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Abstract 

Image representation and rendering have become critical in numerous 

applications such as virtual reality, medical imaging, and computer 

graphics. Traditional rendering techniques often face challenges in 

efficiently handling complex scenes and achieving photorealistic 

results while maintaining low computational costs. The problem lies in 

the high-dimensional nature of image data, leading to slow processing 

times and reduced scalability. This research presents an AI-enhanced 

technique called Linear RepRender, which leverages deep learning to 

transform high-dimensional image representations into simplified 

linear forms for faster rendering. The proposed method employs a 

combination of convolutional neural networks (CNNs) and linear 

regression models to reduce image complexity. Specifically, the CNN 

extracts low-level and high-level features from the image, while the 

linear regression step approximates the scene’s core visual elements. 

This hybrid approach significantly improves rendering speed without 

sacrificing image quality. Furthermore, the method incorporates a loss 

function optimized for minimizing discrepancies between the rendered 

and ground truth images. Experimental results demonstrate that 

Linear RepRender outperforms traditional rendering algorithms, such 

as ray tracing and rasterization, in terms of computational efficiency 

and visual accuracy. On a dataset of complex 3D scenes, the proposed 

method achieved a 35% reduction in rendering time and a 22% 

improvement in peak signal-to-noise ratio (PSNR) compared to state-

of-the-art methods. Additionally, Linear RepRender was able to handle 

up to 1.5 million polygons per scene with minimal visual artifacts, 

making it suitable for real-time applications. 
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1. INTRODUCTION 

In recent years, advancements in image representation and 

rendering have become increasingly critical in fields such as 

virtual reality, computer graphics, and medical imaging. The 

demand for high-quality, photorealistic images continues to grow, 

driven by the need for more immersive user experiences and 

precise visual analyses in complex applications. Traditional 

rendering techniques, such as rasterization and ray tracing, have 

long been the backbone of image synthesis, enabling the creation 

of visually compelling scenes across various domains [1]-[3]. 

However, these methods often struggle with the computational 

demands of rendering high-dimensional data, especially in real-

time scenarios. As a result, there has been a significant push 

towards developing AI-enhanced techniques that can bridge the 

gap between image quality and computational efficiency. Despite 

the progress made in image rendering, several challenges persist. 

One of the primary challenges is the complexity of handling large-

scale, high-dimensional datasets, which often lead to increased 

processing times and higher computational costs [4]-[5]. 

Traditional methods, such as ray tracing, while capable of 

producing highly realistic images, are slow due to their iterative 

nature and the need to simulate the interaction of light with objects 

in a scene [6]. Moreover, as the complexity of scenes increases-

such as those containing millions of polygons or intricate lighting 

conditions-the performance of conventional algorithms 

deteriorates significantly, often resulting in longer rendering 

times and reduced scalability [7]. Another challenge lies in 

balancing image quality with computational efficiency. 

Achieving photorealism typically requires extensive calculations 

to simulate light reflection, refraction, and shadow casting. 

However, these calculations can become prohibitively expensive, 

particularly for real-time applications where speed is crucial. 

Furthermore, traditional approaches often struggle with the 

accurate representation of textures, materials, and complex 

geometries, leading to visual artifacts that detract from the overall 

image quality [4]-[7]. Given these challenges, there is a clear need 

for more efficient rendering techniques that can handle the 

demands of high-dimensional image data while maintaining or 

even improving visual quality. The current state-of-the-art 

methods fail to fully address the dual requirements of 

computational efficiency and photorealism. Existing algorithms 

either compromise on speed to achieve higher image quality or 

sacrifice visual fidelity for faster processing times. Consequently, 

there is a gap in the literature for a method that can seamlessly 

integrate high-dimensional data processing with real-time 

rendering capabilities without compromising quality [8]-[10]. 

The primary objective of this research is to develop an AI-

enhanced image representation and rendering technique, termed 

Linear RepRender, that can efficiently transform high-

dimensional image data into simplified linear representations for 

faster rendering. The method aims to achieve a significant 

reduction in rendering time while maintaining or improving 

image quality compared to traditional techniques. The novelty of 

Linear RepRender lies in its hybrid approach, which combines the 

power of convolutional neural networks (CNNs) with linear 

regression models to create a more efficient rendering pipeline. 

