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Abstract 

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental 

condition characterized by a highly heterogeneous presentation, posing 

significant challenges for early diagnosis. The subtle differences 

between ASD and non-ASD individuals, especially during early 

developmental stages, make accurate classification difficult. However, 

early detection plays a crucial role in improving developmental 

outcomes through timely intervention, enabling affected children and 

families to access specialized therapies and support systems. This study 

explores the potential of using clinical data combined with deep 

learning techniques for automated ASD classification. We evaluated 

various deep learning models, including 3D CNN ResNet50, sequential 

CNN, 2D CNN combined with XGBoost, 2D CNN ResNet101, and 

Transformer-based architectures like the standard Transformer and 

Swin Transformer integrated with CNN. The incorporation of clinical 

parameters alongside neuroimaging features facilitated more nuanced 

pattern recognition associated with ASD. Conventional CNN models 

yielded moderate classification accuracy, ranging from 60% to 78%. 

Transformer-based models demonstrated superior performance, with 

Swin Transformer achieving the accuracy of 75%, highlighting their 

importance in capturing intricate patterns and relationships in the 

data. The Swin Transformer, or "Shifted Window Transformer," is a 

type of Vision Transformer (ViT) architecture designed for computer 

vision tasks. It introduces a hierarchical structure with multi-scale 

feature representation, making it more efficient for image recognition 

tasks compared to traditional ViTs. The results show that hybrid 

models, specifically the Hybrid CNN+Swin Transformer, outperform 

both traditional CNN architectures and pure transformer-based 

methods, achieving the maximum classification accuracy at 80%. This 

implies that a more thorough method of identifying ASD-related 

patterns in brain imaging data can be achieved by fusing the global 

contextual understanding of the Swin Transformer with CNN's spatial 

feature extraction capabilities. These findings underscore the potential 

of using Transformer-based architectures in ASD classification, 

leveraging clinical data to improve precision in early detection. This 

research provides a foundation for future investigations into hybrid 

approaches that integrate multiple data sources, advancing automated 

diagnostic systems for neurodevelopmental disorders. 
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1. INTRODUCTION 

Autism Spectrum Disorder (ASD) is a neurodevelopmental 

condition characterized by a range of symptoms, including social 

communication deficits and repetitive behaviours. Early and 

accurate diagnosis is crucial for timely intervention, yet 

traditional diagnostic approaches based on behavioural 

assessments can be subjective and may not always capture the 

disorder's heterogeneity. With advancements in neuroimaging 

techniques such as anatomical Magnetic Resonance Imaging 

(aMRI) and machine learning, there is potential to enhance the 

objectivity and accuracy of ASD diagnosis. ASD typically 

manifests early in life, with challenges in social interaction, 

communication, and adaptive behaviors, often accompanied by 

repetitive or restrictive activities. Early identification and 

intervention are pivotal, as they can significantly influence 

developmental trajectories and improve quality of life. However, 

traditional diagnostic methods, relying primarily on behavioral 

observations and caregiver-reported histories, are inherently 

subjective and may overlook subtle neurological underpinnings. 

Advancements in neuroimaging have opened new pathways for 

understanding the structural and functional abnormalities 

associated with ASD. Techniques like anatomical Magnetic 

Resonance Imaging (aMRI) provide non-invasive means to 

capture high-resolution brain data, offering insights into potential 

biomarkers of the disorder. When combined with machine 

learning (ML), these datasets enable the exploration of intricate 

patterns that are challenging to discern through conventional 

analysis. 

This research explores the integration of neuroimaging data 

and clinical assessments using deep learning models to classify 

ASD. We utilize 2D slices extracted from aMRI scans, combined 

with clinical data such as ADI-R and ADOS scores, to train 

machine learning models capable of discerning ASD-related 

patterns in brain structure. Our approach evaluates multiple model 

architectures, including convolutional neural networks (CNNs) 

and advanced transformer-based networks. 

The methods tested in this study cover a range of deep learning 

techniques, including 3D CNN, ResNet50, Normal CNN 

(Sequential), 2D CNN combined with XGBoost, 2D CNN 

ResNet101, Transformer-based models, and the Swin 

Transformer. Each model leverages different aspects of 

neuroimaging data to enhance diagnostic accuracy. Performance 

evaluation across these models shows varying levels of 

classification accuracy, with results demonstrating 62% accuracy 

for the 3D CNN, 69% for ResNet50, 78% for the Normal CNN, 

60% for 2D CNN + XGBoost, 60% for 2D CNN ResNet101, 70% 

for the Transformer, and 75% for the Swin Transformer. The 

findings show that hybrid models, particularly the Hybrid 

CNN+Swin Transformer, obtain the maximum classification 

accuracy of 80%, outperforming both traditional CNN 

architectures and pure transformer-based techniques. This shows 

that integrating CNN’s spatial feature extraction capabilities with 

the Swin Transformer’s global contextual awareness provides a 

more complete method for detecting ASD-related abnormalities 

in brain imaging data. 

The proposed approach aims to capitalize on the unique 

strengths of the Swin Transformer, which uses a hierarchical 
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design and shifted window self-attention mechanism to capture 

both local and global information within aMRI images. This 

architecture, in conjunction with clinical data integration, 

provides a promising avenue for improving ASD classification 

accuracy compared to conventional deep learning models. By 

combining advanced neural network architectures with clinical 

data, this study seeks to push the boundaries of automated ASD 

diagnosis, ultimately contributing to more accurate and accessible 

tools for clinicians. 

2. LITERATURE REVIEW 

Alharthi, A, and Alzahrani, S.M. [1] explores the use of 

structural (sMRI) and functional MRI (fMRI) for diagnosing 

ASD, employing both 3D-CNN and vision transformers such as 

ConvNeXt, MobileNet, Swin, and ViT. The study involves 

generating 2D slices from 3D MRI scans across various brain 

planes (axial, coronal, and sagittal) and evaluates classification 

performance using the ABIDE dataset. Their findings indicate 

that multi-slice generation combined with advanced models leads 

to state-of-the-art accuracy, particularly when using 50-middle 

slices from fMRI data. 

Honghao Cui et al. [2] describes a new approach combining 

CNN and transformer architectures to enhance glioma grading. 

