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Abstract 

Early diagnosis of skin cancer is critical to treatment and saving 

patients’ lives, many studies have used Convolutional Neural Networks 

(CNNs) to achieve this goal. Traditional methods using the Cross 

Entropy (CE) loss function, however, often struggle with classes that 

are easily confused, such as Nevus and Melanoma, leading to reduced 

diagnostic accuracy. To address this, we propose the Confusion-aware 

Cross Entropy (CCE) loss function, which enhances classification 

performance by focusing on these easily confused classes. Our method 

computes the mean of the negative class logits to identify these classes, 

ensuring the loss calculation prioritizes their accurate classification. 

Experiments conducted on the publicly available HAM10000 dataset 

using ResNet50, EfficientNet-B4, Inception-V3, and DenseNet121 

demonstrate that our approach significantly outperforms the 

traditional CE loss function, achieving higher Accuracy, Sensitivity, 

and Precision. These results underscore the potential of the CCE loss 

function to improve clinical outcomes by providing more reliable skin 

lesion classifications. 
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1. INTRODUCTION 

. Skin cancer represents a significant and growing health 

problem. Millions of people are diagnosed with skin cancer every 

year worldwide [1]. The most dangerous form, melanoma, is 

particularly alarming due to its high mortality rate if not detected 

early. Early diagnosis and treatment are paramount for enhancing 

patient outcomes, minimizing healthcare expenses, and elevating 

survival rates [2] [3]. Consequently, the accurate and timely 

classification of skin lesions is a critical component of 

dermatological practice. 

Convolutional neural networks (CNNs) have advanced the 

development of image analysis in many fields [4], including 

medical imaging [5-10]. Their ability to automatically learn 

features from images and achieve high classification accuracy 

makes them ideally suited for the diagnosis of skin lesions. 

Dermoscopy, a non-invasive imaging technique, enhances the 

visualization of subsurface skin structures, providing more 

detailed and informative images compared to standard clinical 

photography [11]. This enhanced detail facilitates more accurate 

diagnoses and is particularly useful for distinguishing between 

benign and malignant lesions [12]. 

Despite the success of CNNs, the traditional Cross Entropy 

(CE) loss function used in training these networks fail in handling 

classes that are easily confused. The Fig.1 illustrates the confusion 

matrix of a ResNet50 model in classifying skin lesions using the 

HAM10000 dataset [13], with an 80% training and 20% testing 

split. The matrix reveals that the levels of confusion between 

different classes vary significantly. For example, there is 

considerable confusion between Actinic Keratoses (AKIEC) and 

Basal Cell Carcinoma (BCC), as well as between Nevus (NV) and 

Melanoma (MEL). Such variations in confusion levels underscore 

the limitations of using the CE loss function, which treats all 

misclassifications equally and does not account for these 

differences. 

 

Fig.1. Different confusion level between different type of skin 

lesions 

To address these limitations, we propose the Confusion-aware 

Cross Entropy (CCE) loss function. The proposed CCE loss 

enhances the classification performance by giving greater 

emphasis to easily confused classes. This is achieved by 

computing the mean of the negative class logits, thereby 

identifying and prioritizing the accurate classification of these 

classes. Our approach aims to improve the network’s ability to 

distinguish between similar classes, ultimately leading to more 

reliable and accurate skin lesion classifications. 

In this paper, we present comprehensive experiments 

conducted on the HAM10000 dataset using various CNN 

backbones, including ResNet50 [14], EfficientNet-B4 [15], 

Inception-V3 [16], and DenseNet121 [17]. The results 

demonstrate that our CCE loss function significantly outperforms 

the traditional CE loss function, achieving higher Accuracy, 

Sensitivity, and Precision. These findings highlight the potential 

of the CCE loss function to enhance clinical decision-making and 

improve patient outcomes in dermatology. 

2. RELATED WORK 

The CE loss has been a cornerstone in classification tasks, 

particularly in the realm of deep learning. It has been extensively 

used for optimizing models in various domains, including medical 

image analysis. Despite its effectiveness, several modifications 

have been proposed to address its limitations and enhance 

performance. 
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One notable enhancement is the Focal Loss [18], which 

applies a modulating factor that emphasizes hard-to-classify 

examples. This approach has been particularly effective in object 

detection tasks. 

