registration, which ensures that all the frames 

are aligned spatially so that corresponding pixels across frames 

represent the same scene content. In the case of multiframe image 

restoration, misalignments can occur due to motion between 

frames (either from the object or the camera), which introduces 

distortions such as translation, rotation, or scaling. Frame 

registration is typically achieved through a rigid transformation 

model, which includes translation and rotation. The registration 

process involves aligning each frame Ii′ to a reference frame Ir′ 

(often chosen to be the first or a centrally located frame in the set). 

The goal is to find a transformation Ti that best aligns the frame 

Ii′ to the reference frame Ir′. This transformation Ti consists of a 

translation vector Δxi and a rotation angle θi, which are computed 

by optimizing the alignment using an objective function, typically 

based on the similarity between the frames. One common metric 

used for this is sum of squared differences (SSD) or normalized 

cross-correlation (NCC), which quantifies how well the frames 

match: 
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The registration process minimizes the SSD or maximizes the 

NCC to find the best alignment, ensuring that corresponding 

pixels in the enhanced frames represent the same scene elements. 

The result is a set of aligned frames R1,R2,…,RN, where each frame 

Ri has been spatially aligned with the reference frame Ir′. 

Mathematically, the transformation Ti is applied to each frame Ii′: 

 ( )i i iR T I=   (7) 

By applying CLAHE and performing frame registration, the 

multiframe data is prepared for further processing, ensuring that 

each frame contributes useful, well-aligned information for the 

subsequent stages of feature extraction and image fusion. The 

combination of enhanced contrast and spatial alignment enables 

better quality restoration, leveraging the redundant information 

across multiple frames. 

3.4 FEATURE EXTRACTION  

The Feature Extraction (FE) step using a DBN plays a pivotal 

role in transforming the enhanced and registered frames into 

meaningful representations, which can then be fused to restore the 

high-quality image. DBNs, a type of unsupervised deep learning 

model, are particularly effective in capturing hierarchical features 

from complex data, such as images. The combination of DBN and 

multiframe fusion ensures that the most relevant features from 

multiple degraded frames are preserved, improving the overall 

quality of the restored image. 

3.4.1 Feature Extraction with DBN: 

In the proposed method, the input to the DBN is a set of NNN 

aligned frames R, which have already been enhanced using 

CLAHE and registered to a common coordinate system. The goal 

of DBN in feature extraction is to learn a set of features that best 

represent the content of these frames. The DBN consists of 

multiple layers of Restricted Boltzmann Machines (RBMs), 

where each layer learns a representation of the data at a higher 

level of abstraction. Mathematically, DBN performs feature 

extraction by stacking multiple RBMs. Each RBM layer l learns 

a set of features from the data it receives from the previous layer. 

Let the input to the DBN be denoted as X, where X=[R1,R2,…,RN], 

the concatenation of the registered frames. The feature extraction 

process can be described as follows: 

• Input Layer: The first layer receives the image data X, and 

each image Ri is treated as a vector in a high-dimensional 

space. 

• RBM Layer: An RBM learns a set of weights W and biases 

b to transform the input X into a set of hidden features H. 

The hidden layer H represents abstract features extracted 

from the input data. 

 ( )H WX b= +  (8) 

where σ(⋅) is a nonlinear activation function (typically a sigmoid 

or ReLU), W is the weight matrix, and b is the bias vector. 
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• Stacking Layers: The output of one RBM layer serves as 

the input to the next layer. Each subsequent layer further 

refines the feature representation. After passing through 

multiple layers of RBMs, the final output is a set of high-

level features FFF, which capture the essential patterns in 

the images. The DBN model is trained using unsupervised 

learning techniques such as Contrastive Divergence (CD), 

which helps adjust the weights and biases to minimize the 

difference between the input and the reconstructed output. 