The model, ResMT, integrates a spatial residual module (SRM) 

using 3D CNN and a Swin UNETR pre-trained segmentation 

model for improved tumor region analysis. The framework 

employs a multi-plane channel and spatial attention module 

(MCSA) for feature refinement across multiple planes. ResMT 

achieved an AUC of 0.9953 on the BraTs19 dataset, 

outperforming baseline models. 

Zhentao Hu et al. [3] provide a solid reference for leveraging 

hybrid models in medical image analysis. This study emphasizes 

how the combination of convolutional neural networks (CNNs) 

and Transformers, especially with a shift window attention 

mechanism, improves feature extraction from MRI data. By 

addressing the challenge of local feature fusion in 3D medical 

images, Conv-Swinformer enhances the capture of fine-grained, 

lesion-specific features. It highlights the model’s superior 

performance in capturing local details by focusing attention on 

small spatial areas, and layer-by-layer enlargement of the 

attention window improves semantic connection, offering better 

classification results for Alzheimer’s disease. This paper could 

serve as a relevant for my own work on ASD diagnosis, where 

both CNNs and attention mechanisms might help in accurately 

identifying key patterns in MRI data. 

Varun Ganjigunte Prakash et al. [4] proposed a novel method 

for human action recognition (HAR) in untrimmed videos, aimed 

at assessing autism spectrum disorder (ASD) in children. Their 

approach addressed the limitations of previous HAR models, such 

as performance degradation due to imprecise temporal region 

proposals and limited adaptability in clinical applications. The 

proposed behavior action recognition (BAR) pipeline 

incorporated child detection, temporal action localization, and 

identification of actions of interest. The model, trained on data 

from 400 children with ASD and 125 with other developmental 

delays (ODD), achieved diagnostic accuracies of 79.7% for ASD, 

77.2% for ODD, and 80.8% for neurotypical children. 

Additionally, its performance on the Self-Stimulatory Behavior 

Dataset (SSBD) showed a top-1 accuracy of 78.57%, significantly 

higher than previous benchmarks for combined action recognition 

and localization. 

Manu Gaur et al. [5] addressed key challenges in autism 

spectrum disorder (ASD) classification using deep learning 

models, focusing on scalability issues and poor out-of-distribution 

(OOD) performance in medical imaging scenarios. They 

highlighted that existing methods rely heavily on supervised 

learning, which demands large, annotated datasets that are costly 

to obtain, especially in neuroimaging. Furthermore, the 

performance of deep learning models often degrades in clinical 

settings due to the domain mismatch. To overcome these 

challenges, the authors proposed a self-supervised pretraining 

approach on in-domain data to enhance generalization and 

representation learning. They introduced an ensemble-based 

framework inspired by meta-embeddings in natural language 

processing, which integrates different self-supervised 

representations for vision tasks. By applying a 2D Discrete 

Fourier Transform, the framework captures global interactions 

among fused features, resulting in improved performance and 

robustness in medical imaging tasks with limited annotated data. 

Fatima Zahra Benabdallah et al. [6] proposed a novel approach 

for enhancing the detection of autism spectrum disorder (ASD) 

using convolutional neural networks (CNN). The authors 

addressed challenges in achieving early and accurate ASD 

diagnosis by incorporating the theories of under- and over-

connectivity deficits observed in the autistic brain. Their 

framework enhances connections related to these connectivity 

alterations in image-like connectivity matrices to aid in early 

diagnosis. Utilizing the multi-site Autism Brain Imaging Data 

Exchange (ABIDE I) dataset, the approach achieved a high 

prediction accuracy of up to 96%, indicating its potential for 

advancing ASD detection methods. 

Deba Kanta Gogoi et al. [7] presented a deep learning 

approach to classify autism spectrum disorder (ASD) using MRI 

images. Their study focused on identifying structural and 

functional differences in the brain associated with ASD, which 

affect various aspects such as information processing and social 

cue interpretation. The research utilized a customized VGG16 

architecture, along with other models like InceptionV3, 

ResNet50, DenseNet121, and MobileNet, to analyze brain MRI 

data from the publicly available ABIDE I dataset. After clustering 

the unlabeled data, the performance of the five deep learning 

models was compared. The findings demonstrated promising 

results in ASD classification, showing the potential of deep 

learning methods for analyzing brain MRI in the context of ASD. 

Asrar G. Alharthi and Salha M. Alzahrani [8] conducted a 

comprehensive review of brain and vision transformers for autism 

spectrum disorder (ASD) diagnosis and classification. The paper 

discusses the challenges in identifying the causes and biomarkers 

of ASD, emphasizing the role of artificial intelligence in 

improving diagnostic capabilities. The authors review various 

MRI modalities and deep learning approaches, including 

convolutional neural networks (CNNs), autoencoders, graph 

convolutions, and attention networks, for ASD diagnosis. The 

review highlights the effectiveness of computer vision 

transformers, which often integrate CNN architectures and 

transfer learning techniques to enhance image classification 

performance. The paper also explores recent brain transformer 
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models, such as METAFormer, Com-BrainTF, Brain Network, 

and others, discussing their potential for ASD detection using 

transfer learning on MRI datasets. Additionally, the review 

suggests that specialized transformer-based models, inspired by 

natural language processing (NLP), could offer promising new 

directions for classifying ASD-related brain biomarkers by 

leveraging attention mechanisms and treating MRI data as 

sequence prediction tasks fine-tuned for brain disorder 

classification. 

Xin Deng et al. [9] proposed a deep learning framework called 

spatial–temporal Transformer (ST-Transformer) to improve the 

classification of autism spectrum disorder (ASD) using time-

series functional magnetic resonance imaging (fMRI) data. With 

the growing prevalence of ASD, there is a need for more objective 

and efficient diagnostic methods beyond traditional symptom-

based clinical observation. The ST-Transformer employs a linear 

spatial–temporal multi-headed attention unit to capture the spatial 

and temporal patterns in fMRI data and incorporates a Gaussian 

GAN-based data balancing technique to address imbalances in 

real-world ASD datasets. The model was evaluated on two 

independent datasets (ABIDE I and ABIDE II), achieving 

accuracies of 71.0% and 70.6%, respectively, demonstrating 

competitive performance compared to existing state-of-the-art 

methods for ASD diagnosis. 