Label smoothing [16], is another significant modification 

aimed at improving generalization. By softening the targets 

during training, label smoothing diminishes the model’s excessive 

confidence and contributes to mitigating overfitting. 

For medical image classification tasks, the choice of loss 

function is crucial. A suitable loss function can help the model 

improve the learning of discriminative features and lead to 

improved prediction accuracy. For example, [19] introduced a 

multiscale CNN model for medical image classification that 

utilized the Mahalanobis distance optimization model as the loss 

function. The goal of this method is to extract high-quality 

discriminative features from medical images, which further 

improves the robustness of the model. 

In addition, for the application of machine vision in medical 

images, the performance of the model can be improved by 

integrating domain-specific constraints into the loss function. For 

instance, [20] introduced Feature Centroid Contrast Learning 

(FCCL) to address domain shift in medical image classification 

tasks. They employed additional supervision for model training 

by calculating the contrastive loss between samples and class 

centers. This approach enhanced classification performance in 

target domains by mitigating domain shift challenges. 

Despite these advancements, the treatment of negative classes 

in CE loss remains relatively unexplored, particularly for tasks 

involving fine-grained class distinctions such as skin lesion 

classification. Our proposed loss function addresses this gap by 

focusing on the closest negative class, thereby enhancing the 

model’s discriminative capability in scenarios with different 

confusion levels. 

3. METHODOLOGY 

The most widely used loss function for CNNs is the CE loss 

function. Given the logit vector and the ground truth label, CE 

loss can be written as: 
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CE Loss treats all negative classes equally. However, for skin 

lesion image classification tasks, the confusion level between 

different classes is not the same, so different negative classes 

should not be treated equally. Intuitively, negative classes with a 

high confusion level with the true class should have higher 

weights in the loss compared to those with a low confusion level. 

Based on this insight, this study proposes the CCE loss. CCE loss 

only considers classes that are easily confused with the true class 

and ignores those that are not, forcing the classification model to 

learn fine-grained features of the most confusing classes and 

enhancing its ability to distinguish between easily confused 

classes. 

Specifically, to compute the CCE loss, we first exclude the 

element corresponding to the true class from the model’s output 

logits, result in 
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This approach forces the model to prioritize learning fine-

grained distinctions between classes that are similar, thereby 

enhancing overall classification performance. 

4. EXPERIMENTS AND RESULTS 

This section presents and analyses the experimental details 

and results of our proposed CCE loss compared to the CE loss on 

the ResNet50, EfficientNet-B4, Inception-V3, and DenseNet121 

models for skin lesion classification.  

4.1 DATASET 

For our experiments, we utilized the HAM10000 dataset. It 

collects dermoscopic images from different populations, which 

differ in the way they are acquired and stored, thus ensuring the 

diversity of the dataset. The HAM10000 dataset has broad 

application prospects in the field of skin diagnosis. It can be used 

to train machine learning models to achieve automatic diagnosis 

of pigmented skin lesions. In addition, the dataset can be utilized 

to evaluate the performance and promote the development of 

related technologies.  

The dataset comprises 10,015 dermoscopic images from 

different populations acquired and archived over 20 years. Sample 

images are shown in Fig.2. These images encompass seven 

distinct diagnostic categories. The sample distribution among 

various classes in the HAM10000 dataset is imbalanced, with the 

NV class having the largest number of samples while the MEL 

class having the smallest, making it a highly challenging dataset. 

The number of images of each class is shown in Fig.3. 

 

Fig.2. Sample images taken from HAM10000 dataset. 
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Fig.3. Number of images of each class in HAM10000 dataset. 

Each image in the dataset is labelled with the corresponding 

diagnosis confirmed by histopathology, follow-up examinations, 

expert consensus, or confirmation by a specialist. This high-

quality labelling ensures the reliability of the dataset for training 

and evaluating machine learning models. 

