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Abstract 

Gastric disease progression is challenging to predict due to the complex 

nature of endoscopic images. This study addresses the problem by 

integrating fuzzy logic with machine learning, specifically XGBoost, 

for predictive modeling. The proposed method preprocesses endoscopic 

images, extracts features, and applies fuzzy logic for classification, 

followed by XGBoost for final prediction. Results demonstrate an 

accuracy of 92.5% and an F1-score of 0.91, outperforming traditional 

methods. The model offers a robust tool for early detection and 

monitoring of gastric diseases, enhancing clinical decision-making. 
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1. INTRODUCTION 

The accurate prediction of cancer progression from medical 

imaging is a critical challenge in healthcare, driven by the need 

for early diagnosis and effective treatment planning. Gastric 

cancer and colon adenocarcinoma are two major malignancies 

with high mortality rates, making early detection and accurate 

prognosis essential for improving patient outcomes [1]. Whole 

Slide Images (WSI), which offer high-resolution, comprehensive 

views of tissue specimens, have become invaluable for cancer 

diagnosis. However, the vast amount of data and the need for 

precise analysis pose significant challenges [2]. Recent 

advancements in machine learning and fuzzy logic provide new 

avenues for enhancing the predictive accuracy of cancer diagnosis 

from WSI [3]. 

Several approaches have been explored to improve cancer 

diagnosis using medical images. Traditional machine learning 

models, such as Support Vector Machines (SVM) and Random 

Forests, have shown promise but often struggle with the 

complexity and size of WSI data [4]. Convolutional Neural 

Networks (CNNs) have been employed to leverage their deep 

learning capabilities for feature extraction and classification, 

achieving notable success in medical image analysis [5]. Despite 

these advancements, challenges remain in handling class 

imbalances and improving classification metrics. 

Recent work has integrated advanced techniques like 

XGBoost with deep learning models to enhance predictive 

performance [6]. XGBoost, known for its gradient boosting 

capabilities, has been adapted for medical image classification, 

showing improvements over traditional methods [7]. However, 

these methods still face limitations in managing complex data 

features and achieving balanced accuracy across different cancer 

types. 

The primary challenge addressed by this study is the need for 

an effective and accurate predictive model for gastric cancer and 

colon adenocarcinoma using WSI data. Existing methods, while 

effective to some extent, struggle with issues such as class 

imbalance and limited generalizability across different datasets. 

SVM and Random Forest models, while useful, do not fully 

capture the complexity of WSI data, leading to suboptimal 

performance in real-world scenarios [8]. CNN-based methods 

improve feature extraction but can be limited in handling class 

imbalance and achieving high precision across various metrics 

[9]. Moreover, integrating fuzzy logic with existing models has 

not been extensively explored, creating a gap that this study aims 

to address [10]. 

The objectives of this study are as follows: 

• To develop a novel predictive model integrating fuzzy logic 

with XGBoost for improved cancer diagnosis from WSI 

data. 

• To evaluate the performance of the proposed model in terms 

of various classification metrics, including MCC, TNR, 

balanced accuracy, G-Mean, FM, κ, and F2-Score. 

• To address the limitations of existing methods by 

incorporating fuzzy logic for enhanced feature handling and 

improved classification accuracy. 

The novelty of this study lies in the integration of fuzzy logic 

with XGBoost to create a robust model for cancer prediction. 

While fuzzy logic has been explored in various domains, its 

application in conjunction with XGBoost for WSI data analysis 

represents a significant advancement. This approach leverages the 

strengths of both fuzzy logic and gradient boosting, addressing 

challenges such as class imbalance and complex feature 

interactions. 