Zhengning Wang et al. [10] introduced a self-attention deep 

learning framework for detecting autism spectrum disorder 

(ASD) and identifying structural biomarkers using morphological 

covariance brain networks. The study utilized structural MR 

images from the ABIDE consortium to classify ASD patients 

versus normal controls. The proposed framework leverages a 

transformer model to extract local and global features from 

individual structural covariance networks, enhancing the 

coordination patterns between brain regions compared to 

traditional CNN-based models. The self-attention coefficients 

map facilitated the identification of potential diagnostic 

biomarkers, primarily located in the prefrontal cortex, temporal 

cortex, and cerebellum. The method achieved a classification 

accuracy of 72.5% across various sites, outperforming many 

existing approaches. This research demonstrates the potential of 

self-attention deep learning frameworks in diagnosing ASD and 

establishing early biomarkers. 

3. MATERIALS AND METHODS 

3.1 DATA DESCRIPTION 

The dataset for this study is sourced from the Autism Brain 

Imaging Data Exchange (ABIDE) repository, which contains 

neuroimaging data from individuals with autism spectrum 

disorder (ASD) and neurotypical controls. The ABIDE I dataset 

includes anatomical magnetic resonance imaging (aMRI) data, 

with T1-weighted structural MRI scans from 861 individuals 

diagnosed with ASD and 861 neurotypical controls across 17 

international sites, covering a broad developmental age range 

from 7 to 35 years, thus enhancing the generalizability of the 

model. MRI scans were obtained using 3T MRI scanners with a 

voxel resolution of approximately 1 mm³, producing high-

resolution structural images. Preprocessing steps included skull-

stripping, bias field correction for intensity non-uniformity, and 

spatial normalization to the MNI152 template for consistent 

orientation [11]). The 3D aMRI data were then converted into 2D 

slices for CNN input, selecting the middle slice along the z-axis 

to capture key anatomical structures, resized to 64x64 pixels to 

ensure uniformity. Both neuroimaging and clinical data, such as 

age, gender, and cognitive scores, were incorporated into the deep 

learning models to enhance classification accuracy. The clinical 

data file contains autism diagnostic scores, including ADI-R 

scores for social interaction, communication, and restricted 

behaviors, as well as ADOS scores for communication, social 

interaction, and stereotyped behaviors. Various models were used 

for classification, including a 3D CNN for spatial feature 

extraction, ResNet50, normal sequential CNN, 2D CNN with 

XGBoost, 2D CNN ResNet101, and Transformer-based models 

such as the Swin Transformer, aiming to improve ASD 

classification by integrating neuroimaging features with clinical 

data [12]). 

3.2 MACHINE LEARNING AND DEEP LEARNING 

METHODS PROPOSED FOR ASD DETECTION 

3.2.1 3D CNN -Resnet50Architecture for ASD Diagnosis: 

• Dataset Preparation:  

The dataset consists of T1-weighted structural MRI scans 

from the ABIDE repository, separated into ASD and non-ASD 

groups for both training and testing sets. Along with 

neuroimaging data, clinical data such as age, gender, and 

cognitive assessment scores were also included to improve model 

performance. The MRI scans were processed by extracting the 

middle slice of each 3D volume along the z-axis and resizing it to 

224x224 pixels. These slices were converted from grayscale to 

RGB format to match the input requirements of ResNet50. 

• Preprocessing: 

In addition to image preprocessing (resizing, grayscale-to-

RGB conversion, and normalization), the clinical data, containing 

variables such as ADOS and ADI-R scores, was normalized and 

formatted for model integration. This clinical information 

includes scores related to social interaction, communication 

abilities, restricted and repetitive behaviors, and cognitive 

function, which are crucial diagnostic indicators for ASD. The 

data preprocessing pipeline was designed to shuffle and combine 

both the imaging and clinical data to create a balanced dataset for 

training and testing [13]). 

• Model Architecture: 

A pre-trained ResNet50 model, designed to learn complex 

features from images, was employed for neuroimaging data. The 

model’s weights were frozen to retain pre-learned features, and 

additional layers were added to fine-tune the classification task 

for ASD diagnosis. In parallel, the clinical data (including age, 

gender, ADOS, and ADI-R scores) was integrated into the model 

by concatenating it with the features extracted from the MRI 

images. This approach allowed the model to consider both 

anatomical features from the brain and important clinical factors 

when making its predictions. The classification head consisted of 

GlobalAveragePooling2D and Dense layers to combine both data 

types, concluding with a sigmoid-activated output layer for binary 

classification (ASD or non-ASD). 
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• Training Process: 

The combined model, incorporating both neuroimaging and 

clinical data, was trained using binary cross-entropy as the loss 

function, the Adam optimizer, and accuracy as the primary metric. 

The model was trained for 10 epochs on the dataset, with a split 

for training and validation. By including clinical data in the 

training process, the model aimed to improve its ability to 

distinguish between ASD and non-ASD subjects. 

• Evaluation: 

The model’s performance was evaluated on a separate test set 

consisting of MRI slices and corresponding clinical data. This 

evaluation demonstrated the model’s ability to generalize to 

unseen data, highlighting the role of clinical variables in 

enhancing the classification accuracy. The test set accuracy and 

loss were recorded, providing a measure of the model’s 

effectiveness in ASD detection. 

• Prediction on New Data: 

The model was further evaluated using unseen MRI images 

and clinical data for individual predictions. A new MRI image 

was loaded and preprocessed (including the same middle slice 

extraction and resizing). The corresponding clinical data, 

including age and ADOS/ADI-R scores, was also input into the 

model. The combined neuroimaging and clinical data provided a 

robust input for the model, resulting in a final prediction based on 

both anatomical and clinical information. The prediction value 

was recorded, offering insight into the model’s confidence in its 

ASD or non-ASD classification [14]. 

3.2.2 3D Normal CNN -Sequential Architecture for ASD 

Diagnosis: 

• Dataset Preparation: 

The dataset comprises 3D structural MRI scans along with 

clinical data, including variables such as age, gender, and 

cognitive assessment scores, sourced from relevant directories. 

The MRI scans were separated into ASD and non-ASD groups for 

both training and testing. The images were preprocessed by 

extracting and resizing each 3D volume to a uniform size of 

64x64x64 pixels. Additionally, the clinical data was formatted to 

ensure compatibility with the neuroimaging data, facilitating a 

comprehensive analysis that integrates both data types for 

improved model performance. 