By leveraging CNNs to extract both low-level and high-level 

features from images, and then applying linear regression to 

approximate the core visual elements of the scene, the method 

effectively reduces the complexity of the image data, leading to 

faster rendering times. 

This research makes several key contributions: 

• Introduction of a novel AI-enhanced rendering technique 

that significantly reduces rendering time while preserving 

image quality. 
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• Development of a hybrid model that integrates CNNs with 

linear regression to handle high-dimensional data more 

efficiently. 

• Demonstration of the method's effectiveness through 

extensive experimentation, showing a 35% reduction in 

rendering time and a 22% improvement in PSNR compared 

to existing methods. 

2. BACKGROUND 

The domain of image representation and rendering has 

witnessed considerable evolution over the years, particularly with 

the integration of artificial intelligence and machine learning 

techniques. Traditional rendering methods, such as rasterization 

and ray tracing, have laid the groundwork for image synthesis by 

simulating the interaction of light with objects in a scene. 

However, the need for higher computational efficiency and better 

image quality has driven research towards more advanced 

techniques. This section discusses various related works, focusing 

on traditional methods, AI-enhanced approaches, and hybrid 

models that combine these techniques. Rasterization and ray 

tracing are two of the most widely used traditional rendering 

techniques. Rasterization, often employed in real-time 

applications such as video games, converts 3D models into 2D 

images by projecting vertices onto a screen and filling in the 

pixels [11]. Despite its speed, rasterization struggles with accurate 

shadow and reflection rendering, which are essential for 

photorealistic images. On the other hand, ray tracing simulates the 

path of light rays as they interact with objects, producing highly 

realistic images with accurate reflections, refractions, and 

shadows [12]. However, the computational cost of ray tracing is 

significant, making it less suitable for real-time applications. To 

address the limitations of these methods, several optimizations 

have been proposed. For example, Whitted-style ray tracing 

introduced recursive algorithms to enhance reflection and 

refraction handling, improving visual realism [13]. Similarly, 

spatial acceleration structures like bounding volume hierarchies 

(BVH) and kd-trees have been developed to reduce the number of 

ray-object intersection tests, thereby speeding up the rendering 

process [14]. Despite these advances, the inherent trade-offs 

between speed and quality remain a challenge. With the advent of 

deep learning, AI-enhanced rendering techniques have gained 

traction as a means to overcome the limitations of traditional 

methods. Convolutional Neural Networks (CNNs) have been 

particularly influential in this area, as they are well-suited for 

image processing tasks due to their ability to learn hierarchical 

feature representations [15]. Deep learning-based denoising has 

been one of the early applications, where CNNs are used to 

remove noise from ray-traced images, allowing for fewer rays per 

pixel and, consequently, faster rendering [16]. Another significant 

development is neural rendering, where AI models generate novel 

views of a scene from a limited set of input images. Techniques 

like Neural Radiance Fields (NeRF) represent scenes as a 

continuous volumetric field parameterized by a neural network, 

enabling high-quality view synthesis from sparse data [17]. NeRF 

and its variants have demonstrated impressive results in 

producing photorealistic images with complex lighting and 

material interactions. However, these methods are 

computationally intensive, requiring significant resources for 

both training and inference. Hybrid approaches that combine 

traditional rendering techniques with AI-based enhancements 

have emerged as a promising direction for achieving both high-

quality and efficient rendering. One such approach is deep 

shading, where deep learning models are integrated into the 

shading pipeline to predict complex light interactions more 

efficiently than traditional methods [18]. These models can 

approximate global illumination effects, such as indirect lighting 

and subsurface scattering, which are computationally expensive 

to calculate using traditional techniques alone. Another hybrid 

approach involves the use of learned priors for image synthesis. 

For instance, deep appearance models (DAMs) leverage pre-

trained networks to predict appearance features, such as color and 

texture, based on scene geometry and lighting conditions [19]. By 

combining these learned features with traditional rendering 

algorithms, DAMs can produce high-quality images with reduced 

computational overhead. In the context of real-time rendering, AI-

assisted rasterization has also been explored. Techniques such as 

DeepGBuffer use deep learning to predict intermediate 

representations, like G-buffers, which encode geometric and 

material properties of a scene [20]. These buffers are then used in 

conjunction with traditional rasterization to generate final images 

with enhanced quality, particularly in handling complex materials 

and lighting conditions. While AI-enhanced and hybrid 

approaches have shown significant potential, they are not without 

limitations. The integration of AI into rendering pipelines often 

introduces additional complexity, requiring specialized hardware 

(e.g., GPUs with tensor cores) and longer development cycles. 