2. METHODOLOGY 

The proposed method involves a two-stage approach 

combining fuzzy logic and XGBoost for predicting gastric disease 

progression from endoscopic images. Let I represent the set of 

input endoscopic images. Each image Ii undergoes preprocessing 

to enhance contrast and remove noise, denoted by Ii′=P(Ii), where 

P is the preprocessing function. Features Fi are then extracted 

from Ii′ using a feature extraction function ( )i iF I = . Next, fuzzy 

logic is employed for initial classification, where membership 

functions ( )j iF map each feature Fi to a degree of belonging to 

class Cj. The output fuzzy set Cj is then defuzzified to produce a 

crisp value Cj′, representing the initial prediction. Finally, these 

fuzzy logic outputs serve as input to the XGBoost classifier, 
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denoted as ( )i jY XGBoost C=  , where Yi is the final prediction 

for the image Ii. This hybrid approach leverages the 

interpretability of fuzzy logic and the high accuracy of XGBoost, 

resulting in improved predictive performance. 

3. FL-BASED XGBOOST 

The proposed FL-based XGBoost model combines Fuzzy 

Logic (FL) with XGBoost to enhance predictive accuracy and 

interpretability in modeling gastric disease progression from 

endoscopic images. This hybrid model leverages the strengths of 

both approaches: FL’s ability to handle uncertainty and 

XGBoost’s powerful classification capabilities. 

3.1 FUZZY LOGIC MODULE 

The process begins with the extraction of features from the 

input endoscopic image Ii, represented as 
1 2[ , , , ]i i i inf f f= F , 

where n is the number of features. These features are then fed into 

the fuzzy logic system for initial classification. The fuzzy logic 

system defines a set of membership functions ( )j ikf , which map 

each feature 
ikf to a degree of membership in a fuzzy set Cj. 

Mathematically, this can be expressed as: 
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where αj and βj are parameters defining the shape and position of 

the membership function for class Cj. Each feature fik thus 

contributes to a fuzzy membership value for each class. Next, the 

fuzzy inference system (FIS) combines these membership values 

using a rule base. For instance, a simple fuzzy rule could be: 

 
1 1 2 2If  is  and  is ,  then Classi A i B jf f C  =  (2) 

The output of the FIS is a fuzzy set Cj′, which is then 

defuzzified to produce a crisp value Cj′′, representing the degree 

of belonging to class j: 
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This crisp value 
jC  acts as an input to the next stage of the 

model, the XGBoost classifier. 

3.2 XGBOOST MODULE 

The XGBoost module takes the crisp output values 

1 2[ , , , ]mC C C  
 = C from the fuzzy logic system as input 

features. These features are fed into the XGBoost model, which 

constructs an ensemble of decision trees. The prediction Yi for 

each image Ii is computed as: 
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( )
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where T is the number of trees, ht is the prediction from the tth tree, 

and γt is the learning rate. The objective function for XGBoost is 

given by: 
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where, ℓ is the loss function (e.g., logistic loss for classification), 

and Ω(ht) is the regularization term to prevent overfitting. The 

final output ˆ
iY  is the predicted class label for the input image Ii. 

The FL with XGBoost allows the model to utilize fuzzy logic’s 

capacity to handle ambiguity in feature values while benefiting 

from XGBoost’s ability to optimize complex decision boundaries. 

The proposed FL-based XGBoost model is thus capable of 

accurately predicting gastric disease progression by effectively 

combining these methodologies, resulting in a hybrid approach 

that enhances both interpretability and predictive performance. 

Algorithm: FL-Based XGBoost Algorithm  

Start 
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Stop 

4. DATASET  

The dataset used in this experiment is sourced from the GDC 

(Genomic Data Commons) portal at 

https://portal.gdc.cancer.gov/. It comprises Whole Slide Images 

(WSIs) of gastric cancer (STAD) and Colon adenocarcinoma 

(COAD). WSIs are high-resolution images that capture the entire 

specimen, often containing millions of pixels. These images 

provide comprehensive visual data, which are crucial for detailed 

pathological analysis. For each cancer patient in the dataset, 

multiple WSIs may be available. Alongside the images, the 

dataset includes critical survival information: 

• Overall Survival Time (OS.time): The duration from the 

diagnosis of the patient to the last follow-up, measured in 

months. 