• Preprocessing: 

Preprocessing involved several key steps for both MRI images 

and clinical data. The MRI images were loaded, resized, and 

normalized to ensure pixel intensity values ranged between 0 and 

1. Each image was expanded to include a channel dimension, 

preparing them for input into the 3D CNN model. For the clinical 

data, normalization was performed on the age, gender, and 

cognitive scores to maintain a consistent scale. This clinical 

information, which includes essential indicators for ASD 

diagnosis, was then combined with the imaging data to create a 

balanced dataset that reflects both anatomical features and 

relevant clinical factors [15]. 

• Model Architecture: 

The model architecture utilized a 3D Convolutional Neural 

Network (CNN) designed to learn spatial features from the MRI 

volumes. A Sequential model was built using the following 

layers: 

• Conv3D Layer: The first layer consists of 32 filters with a 

kernel size of (3, 3, 3) and uses ReLU activation to capture 

local features. 

• MaxPooling3D Layer: A pooling layer with a pool size of 

(2, 2, 2) follows to reduce dimensionality and retain the most 

significant features. 

• Conv3D Layer: The second convolutional layer has 64 

filters, again with a kernel size of (3, 3, 3) and ReLU 

activation. 

• MaxPooling3D Layer: Another pooling layer to further 

downsample the feature maps. 

• Conv3D Layer: A third convolutional layer with 128 filters 

and ReLU activation. 

• MaxPooling3D Layer: A pooling layer to reduce 

dimensions. 

• GlobalAveragePooling3D Layer: This layer averages the 

spatial dimensions, reducing the feature maps to a fixed size. 

• Dense Layer: A fully connected layer with 128 units and 

ReLU activation for additional learning. 

• Dropout Layer: A dropout layer with a rate of 0.5 to prevent 

overfitting. 

• Dense Output Layer: The final layer has a single unit with a 

sigmoid activation function for binary classification (ASD 

vs. non-ASD). 

The model integrates clinical data by concatenating it with the 

features extracted from the MRI scans, allowing for a 

comprehensive analysis that combines both neuroimaging and 

clinical factors. 

• Training Process: 

The combined model, incorporating both neuroimaging and 

clinical data, was trained using binary cross-entropy as the loss 

function, the Adam optimizer, and accuracy as the primary 

evaluation metric. The training was conducted for 10 epochs, 

using a dataset split for training and validation. By including 

clinical data in the training process, the model aimed to enhance 

its ability to distinguish between ASD and non-ASD subjects, 

leveraging the complementary information provided by the 

clinical variables. 

• Evaluation: 

The model’s performance was evaluated on a separate test set 

that included both MRI volumes and corresponding clinical data. 

The evaluation focused on the model’s ability to generalize to 

unseen data, with metrics such as test accuracy and loss recorded. 

This assessment demonstrated the model’s effectiveness in 

classifying ASD and non-ASD subjects and highlighted the role 

of clinical variables in enhancing classification performance, 

suggesting that the inclusion of clinical data can lead to more 

accurate predictions [16]. 

• Prediction on New Data: 

For individual predictions, a new MRI volume and its 

corresponding clinical data (e.g., age and cognitive scores) were 

loaded and preprocessed using the same methods as the training 

data. The model predicted the class of the new data based on the 

combined input from both neuroimaging and clinical information. 

The prediction value was recorded, indicating the model’s 

confidence in classifying the input as either ASD or non-ASD. 
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This integrated approach underscores the importance of 

considering both anatomical and clinical factors when making 

diagnostic predictions. 

3.2.3 2D CNN-Combined XgBoost Architecture for ASD 

Diagnosis: 

• Dataset Preparation: 

The dataset used consists of structural MRI scans from two 

groups: ASD and non-ASD subjects, for both training and testing 

purposes. These MRI scans were sourced and divided into 

respective classes. Alongside the neuroimaging data, clinical data 

including key diagnostic scores such as ADOS and ADI-R was 

incorporated to improve classification accuracy. The 

neuroimaging data was preprocessed by extracting the central 

slice from each 3D MRI volume along the z-axis, resized to 

224x224 pixels, and converted from grayscale to RGB to match 

the input requirements of the ResNet50 model. 

• Preprocessing: 

The preprocessing pipeline involved multiple steps for both 

neuroimaging and clinical data. For the MRI images, after 

resizing and conversion to RGB, the pixel values were normalized 

by scaling them to a range of [0, 1]. In parallel, the clinical data 

was loaded and processed, focusing on variables such as ADI-R 

social and communication scores, ADOS totals, and other 

diagnostic indicators for ASD. These clinical features were 

normalized to ensure consistency with the image data. Both 

datasets were shuffled and split for training and testing, creating 

a balanced dataset for model training and evaluation [17]. 

• Clinical Data: 

The clinical data file contains crucial information related to 

autism spectrum disorder (ASD) assessments, providing valuable 

diagnostic scores for each subject. This data includes the 

SUB_ID, which serves as a unique identifier for each subject, and 

several key measures from the Autism Diagnostic Interview-

Revised (ADI-R), such as ADI_R_SOCIAL_TOTAL_A for 

social interaction difficulties, ADI_R_VERBAL_TOTAL_BV 

for verbal communication issues, and 

ADI_R_NONVERBAL_TOTAL_BV for non-verbal 

communication challenges. Other ADI-R scores include 

ADI_R_RRB_TOTAL_C for restricted and repetitive behaviors, 

ADI_R_ONSET_TOTAL_D for age of onset of symptoms, and 

ADI_R_RSRCH_RELIABLE, which indicates the research 

reliability of the ADI-R data. Additionally, the Autism Diagnostic 

Observation Schedule (ADOS) provides several important 

columns, including ADOS_MODULE for the specific module 

used, ADOS_RSRCH_RELIABLE for ADOS data reliability, 

and scores like ADOS_G_TOTAL (overall score), 

ADOS_G_COMM (communication difficulties), 

ADOS_G_SOCIAL (social interaction challenges), and 

ADOS_G_STEREO_BEHAV (stereotyped behaviors). This 

detailed clinical data enhances the model’s ability to make 

accurate ASD classifications [18]. 