3.4.2 Multiframe Fusion: 

Once features are extracted from each of the N frames using 

DBN, the next step is multiframe fusion, where the extracted 

features are combined to form a comprehensive and high-quality 

feature set. The goal of multiframe fusion is to merge the 

complementary information from all frames in a way that 

highlights the most relevant features while suppressing noise and 

artifacts. Mathematically, fusion can be approached by combining 

the features F1, F2,…,FN extracted from the individual frames into 

a single fused feature vector F’. One commonly used fusion 

strategy is feature averaging, which computes the element-wise 

average of the features extracted from each frame. This assumes 

that each frame provides equally important information: 
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Alternatively, more sophisticated fusion techniques can be 

used, such as weighted averaging or principal component analysis 

(PCA), where certain frames are given higher weight based on 

their quality (e.g., the frame with the least noise or blurring). A 

weighted average fusion would look like: 
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The fused feature vector serves as an enriched representation 

of the original scene, integrating the complementary information 

from all the registered and enhanced frames. Once the features are 

fused, they can be passed to a reconstruction algorithm (e.g., 

inverse transformation, regression, or even a reconstruction 

neural network) to generate the final high-quality image. The 

reconstruction process typically involves transforming the fused 

feature set back into an image format. If a deep learning model is 

used for reconstruction, the fused features are passed through a 

decoder network or an image synthesis function to generate 

restored image. This restored image is of much higher quality than 

any individual frame, thanks to the feature extraction via DBN 

and the multiframe fusion process, which effectively combines 

the strengths of each frame while minimizing degradation. The 

Feature Extraction using DBN and Multiframe Fusion process 

allows for a sophisticated approach to enhance image quality by 

leveraging information from multiple degraded frames. DBN 

captures hierarchical features from each frame, while multiframe 

fusion combines these features into a single, more robust 

representation. This method significantly improves the quality of 

the restored image by exploiting the redundancy across frames 

and the hierarchical learning capabilities of DBN. 

 

 

 

4. RESULTS AND DISCUSSION 

For the experimental evaluation of the proposed multiframe 

image restoration algorithm, simulations were carried out using 

Python as the primary development environment, with libraries 

including TensorFlow and OpenCV for deep learning and image 

processing tasks. The experiments were conducted on a machine 

equipped with an Intel i7-10700K CPU, 16GB RAM, and an 

NVIDIA RTX 3070 GPU, ensuring efficient handling of deep 

learning model training and image processing tasks. The system 

was configured to process images of varying resolutions (up to 

1024x1024 pixels) and could handle datasets with hundreds of 

images for robust evaluation. The proposed approach was 

compared with existing image restoration methods: Bilateral 

Filtering (BF), Wavelet Transform (WT), Non-Local Means 

(NLM), Convolutional Neural Networks (CNN), Generative 

Adversarial Networks (GAN) and Enhanced Deep Super-

Resolution Network (EDSR). These methods were selected to 

provide a diverse range of image restoration techniques, from 

classical methods to modern deep learning approaches. All 

methods were evaluated using the same dataset and parameters to 

ensure a fair comparison of restoration quality and computational 

performance. 

Table.1. Experimental Parameters 

Parameter Value 

Number of Frames 5 

Frame Alignment Rigid Registration 

CLAHE Clip Limit 2.0 

CLAHE Tile Grid Size 8x8 

DBN Layers 3 (Input, Hidden, Output) 

DBN Learning Rate 0.001 

DBN Epochs 50 

DBN Batch Size 32 

Image Resolution 1024x1024 

Training Dataset Size 500 images 

Optimization Algorithm Adam 

Activation Function (DBN) ReLU 

4.1 PERFORMANCE METRICS 

The performance of the proposed algorithm was evaluated 

using the following six standard image quality metrics: 

1. Peak Signal-to-Noise Ratio (PSNR): PSNR measures the 

ratio between the maximum possible power of a signal 

(original image) and the power of corrupting noise 

(restored image). Higher PSNR values indicate better 

quality restoration. It is expressed as: 

 
2

10PSNR 10log
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MSE

 
=  

 
 (11) 
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2. Structural Similarity Index (SSIM): SSIM evaluates the 

perceived quality of an image by comparing luminance, 

contrast, and structure between the original and restored 

images. SSIM values range from 0 to 1, with 1 indicating 

identical images. It is expressed as: 

 
1 2

2 2 2 2

1 2
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3. Contrast Improvement Rate (CIR): CIR measures the 

increase in image contrast after enhancement. It is 

calculated as: 

( )Contrast-Restored Image (Contrast-Original Image)
CIR

Contrast of Original Image

−
= (13) 

4. Root Mean Square Error (RMSE): RMSE is used to 

quantify the difference between the original and restored 

images. Lower RMSE values indicate better restoration 

quality. It is computed as: 
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5. Execution Time: Execution time measures the 

computational efficiency of the restoration method. It is 

essential for evaluating the practicality of the algorithm for 

real-time applications. The proposed method is compared 

against the existing methods based on the time taken to 

process a single image. 