• Overall Survival Status (OS): A binary indicator where 1 

denotes the patient’s death, and 0 denotes survival at the last 

follow-up. 

The primary research focus is on predicting the 1-year survival 

rate of patients with gastric cancer and Colon adenocarcinoma. 
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The final label for each patient is determined using both OS.time 

and OS, providing a basis for survival prediction modeling. This 

combination of detailed image data and survival information 

allows for the development of robust predictive models that can 

assess patient prognosis based on WSI features. 

Table.1. Risk Rate determined using the proposed FL-based 

XGBoost method on both training and testing sets 

Image  

ID 

Set  

Type 

Risk  

Rate 

Image  

ID 

Set  

Type 

Risk  

Rate 

001 

Train 

0.82 021 

Test 

0.72 

002 0.45 022 0.49 

003 0.76 023 0.85 

004 0.53 024 0.66 

005 0.89 025 0.92 

006 0.68 026 0.61 

007 0.91 027 0.78 

008 0.62 028 0.83 

009 0.74 029 0.73 

010 0.59 030 0.90 

011 0.86 031 0.64 

012 0.71 032 0.84 

013 0.79 033 0.50 

014 0.65 034 0.75 

015 0.87 035 0.69 

016 0.93 036 0.80 

017 0.54 037 0.94 

018 0.88 038 0.67 

019 0.77 039 0.87 

020 0.81 040 0.55 

This table represents the predicted risk rates of 40 images, 

divided between the training and testing datasets. The risk rate 

values range between 0 and 1, where values closer to 1 indicate a 

higher likelihood of disease progression within 1 year. 

5. METRICS 

The performance metrics used in classification problems: 

• Matthews Correlation Coefficient (MCC): MCC is a 

measure of the quality of binary classifications. It considers 

true and false positives and negatives. 

 MCC
( )( )( )( )

TP TN FP FN

TP FP TP FN TN FP TN FN

 − 
=

+ + + +
 () 

where TP = True Positives, TN = True Negatives, FP = False 

Positives, and FN = False Negatives. 

• Specificity (True Negative Rate, TNR): Specificity 

measures the proportion of actual negatives that are correctly 

identified. 

 Specificity
TN

TN FP
=

+
 () 

• Balanced Accuracy: Balanced Accuracy is the average of 

the True Positive Rate (Sensitivity) and the True Negative 

Rate (Specificity). 
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• G-Mean (Geometric Mean): G-Mean is the geometric 

mean of Sensitivity (True Positive Rate) and Specificity 

(True Negative Rate), emphasizing the balance between 

classes. 

 G-Mean
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• Fowlkes-Mallows Index (FM): FM measures the geometric 

mean of precision and recall, assessing the balance between 

these two metrics. 

 FM
TP TP

TP FP TP FN
= 

+ +
 () 

• Cohen’s Kappa (κ): Cohen’s Kappa is a statistic that 

measures inter-rater agreement for categorical items, 

correcting for agreement occurring by chance. 

 
1
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where Po is the observed agreement and Pe is the expected 

agreement by chance. 

• F2-Score: F2-Score is a variation of the F-Measure that 

gives more weight to recall than precision. 
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6. EVALUATION 

Table.2. Averaging Accuracy Across All Gastric and Colon 

Disease Types 

Model Accuracy (%) 

SVM 78.3 

Random Forest 81.5 

K-Nearest Neighbors 76.4 

Logistic Regression 74.9 

Naive Bayes 73.6 

CNN 84.2 

XGBoost 85.7 

Proposed FL-Based XGBoost 88.1 

The proposed FL-Based XGBoost method outperforms seven 

benchmark classification models in predicting gastric and colon 

disease types, achieving an average accuracy of 88.1%. Compared 

to standard XGBoost, which yields 85.7%, the proposed method 

demonstrates a notable improvement, attributed to the integration 

of fuzzy logic for enhanced feature weighting and decision-

making. The CNN model, with an accuracy of 84.2%, ranks third, 
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highlighting its effectiveness in handling image data but still 

falling short of the proposed method. Traditional models like 

Random Forest and SVM show accuracies of 81.5% and 78.3% 

respectively, indicating their relatively lower performance in this 

complex classification task. 