• Model Architecture: 

A combined model architecture was employed, using a pre-

trained ResNet50 model to handle the MRI data. The ResNet50’s 

convolutional layers, pre-trained on ImageNet, were frozen to 

retain the learned visual features. Simultaneously, the clinical data 

was processed using a separate fully connected (dense) layer. The 

outputs from both the ResNet50 feature extraction and the clinical 

data pipeline were then concatenated, allowing the model to learn 

from both neuroanatomical and clinical information. The 

combined representation was passed through additional dense 

layers, followed by a final sigmoid-activated output for binary 

classification (ASD or non-ASD). 

• Training Process: 

The combined model, integrating both neuroimaging and 

clinical data, was trained using the Adam optimizer and binary 

cross-entropy as the loss function. The model was trained for a 

fixed number of epochs (20) with early stopping to prevent 

overfitting. Data augmentation techniques, such as rotations, 

zooms, and flips, were applied to the MRI images during training 

to improve model robustness. Cross-validation using a 5-fold 

approach was utilized to ensure the model generalizes well across 

different subsets of the data. 

• Evaluation: 

The model was evaluated on a separate test set, containing 

MRI slices and corresponding clinical data. The combined 

model’s performance was measured in terms of test accuracy and 

loss, demonstrating its ability to generalize well to unseen data. 

Additionally, the performance of an XGBoost classifier trained 

solely on the clinical data was evaluated for comparison [19]. The 

accuracy results from both models were recorded, and the 

combined predictions from ResNet50 and XGBoost were 

averaged for final classification. 

• Prediction on New Data: 

The trained model was used to make predictions on new MRI 

scans and clinical data, providing final classifications. MRI 

images were preprocessed similarly by extracting and resizing the 

middle slice, while clinical data was formatted to match the input 

structure. The model then combined both neuroimaging and 

clinical inputs to make predictions, offering insight into whether 

a given subject falls under the ASD or non-ASD category based 

on the model’s output. The final predictions provided a 

comprehensive diagnosis by leveraging both structural brain data 

and clinical assessments. 

3.2.4 2D CNN Resnet101 Architecture for ASD Diagnosis: 

• Dataset Preparation: 

The dataset comprises T1-weighted structural MRI scans 

categorized into ASD and non-ASD groups, used for both training 

and testing. Alongside neuroimaging data, clinical information 

such as diagnostic scores from assessments like ADOS and ADI-

R were included. MRI scans were processed by extracting the 

middle slice from each 3D volume and resizing it to 224x224 

pixels to match ResNet101’s input size. These slices were used 

for the model, representing anatomical features critical for ASD 

classification. 

• Preprocessing: 

The neuroimaging data underwent preprocessing steps, 

including resizing and normalization. The clinical data, 

containing diagnostic scores such as ADOS (communication, 

social interaction, and stereotyped behaviors) and ADI-R (social, 

verbal, non-verbal difficulties, and repetitive behaviors), was 

normalized to ensure consistency with the model’s input. Both 

imaging and clinical data were shuffled and combined to create a 

balanced training and testing dataset [20]. 
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• Model Architecture: 

The model used a pre-trained ResNet101 architecture to 

extract complex features from the MRI data. The ResNet101 

weights were frozen to retain their learned image-based features, 

and custom layers were added to fine-tune the model for ASD 

diagnosis. Simultaneously, clinical data, such as ADOS and ADI-

R scores, was processed and concatenated with features extracted 

from MRI slices. This combined approach allowed the model to 

consider both neuroanatomical and clinical characteristics when 

predicting ASD. The final classification layer included a sigmoid 

activation function for binary classification (ASD or non-ASD). 

• Training Process: 

The model was trained using a combination of neuroimaging 

and clinical data, with binary cross-entropy as the loss function 

and the Adam optimizer. Training was performed over 10 epochs 

with a training-validation split. The inclusion of clinical data 

aimed to boost the model’s ability to differentiate between ASD 

and non-ASD subjects more effectively. K-fold cross-validation 

was used to ensure robust performance across multiple data splits, 

and data augmentation techniques such as rotation and zoom were 

applied to enhance generalization. 

• Evaluation: 

The trained model was evaluated on a separate test dataset 

comprising MRI slices and corresponding clinical features. The 

evaluation measured the model’s ability to generalize to unseen 

data and highlighted the positive impact of incorporating clinical 

data in enhancing prediction accuracy. Test set accuracy, loss, and 

other performance metrics were recorded to assess model 

effectiveness in diagnosing ASD [21]. 

• Prediction on New Data: 

The model was further tested using unseen MRI images along 

with associated clinical data for individual predictions. A new 

MRI scan was processed by extracting and resizing its middle 

slice, and the corresponding clinical features, including diagnostic 

scores, were fed into the model. The combined input (MRI and 

clinical) allowed the model to generate a prediction, providing 

insight into the likelihood of the subject having ASD based on 

both anatomical and clinical indicators. The prediction confidence 

score was recorded to gauge the model’s performance on new 

cases. 

3.2.5 Vision Transformers (ViT) Architecture for ASD 

Diagnosis: 

 

Fig.1. ViT Architecture diagram 

The Vision Transformer (ViT) represents a significant shift in 

how deep learning models are applied to image processing and 

computer vision tasks. Originally developed for Natural 

Language Processing (NLP), transformer architectures have been 

adapted for visual data, demonstrating remarkable effectiveness 

in a variety of image recognition tasks. 

• Architecture Overview: The key innovation of the ViT lies 

in its ability to treat images as sequences of patches, similar 

to how transformers handle sequences of words. Instead of 

relying solely on convolutional layers, ViT divides an input 

image into smaller fixed-size patches, which are then 

linearly embedded into a sequence of tokens (Fig.1). This 

sequence is fed into a standard transformer architecture that 

employs self-attention mechanisms to capture complex 

relationships between different parts of the image [22]. 

• Self-Attention Mechanism: The self-attention mechanism 

allows the model to weigh the importance of each patch 

relative to others, enabling it to learn contextual information 

and dependencies effectively. This capability is crucial for 

understanding spatial relationships and details within an 

image, making ViT particularly powerful for tasks that 

require a holistic understanding of visual content. 

• Training and Performance: ViT has been pre-trained on 

large datasets, such as ImageNet, leveraging transfer 

learning to adapt its learned features to specific tasks. By 

fine-tuning the model on a smaller dataset tailored to a 

specific application (like ASD classification in 

neuroimaging), ViT can achieve state-of-the-art 

performance, often outperforming traditional convolutional 

neural networks (CNNs) in various visual recognition 

challenges. 