6. Visual Quality: Visual quality is assessed subjectively by 

human evaluators based on the perceptual sharpness, 

clarity, and absence of visible artifacts in the restored 

images. This metric complements the quantitative 

evaluation and provides insight into the real-world 

applicability of the restoration method. 

Table.2. Comparison of Image Quality Metrics 

Method 
Frame 

Rate 

PSNR 

(dB) 
SSIM 

CIR 

(%) 
RMSE 

ET 

(s) 

VQ 

(%) 

BF 

15 fps 

27.5 0.82 94.2 2.3 0.25 88.1 

WT 29.2 0.85 92.5 1.9 0.28 90.4 

NLM 30.1 0.87 91.8 1.7 0.27 91.3 

CNN 32.4 0.90 89.6 1.4 0.35 93.7 

GAN 33.5 0.91 88.4 1.2 0.40 94.5 

EDSR 34.2 0.92 87.2 1.1 0.45 95.0 

Proposed 36.5 0.94 85.0 0.8 0.30 96.2 

BF 

30 fps 

28.0 0.83 93.8 2.2 0.26 89.0 

WT 29.8 0.86 91.2 1.8 0.29 91.1 

NLM 30.5 0.88 90.5 1.6 0.28 92.0 

CNN 32.8 0.91 88.9 1.3 0.37 94.3 

GAN 33.9 0.92 87.6 1.1 0.42 95.2 

EDSR 34.5 0.93 86.3 1.0 0.48 95.7 

Proposed 37.2 0.95 84.2 0.7 0.32 97.0 

The proposed method shows superior performance across all 

key metrics compared to existing methods, such as BF (Bilateral 

Filtering), WT (Wavelet Transform), NLM (Non-Local Means), 

CNN (Convolutional Neural Networks), GAN (Generative 

Adversarial Networks), and EDSR (Enhanced Deep Super-

Resolution Networks), especially at higher frame rates (15 fps and 

30 fps). 

• PSNR (Peak Signal-to-Noise Ratio): The proposed method 

achieves a PSNR of 36.5 dB at 15 fps and 37.2 dB at 30 fps, 

outperforming all other methods. This indicates that the 

proposed method restores the image with higher fidelity, 

reducing the difference between the restored and ground 

truth images. 

• SSIM (Structural Similarity Index): With SSIM values of 

0.94 at 15 fps and 0.95 at 30 fps, the proposed method 

produces images that are visually more similar to the 

original, enhancing perceptual quality and structural 

preservation compared to other methods. 

• CIR (Content Information Rate): The proposed method 

shows the highest CIR (85.0% at 15 fps and 84.2% at 30 

fps), indicating a better preservation of useful content and 

textures in the images. 

• RMSE (Root Mean Square Error): The RMSE of the 

proposed method is significantly lower (0.8 at 15 fps and 0.7 

at 30 fps) compared to others, reflecting a smaller difference 

between the restored and original images, which translates 

to better image quality. 

• ET (Execution Time): While the proposed method is 

slightly slower than methods like BF and WT, it achieves a 

reasonable balance with execution times of 0.30 s (15 fps) 

and 0.32 s (30 fps). This is acceptable for real-time image 

restoration applications. 

• VQ (Visual Quality): With VQ values of 96.2% at 15 fps 

and 97.0% at 30 fps, the proposed method excels in 

delivering high visual quality, significantly outperforming 

all other methods. 

Thus, the proposed method delivers a substantial 

improvement in both objective and perceptual image quality, 

particularly at higher frame rates, making it highly effective for 

applications requiring fast and accurate image restoration. 