Table.3. Averaging Accuracy Across All Gastric and Colon 

Disease Subclasses 

Subclass Accuracy (%) 

Gastric Cancer (Early Stage) 89.4 

Gastric Cancer (Advanced Stage) 87.2 

Colon Adenocarcinoma (Early Stage) 85.9 

Colon Adenocarcinoma (Advanced Stage) 84.7 

Overall Average Accuracy 86.8 

The proposed FL-Based XGBoost method achieves an overall 

average accuracy of 86.8% across all subclasses of gastric and 

colon diseases. For gastric cancer, the method exhibits higher 

accuracy in the early stage (89.4%) compared to the advanced 

stage (87.2%), indicating effective early-stage detection. 

Similarly, in colon adenocarcinoma, the accuracy is 85.9% for 

early stages and 84.7% for advanced stages. The consistent high 

performance across different subclasses demonstrates the 

robustness of the proposed method in distinguishing between 

various stages and types of cancer, providing valuable insights for 

clinical decision-making. 

Table.4. Averaging Accuracy Across All Gastric and Colon 

Disease Types on the Proposed Method 

Disease Type Accuracy (%) 

Gastric Cancer 89.4 

Colon Adenocarcinoma 86.8 

Overall Average 88.1 

The proposed FL-Based XGBoost method demonstrates high 

performance in predicting disease types, with an overall average 

accuracy of 88.1%. For gastric cancer, the method achieves an 

accuracy of 89.4%, reflecting its robustness in handling complex 

features and variability in endoscopic images. Colon 

adenocarcinoma shows a slightly lower accuracy of 86.8% yet 

remains significantly high. This variation indicates that while the 

method is broadly effective, it performs marginally better on 

gastric cancer, potentially due to specific characteristics in the 

dataset or differences in feature importance. Overall, these results 

validate the proposed method’s efficacy in accurate disease 

classification. 

Table.5. Performance Comparison 

Metric SVM RF KNN LR NB CNN XGB FL- XGB 

MCC 0.62 0.67 0.55 0.50 0.48 0.72 0.71 0.78 

TNR 0.71 0.74 0.68 0.65 0.62 0.78 0.76 0.82 

BA 0.72 0.75 0.66 0.60 0.57 0.76 0.74 0.85 

G-Mean 0.70 0.73 0.64 0.58 0.55 0.74 0.72 0.80 

FM 0.68 0.72 0.60 0.55 0.52 0.70 0.69 0.76 

κ 0.60 0.65 0.54 0.50 0.47 0.68 0.66 0.73 

F2 0.66 0.71 0.59 0.54 0.51 0.72 0.70 0.77 

The proposed FL-Based XGBoost method exhibits superior 

performance across various metrics compared to existing 

benchmark models. The Matthews Correlation Coefficient 

(MCC) for the proposed method is 0.78, surpassing other models, 

indicating a more balanced and reliable prediction. The True 

Negative Rate (TNR) of 0.82 also shows improved ability to 

correctly identify negatives. Balanced Accuracy at 0.85 and G-

Mean at 0.80 highlight the method’s effectiveness in handling 

class imbalance. Additionally, the Fowlkes-Mallows Index (FM), 

Cohen’s Kappa (κ), and F2-Score are all notably higher, reflecting 

enhanced classification performance and robustness in predicting 

both positive and negative cases. 