• Advantages and Applications: One of the primary 

advantages of ViT is its scalability; as the model size 

increases, its performance improves significantly, making it 

suitable for a range of applications from medical imaging to 

autonomous driving. In the context of neuroimaging, ViT 

can analyze structural MRI scans, providing valuable 

insights into brain anatomy and associated disorders, such as 

ASD [23]. 

• Building the Combined Model with Vision Transformer 

(ViT): 

The combined model utilizes a pre-trained Vision 

Transformer (ViT) to analyze MRI scan data, enhancing the 

classification of subjects as either ASD or non-ASD. ViT, an 

advanced deep learning architecture, applies transformer 

mechanisms, initially designed for Natural Language Processing 

(NLP), to visual data, achieving state-of-the-art performance in 

various image recognition tasks. The model is initialized by 

loading the ViT architecture, which is pre-trained on a large 

dataset. Importantly, the model excludes the top classification 

layers to allow for customization, focusing specifically on binary 

classification [24]. 

To retain the learned features from pre-training, the ViT layers 

are frozen during the training process, ensuring that the valuable 

representations acquired from the initial training phase are 

preserved. This freezing step is crucial for leveraging the rich 

feature extraction capabilities of the ViT without introducing 

unnecessary variability from fine-tuning. 
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• Image Input Pipeline: 

MRI scans are processed as inputs to the model, resized to the 

appropriate dimensions (224x224 pixels) to meet the 

requirements of the ViT architecture. The images are input 

through a dedicated pipeline where they are fed into the pre-

trained ViT model. Following this, a Global Average Pooling 

layer is applied to condense the feature maps generated by the ViT 

into a smaller, manageable feature vector. This pooling step is 

essential for facilitating the subsequent integration of clinical data 

into the model. 

• Clinical Data Input Pipeline: 

Alongside the MRI data, clinical information relevant to ASD 

diagnosis—such as scores from standardized assessments like the 

ADOS and ADI-R—is processed through a separate input 

pipeline. This clinical data is fed into the model via a simple 

feedforward neural network. The clinical features undergo 

transformation through a dense layer, utilizing ReLU activation 

to create a feature vector that can seamlessly integrate with the 

image-derived features from the ViT. 

• Combining Image and Clinical Features: 

The outputs from the image processing pipeline and the 

clinical data pipeline are concatenated to form a unified input for 

the final stages of the model. This concatenation allows the model 

to simultaneously consider the anatomical information derived 

from the MRI images and the pertinent clinical data when making 

predictions about ASD classification. The combined feature 

representation is then passed through additional dense layers to 

refine the model’s predictions, culminating in a final output layer 

that employs a sigmoid activation function for binary 

classification [25]. 

• Model Compilation and Training: 

The combined model is compiled using the Adam optimizer 

and binary cross-entropy as the loss function, standard choices for 

addressing binary classification tasks. The training process 

incorporates both the neuroimaging and clinical data, with early 

stopping implemented to halt training when performance on the 

validation set no longer improves. This strategy prevents 

overfitting and ensures that the model generalizes well to new 

data.  

The model undergoes training over a specified number of 

epochs, with the option for early stopping to enhance the 

efficiency and effectiveness of the learning process. After 

training, the model is saved for future predictions. 

• Loading and Preprocessing New MRI Data for Prediction: 

Once trained, the model can be reloaded to make predictions 

on new, unseen MRI data. This involves preprocessing the MRI 

scans using libraries designed for neuroimaging formats, such as 

nibabel. The preprocessing includes extracting the middle slice of 

each 3D MRI volume and resizing it to fit the model’s input 

specifications. This consistent preprocessing ensures that new 

data aligns with the training data format, enabling accurate 

predictions. 

• Predicting ASD and Non-ASD: 

After preprocessing the MRI images and generating 

corresponding clinical data (often using dummy values for 

testing), the model makes predictions regarding whether a subject 

falls into the ASD or non-ASD category. The model combines 

both neuroimaging and clinical inputs to produce a prediction 

score. Based on this score, thresholds are applied (e.g., values 

above 0.5 indicate ASD, while those below indicate non-ASD) to 

determine the final classification. 

Finally, the model tracks and outputs the total counts of ASD 

and non-ASD predictions across the set of test images. This 

summary provides insight into the model’s performance and 

efficacy in classifying subjects based on both neuroimaging and 

clinical data. The integrated approach of utilizing Vision 

Transformers alongside clinical assessments establishes a robust 

framework for ASD classification, with potential for further 

refinement and enhancement as more data becomes available. 

3.2.6 Swin Transformer Architecture for ASD Diagnosis  

The Swin Transformer is a cutting-edge deep learning 

architecture designed for visual tasks, extending the principles of 

the original Transformer model to image processing. Unlike 

traditional vision models, it employs a hierarchical approach that 

processes images in a sequence of non-overlapping local 

windows, allowing for efficient modeling of both local and global 

contextual information. The architecture divides the input image 

into patches and computes self-attention within these windows, 

progressively merging neighboring patches at different stages to 

form a pyramid-like structure [26]. This hierarchical 

representation enables Swin Transformer to capture fine-grained 

details and high-level semantic information, making it well-suited 

for complex classification tasks like ASD diagnosis using 

neuroimaging data (Fig.2). 

 

Fig.2. Swin Transformer Architecture 

• Building the Combined Model with Swin Transformer: 

The combined model utilizes a Swin Transformer architecture 

to analyze MRI scan data for ASD classification. Swin 

Transformer is an advanced vision transformer-based model that 

uses a hierarchical approach to extract local and global features. 

The model was initialized by defining a Swin Transformer 

architecture with additional layers for image and clinical data 

processing. The Swin Transformer acts as the core feature 

extractor from the MRI images, while clinical data is integrated 

using a separate neural network branch. 

• Image Input Pipeline: 

MRI scans were preprocessed and resized to dimensions of 

224x224 pixels to fit the Swin Transformer’s input specifications. 

Each 3D scan was converted into a 2D slice by selecting the 

middle slice along the z-axis, capturing key anatomical structures. 
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The preprocessing involved normalizing the pixel values to the 

range [0, 1]. The image input pipeline fed the preprocessed MRI 

scans into the Swin Transformer, where a Global Average Pooling 

layer condensed the feature maps for integration with clinical data 

[27]. 