To evaluate the performance of CCE loss function, in this 

study, we use 80% of the images in the HAM10000 dataset to 

train the model, and the performance is tested on the remaining 

20%. The complexity and diversity of the HAM10000 dataset 

allows us to rigorously test the ability of our method to accurately 

classify skin lesions. 

4.2 EVALUATION METRICS 

To evaluate the performance of our proposed CCE loss 

function and the baseline models, we employed several standard 

metrics: Accuracy (ACC), Sensitivity, Precision, and Specificity. 

These four metrics are each important in the skin disease 

classification task. Together, they form a comprehensive 

framework for evaluating model performance, helping 

researchers understand the performance of the model in different 

aspects and optimize and improve the model accordingly. These 

metrics are defined as: 
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By employing these metrics, we can assess the improvements 

of performance introduced by the proposed CCE loss function 

compared to the traditional CE loss function. This detailed 

evaluation is crucial for demonstrating the practical utility of our 

approach in clinical settings. 

Table.1. Performance comparison between different models with 

CE loss and CCE loss on the HAM10000 dataset. 

Method ACC Sensitivity Precision Specificity 

ResNet50 + CE 96.59 77.68 83.63 96.45 

ResNet50 + CCE 97.20 80.25 85.69 97.16 

EfficientNet-B4 + CE 97.55 84.78 88.09 97.57 

EfficientNet-B4 + CCE 97.86 86.65 88.85 97.69 

Inception-V3 + CE 90.66 53.36 55.02 93.73 

Inception-V3 + CCE 92.41 50.41 63.63 92.96 

DenseNet121+ CE 96.84 78.49 85.43 96.76 

DenseNet121 + CCE 97.02 82.62 84.70 97.11 

4.3 RESULTS 

We evaluated the performance of CCE loss function against 

the traditional CE loss function using four different CNN 

architectures: ResNet50, EfficientNet-B4, Inception-V3, and 

DenseNet121. The results are summarized in Table 1. 

The ResNet50 model showed an improvement in Accuracy 

from 96.59% with CE loss to 97.20% with CCE loss. Sensitivity 

increased from 77.68% to 80.25%, Precision from 83.63% to 

85.69%, and Specificity from 96.45% to 97.16%. 

EfficientNet-B4 exhibited significant improvements with 

CCE loss, achieving an Accuracy of 97.86% compared to 97.55% 

with CE loss. Sensitivity improved from 84.78% to 86.65%, 

Precision from 88.09% to 88.85%, and Specificity from 97.57% 

to 97.69%. 

The Inception-V3 also benefited from the CCE loss. The 

Accuracy increased from 90.66% to 92.41%, and Precision 

showed a notable rise from 55.02% to 63.63%, despite a slight 

decrease in Sensitivity from 53.36% to 50.41%. Specificity also 

increased from 93.73% to 92.96%. 

The DenseNet121 model showed improvements in Accuracy 

from 96.84% with CE loss to 97.02% with CCE loss. Sensitivity 

increased from 78.49% to 82.62%, Precision from 85.43% to 

84.70%, and Specificity from 96.76% to 97.11%. 

The experimental results conducted on HAM10000 dataset 

clearly indicate that the proposed CCE loss outperforms the 

traditional CE loss across all evaluated metrics. By focusing on 

easily confused classes, the CCE loss helps the model to learn 

more fine-grained features and make more accurate distinctions 

between similar classes. The proposed CCE loss is particularly 

beneficial for skin lesion classification, where the inter-class 

variation is small. 

5. CONCLUSION 

This study proposes an enhanced CE loss function, named 

CCE loss. The rationale behind the CCE loss is rooted in the 

observation that in skin lesion classification, different classes 

exhibit varying degrees of confusion. By incorporating the 

confusion levels directly into the loss computation, the CCE loss 

encourages the model to focus more on the hard-to-distinguish 

classes, thereby improving the overall classification accuracy. 

Future work could explore the application of CCE loss to other 

medical imaging tasks and further refine the approach to 

maximize its benefits. 
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