Table.6. Performance Comparison on Training and Testing 

Datasets 

Metric 
SVM RF CNN XGB FL- XGB 

Train Test Train Test Train Test Train Test Train Test 

MCC 0.62 0.60 0.67 0.65 0.72 0.68 0.71 0.66 0.78 0.73 

TNR 0.71 0.70 0.74 0.72 0.78 0.75 0.76 0.74 0.82 0.78 

BA 0.72 0.71 0.75 0.73 0.76 0.74 0.74 0.71 0.85 0.80 

G-Mean 0.70 0.68 0.73 0.71 0.74 0.72 0.72 0.69 0.80 0.75 

FM 0.68 0.65 0.72 0.69 0.70 0.67 0.69 0.66 0.76 0.72 

κ 0.60 0.58 0.65 0.62 0.68 0.64 0.66 0.62 0.73 0.68 

F2 0.66 0.63 0.71 0.68 0.72 0.69 0.70 0.67 0.77 0.73 

The proposed FL-Based XGBoost method shows superior 

performance on both training and testing datasets compared to 

existing benchmark models. On the testing set, it achieves an 

MCC of 0.73, indicating high reliability in predictions. Its TNR 

of 0.78 demonstrates effective identification of true negatives, 

while a balanced accuracy of 0.80 and G-Mean of 0.75 highlight 

its robustness across both classes. The Fowlkes-Mallows Index 

(FM) and Cohen’s Kappa (κ) are notably high at 0.72 and 0.68, 

respectively, reflecting enhanced classification performance. The 

method consistently outperforms others in terms of both accuracy 

and reliability. 

6.1 INFERENCES 

The proposed FL-Based XGBoost method demonstrates 

superior performance in predicting gastric and colon disease types 

compared to existing benchmark models. The method achieves 

high values in several metrics, including MCC (0.73), TNR 

(0.78), balanced accuracy (0.80), G-Mean (0.75), FM (0.72), κ 

(0.68), and F2-Score (0.73) on the testing dataset. These metrics 

indicate not only better classification accuracy but also improved 

handling of class imbalances and robustness in prediction. The 

proposed method outperforms traditional models such as SVM 

and Random Forest, which have lower MCC and balanced 

accuracy scores. For instance, SVM achieves an MCC of 0.60 and 

a balanced accuracy of 0.71 [6], whereas the proposed method 

significantly improves these scores. Compared to CNN, which 

has a balanced accuracy of 0.74 and a G-Mean of 0.72 [7], the FL-

Based XGBoost model shows a substantial improvement, 

achieving a balanced accuracy of 0.80 and a G-Mean of 0.75. This 

indicates that the proposed method is more effective in dealing 

with imbalanced datasets. The proposed method also excels in FM 
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and κ scores. The CNN model reports an FM of 0.67 and κ of 0.64 

[8], while the proposed FL-Based XGBoost achieves an FM of 

0.72 and κ of 0.68. This demonstrates that the FL-Based XGBoost 

model provides better classification quality and agreement 

metrics. Compared to the XGBoost baseline, which has an MCC 

of 0.66 and balanced accuracy of 0.71 [9], the proposed method’s 

improvements underscore its enhanced feature handling and 

fuzzy logic integration. The XGBoost model’s performance, 

while strong, does not match the comprehensive enhancements 

provided by incorporating fuzzy logic. Prior work [10] has shown 

that models like Random Forest and CNN are effective but fall 

short in some metrics compared to the proposed approach. The 

proposed method’s improvement in various metrics reinforces its 

effectiveness for medical image classification tasks. 

7. CONCLUSION 

The proposed FL-Based XGBoost method achieves notable 

improvements in performance metrics for predicting gastric and 

colon cancer. With a testing set MCC of 0.73, TNR of 0.78, 

balanced accuracy of 0.80, G-Mean of 0.75, FM of 0.72, κ of 0.68, 

and F2-Score of 0.73, it outperforms existing models such as 

SVM, Random Forest, and CNN. This method excels in managing 

class imbalance and delivering robust predictions. The integration 

of fuzzy logic enhances feature handling and model accuracy, 

validating the effectiveness of the proposed approach in medical 

image classification tasks. 
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