• Clinical Data Input Pipeline: 

Clinical data, including various scores from standardized ASD 

assessments (ADI-R, ADOS), were processed through a separate 

input pipeline. This branch used a feedforward neural network to 

transform the clinical features into a feature vector using dense 

layers with ReLU activation. This transformation helped to 

capture relevant information from the clinical data, which was 

then integrated with the MRI-derived features [28]. 

• Combining Image and Clinical Features: 

The model concatenated the outputs from the image 

processing (Swin Transformer) and clinical data pipelines to form 

a unified representation. This combined feature vector was passed 

through additional dense layers, which performed further 

refinement before the final output layer. The final classification 

layer used a sigmoid activation function to predict the probability 

of ASD, allowing for binary classification (ASD vs. non-ASD). 

• Model Compilation and Training: 

The model was compiled using the Adam optimizer and 

binary cross-entropy as the loss function, suitable for binary 

classification. A K-Fold Cross-Validation approach was adopted 

to evaluate model performance across different data splits, 

helping to ensure robust generalization. Early stopping was used 

during training to prevent overfitting, with the model saved in 

TensorFlow’s SavedModel format for future predictions. 

• Loading and Preprocessing New MRI Data for Prediction: 

For predictions on new MRI data, the model expected inputs 

to follow the same preprocessing steps applied during training. 

The MRI images were processed using nibabel to extract the 

middle slice and resized to 224x224 pixels. This consistency in 

preprocessing ensured that the model would generalize well to 

unseen data. 

• Predicting ASD and Non-ASD: 

The trained model was used to predict the classification of new 

subjects by processing both MRI data and associated clinical 

features. Predictions were based on combining anatomical 

information derived from the MRI scans and clinical scores, 

producing a probability score indicating whether the subject had 

ASD [29]. 

3.2.7 Simplified CNN-Swin Transformer Hybrid Model for 

ASD Diagnosis: 

This model enhances the Simplified CNN-Swin Transformer 

Hybrid Model by incorporating clinical data alongside MRI 

features. By combining imaging data with relevant clinical 

information, such as ASD-related assessment scores, the model 

improves its ability to classify ASD with greater accuracy [30]. 

The model’s architecture was modified to include a dual input 

system where MRI data is processed through a CNN-based 

pipeline, and clinical data is processed through a separate neural 

network branch: 

 

 

1. Image Feature Extraction (CNN): 

• MRI data is processed through convolutional layers to 

extract spatial features. 

• Global average pooling condenses the feature maps, yielding 

a compact image feature representation. 

2. Clinical Data Processing: 

• Clinical data, including standardized ASD assessment 

scores (e.g., ADI-R, ADOS), is passed through a 

feedforward neural network. 

• This branch uses dense layers with ReLU activation to 

capture clinical patterns related to ASD. 

• The clinical data is transformed into a feature vector, which 

complements the MRI-derived features. 

3. Feature Concatenation and Final Classification: 

• The outputs from the CNN and clinical data branches are 

concatenated to form a unified feature vector. 

• This combined representation is passed through additional 

dense layers, which perform further feature refinement. 

• The final classification layer with sigmoid activation 

predicts the probability of ASD, enabling binary 

classification (ASD vs. non-ASD). 

3.2.8 Data Preparation and Preprocessing: 

MRI Data Pipeline 

• 2D Slice Extraction: A middle slice of the MRI image is 

selected along the z-axis for input. 

• Normalization: Pixel values are normalized to [0, 1]. 

• Image Augmentation: Standard transformations (rotation, 

shift, zoom, etc.) are applied to improve model robustness. 

Clinical Data Pipeline 

• Clinical Scores: Various ASD-related scores are 

preprocessed and normalized, making them compatible with 

the model’s input. 

• Feature Scaling: Clinical features are scaled to ensure they 

are on a comparable range to the MRI features. 

3. Model Training and Validation 

The training setup involved: 

• Adam Optimizer: Used for stable training with binary 

cross-entropy as the loss function. 

• K-Fold Cross-Validation: Validated the model across 

multiple data splits to improve generalization. 

• Early Stopping and Learning Rate Scheduling: These 

callbacks were applied to prevent overfitting and to 

dynamically adjust the learning rate during training. 

4. Model Evaluation 

After training, the model was evaluated on a separate test set: 

• Combined Feature Evaluation: MRI and clinical data 

features were used jointly, allowing for more context-aware 

classification of ASD. 

• Improved Accuracy: By integrating both data types, the 

model demonstrated a significant improvement in predictive 

accuracy over models trained on MRI data alone. 

The model was saved in TensorFlow’s SavedModel format to 

facilitate future predictions. Consistent preprocessing of MRI and 
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clinical data ensures the model performs well on new, unseen 

data. 

4. EXPERIMENTAL RESULTS 

Deep learning models were trained on the input data for 

children’s behavior classification in order to extract the abnormal 

behavior traits that indicate autism. The models were trained on 

an AMD 7th Generation HP Victus Ryzen laptop with NVidia 

GeForce GTX 3050 GPU. We utilized the Python programming 

language in conjunction with prominent deep learning libraries, 

namely TensorFlow and Keras. 

4.1 EVALUATION METRICS 

A classification report is a statistical measurement of 

performance in the deep learning field. Its objective is to 

demonstrate the performance of the training classification model, 

including its accuracy, recall, F1 score, and overall support [31]. 

• Accuracy is defined as the ratio of correct predictions to the 

total number of predictions made.  

• Precision is defined as the proportion of true positives to the 

total number of true and false positives in a particular 

sample.  

• Recall is defined as the proportion of true positives to the 

sum of true positives and false negatives.  

• The F1 score is a weighted harmonic mean of accuracy and 

recall [31]. When the F1 score is closer to the number 1.0, it 

means the model has high performance.  

Table.1. Results 

Method (with Clinical Data) Accuracy (%) 

3D CNN ResNet50 62 

Normal CNN (Sequential) 69 

2D CNN + XGBoost 78 

2D CNN ResNet101 60 

Transformer 70 

Swin Transformer 75 

Hybrid CNN + Swin 80 

4.2 PROPOSED HYBRID CNN AND SWIN 

TRANSFORMER ADVANTAGES 

The proposed hybrid model, which integrates a simplified 

CNN with features of a Swin Transformer, offers significant 

advantages in the analysis of clinical data, particularly in medical 

image classification tasks. CNNs excel in extracting spatial 

hierarchies of features from images, effectively capturing local 

patterns crucial for analyzing 2D slices of medical imaging data, 

such as NIfTI files. This capability is essential for identifying 

subtle variations in medical conditions, such as ASD versus non-

ASD cases, based on MRI scans. In addition to this, the model 

incorporates a Swin Transformer, renowned for its ability to 

capture long-range dependencies and contextual information, 

which enhances its capacity to understand the overall structure 

and relationships within the images.  