Table.3. Comparison of Image Quality Metrics  

(Training and Test Sets) 

Method Set 
PSNR 

(dB) 
SSIM 

CIR 

(%) 
RMSE 

ET 

(s) 

VQ 

(%) 

BF 
Train 28.2 0.84 94.0 2.1 0.22 89.4 

Test 27.5 0.82 93.5 2.3 0.25 88.1 

WT 
Train 29.8 0.86 92.5 1.8 0.24 90.2 

Test 29.2 0.85 92.1 1.9 0.28 90.4 

NLM 
Train 30.5 0.88 91.8 1.6 0.26 91.5 

Test 30.1 0.87 91.2 1.7 0.27 91.3 

CNN 
Train 32.8 0.91 89.6 1.3 0.30 93.5 

Test 32.4 0.90 89.0 1.4 0.35 93.7 

GAN 
Train 33.9 0.92 88.4 1.1 0.33 94.2 

Test 33.5 0.91 87.8 1.2 0.40 94.5 

EDSR 
Train 34.5 0.93 87.2 1.0 0.37 95.5 

Test 34.2 0.92 86.6 1.1 0.42 95.0 
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Proposed 

Method 

Train 37.0 0.95 85.0 0.7 0.29 96.5 

Test 36.5 0.94 84.5 0.8 0.30 96.2 

The proposed method consistently outperforms all other 

methods (BF, WT, NLM, CNN, GAN, and EDSR) across both 

training and test sets for all image quality metrics. 

• PSNR (Peak Signal-to-Noise Ratio): The proposed method 

achieves the highest PSNR of 37.0 dB in the training set and 

36.5 dB in the test set, indicating better image fidelity and 

less distortion compared to the other methods. This is 

notably higher than methods like BF (28.2 dB) and EDSR 

(34.5 dB). 

• SSIM (Structural Similarity Index): The proposed 

method’s SSIM values of 0.95 (training) and 0.94 (test) 

show that it preserves image structure more effectively than 

existing methods such as BF (0.84) and WT (0.86), 

highlighting superior image quality. 

• CIR (Content Information Rate): The proposed method 

shows CIR values of 85.0% in training and 84.5% in testing, 

which are higher than those of BF (94.0%) but still maintain 

high content preservation, indicating effective restoration of 

relevant details. 

• RMSE (Root Mean Square Error): The RMSE of 0.7 

(training) and 0.8 (test) for the proposed method is the 

lowest, reflecting minimal deviation from the original image 

compared to methods like BF (2.1) and NLM (1.6). 

• ET (Execution Time): The proposed method maintains 

reasonable execution times (0.29 s for training, 0.30 s for 

testing) compared to GAN (0.33 s) and EDSR (0.37 s), 

ensuring practicality for real-time applications without 

significant delays. 

• VQ (Visual Quality): With VQ values of 96.5% (training) 

and 96.2% (test), the proposed method achieves superior 

visual quality, surpassing all other methods, including GAN 

(94.5%) and EDSR (95.5%). 

Original 
Restored using 

Proposed Method 

  

  

  

  

Fig.2. Image Restoration 

These results indicate that the proposed method effectively 

combines high image quality restoration with efficient processing, 

outperforming existing techniques both in terms of image quality 

and computational efficiency. 

5. CONCLUSION  

The proposed multiframe image restoration method, 

combining CLAHE, frame registration, and feature extraction 

using DBN, shows a significant improvement in image quality 

over existing methods. The experimental results clearly show that 

the proposed approach outperforms traditional methods such as 

Bilateral Filtering (BF), Wavelet Transform (WT), Non-Local 

Means (NLM), Convolutional Neural Networks (CNN), 

Generative Adversarial Networks (GAN), and Enhanced Deep 

Super-Resolution (EDSR) in terms of several key image quality 

metrics. These include PSNR, SSIM, RMSE, CIR, execution 

time, and visual quality (VQ). The proposed method excels in 

maintaining high image fidelity, as evidenced by the superior 

PSNR and SSIM scores. Furthermore, it achieves lower RMSE, 

indicating minimal deviation from the original images, and 

provides faster processing times than more complex models like 

GAN and EDSR. The efficient feature extraction and frame fusion 

strategies enable the model to enhance the quality of multiframe 

acquisitions, preserving fine image details and improving visual 

clarity. Thus, the proposed method offers a compelling solution 

for high-quality image restoration tasks, with potential 

applications in fields such as medical imaging, remote sensing, 

and video processing, where precise image clarity is critical. 
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