This integration allows the model to focus on critical areas 

while maintaining a broader view of the entire image, essential for 

clinical applications where detailed differentiation between 

conditions can impact diagnosis and treatment. Furthermore, the 

incorporation of clinical metadata alongside image data, such as 

patient demographics, clinical history, and behavioral 

assessments, can improve model performance by providing 

contextual background that aids in making more informed 

predictions [32].  

By using mixed precision training, the model optimizes 

memory usage, facilitating the handling of larger datasets 

common in clinical settings and enabling efficient computation. 

Data augmentation techniques employed during training further 

enhance generalization, ensuring the model performs well across 

varied patient data and imaging conditions. The result is a robust 

model that effectively combines the local feature extraction 

strength of CNNs with the global context understanding provided 

by Transformers, thereby creating a powerful tool for medical 

image analysis that can lead to more accurate and reliable clinical 

outcomes. 

Table.2. Confusion Matrix of the proposed Model 

Class Precision Recall F1-Score Support 

Non-ASD 0.83 0.76 0.80 46 

ASD 0.78 0.85 0.81 46 

Accuracy   0.80 92 

Macro Avg. 0.81 0.80 0.80 92 

Weighted  

Avg. 
0.81 0.80 0.80 92 

The Table.2 shows the performance metrics of a classification 

model for two classes: Non-ASD and ASD. Here’s what each 

metric represents: 

4.3 CLASS-SPECIFIC METRICS 

1. Precision: Measures the accuracy of positive predictions 

for each class. 

• For Non-ASD: 0.83, meaning 83% of the instances 

predicted as Non-ASD are actually Non-ASD. 

• For ASD: 0.78, meaning 78% of the instances predicted as 

ASD are actually ASD. 

2. Recall: Measures the model’s ability to correctly identify 

all actual positives. 

• For Non-ASD: 0.76, indicating that the model correctly 

identified 76% of the true Non-ASD cases. 

• For ASD: 0.85, indicating that the model correctly identified 

85% of the true ASD cases. 

3. F1-Score: The harmonic mean of precision and recall, 

which provides a balance between the two. 

• For Non-ASD: 0.80, suggesting good overall accuracy for 

this class. 

• For ASD: 0.81, showing similar performance to Non-ASD. 

4. Support: The number of instances in each class. 

• Both Non-ASD and ASD have 46 instances, indicating a 

balanced dataset. 
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4.3.1 Overall Metrics: 

• Accuracy: The proportion of correctly classified instances 

across all samples. 0.80 (80%), meaning the model correctly 

classified 80% of the total samples. 

• Macro Avg: The unweighted average of precision, recall, 

and F1-score across all classes. Precision, recall, and F1-

score are all 0.80–0.81, reflecting balanced performance 

across both classes. 

• Weighted Avg: The average of precision, recall, and F1-

score, weighted by the number of instances in each class. 

Similar to macro average (0.80–0.81), indicating the 

model’s consistent performance even when considering the 

class distribution. 

Overall, the model shows good performance in detecting both 

ASD and Non-ASD cases, with a slight bias towards identifying 

ASD more accurately (higher recall for ASD). 

 

Fig.3. Confusion Matrix 

4.4  HYBRID CNN+SWIN TRANSFORMER 

The confusion matrix illustrates the performance of a 

classification model on the ASD and Non-ASD classes. Here’s a 

breakdown: 

• True Positives (ASD correctly classified): 39 instances 

where the model predicted ASD, and the true label was also 

ASD. 

• True Negatives (Non-ASD correctly classified): 35 

instances where the model predicted Non-ASD, and the true 

label was Non-ASD. 

• False Positives (Non-ASD incorrectly classified as ASD): 

11 instances where the model predicted ASD, but the true 

label was Non-ASD. 

• False Negatives (ASD incorrectly classified as Non-

ASD): 7 instances where the model predicted Non-ASD, but 

the true label was ASD. 

• The model achieved good classification for both classes, 

with higher true positives (39) and true negatives (35), 

indicating a relatively balanced performance. 

• There are some errors, with more false positives (11) than 

false negatives (7), suggesting a slight bias towards 

predicting ASD when it is actually Non-ASD. The overall 

accuracy, as calculated from the matrix, is 80% 

5. CONCLUSION AND FUTURE WORK 

In this study, we evaluated the effectiveness of integrating 

neuroimaging data and clinical assessments for diagnosing ASD 

using deep learning models. Our results demonstrate that hybrid 

models, especially the Hybrid CNN+Swin Transformer, achieve 

the highest classification accuracy at 80%, outperforming 

traditional CNN architectures and pure transformer-based 

approaches. This suggests that combining the spatial feature 

extraction strengths of CNNs with the Swin Transformer’s global 

contextual understanding offers a more comprehensive approach 

for identifying ASD-related patterns in brain imaging data. 

Despite these promising results, there are limitations to address in 

future research. The relatively small sample size and specific 

imaging data used in this study may limit the generalizability of 

the findings.  

Future efforts should focus on expanding the dataset with 

more diverse samples and incorporating multimodal 

neuroimaging data, such as fMRI, to improve the model’s 

robustness. Additionally, integrating other data types, including 

clinical and genetic information, may further enhance predictive 

accuracy and contribute to a more personalized diagnostic 

approach. 

Future studies should also emphasize improving model 

interpretability to better understand the neuroanatomical patterns 

linked to ASD. Utilizing attention mechanisms within 

transformers could help visualize brain regions that are critical for 

model predictions, providing transparency that could aid 

clinicians in understanding and validating the model’s decisions. 

This advancement would help pave the way for more reliable AI-

assisted diagnostics in clinical settings. Finally, ongoing research 

efforts are exploring the potential of integrating Generative AI 

with CNN and Swin Transformer models, which may open new 

avenues for enhancing ASD classification. 
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