Moreover, many AI-based methods are data-hungry, necessitating 

large datasets for training, which may not always be available for 

specific applications. Despite these challenges, the field is rapidly 

advancing, with ongoing research focusing on improving the 

efficiency and scalability of AI-enhanced rendering techniques. 

The proposed Linear RepRender aims to contribute to this body 

of work by offering a hybrid approach that balances the strengths 

of traditional methods with the computational advantages of AI, 

specifically through the integration of CNNs and linear regression 

models for efficient image representation and rendering. The 

exploration of related works reveals a dynamic landscape where 

traditional and AI-enhanced methods are increasingly converging 

to address the challenges of image representation and rendering. 

While each approach has its strengths, the need for more efficient, 

scalable, and high-quality rendering solutions remains. Linear 

RepRender seeks to fill this gap by leveraging the complementary 

strengths of CNNs and linear regression, offering a novel solution 

that promises both speed and visual fidelity in rendering 

applications. 

Table.1. Summary of Related Methods in Image Representation 

and Rendering 

Method Algorithm Outcomes Challenges 

Rasterization 

[11] 

Projection & 

pixel filling 

Fast rendering 

for real-time 

applications 

Struggles with 

accurate shadow 

and reflection 

rendering 

Ray Tracing 

[12] 

Recursive ray-

path 

simulation 

High-quality, 

photorealistic 

images 

Computationally 

expensive; slow 

rendering times 



BK HARSHA et al.: AI-IMAGE REPRESENTATION AND LINEAR REPRENDER RENDERING 

3332 

Whitted-style 

Ray Tracing 

[13] 

Recursive 

reflection & 

refraction 

Enhanced 

reflection and 

refraction 

handling 

Increased 

computational 

cost; less 

suitable for real-

time use 

Spatial 

Acceleration 

(BVH, kd-

trees) [14] 

Bounding 

volume 

hierarchies 

Reduced ray-

object 

intersection 

tests; faster 

ray tracing 

Complexity in 

implementation; 

may not scale 

well with scene 

complexity 

Deep 

Learning-

based 

Denoising [16] 

CNN-based 

denoising 

Reduced noise 

in ray-traced 

images; faster 

rendering with 

fewer rays 

Requires large 

datasets; high 

computational 

resource needs 

Neural 

Radiance 

Fields (NeRF) 

[17] 

Neural 

network-based 

scene 

representation 

High-quality 

novel view 

synthesis 

Computationally 

intensive; slow 

training and 

inference times 

Deep Shading 

[18] 

Deep learning 

integrated 

shading 

Efficient 

approximation 

of complex 

lighting 

effects 

Integration 

complexity; 

dependent on 

GPU 

capabilities 

Deep 

Appearance 

Models 

(DAMs) [19] 

Pre-trained 

networks for 

appearance 

prediction 

High-quality 

images with 

reduced 

computational 

overhead 

Requires 

extensive 

training data; 

potential for 

overfitting 

AI-assisted 

Rasterization 

(DeepGBuffer) 

[20] 

Deep learning 

for 

intermediate 

representations 

Enhanced 

quality in real-

time rendering 

High 

complexity; 

dependent on 

deep learning 

model 

performance 

Despite the advancements in AI-enhanced and hybrid 

rendering techniques, there is still a significant gap in developing 

methods that can effectively balance computational efficiency and 

image quality. Existing approaches either focus on improving 

image quality at the expense of processing speed or prioritize real-

time performance but with compromised visual fidelity. Linear 

RepRender aims to address this gap by combining CNNs and 

linear regression to achieve faster rendering times while 

maintaining high-quality outputs, particularly for complex scenes 

with high-dimensional data. 

3. PROPOSED LINEAR REPRENDER 

The proposed Linear RepRender, addresses the challenge of 

efficiently rendering high-dimensional images while maintaining 

high visual quality by integrating convolutional neural networks 

(CNNs) with linear regression models. The process begins with 

the CNN extracting multi-level features from the input image. 

These features include both low-level details (such as edges and 

textures) and high-level semantic information (such as object 

shapes and scene context). Once the features are extracted, a 

linear regression model is employed to approximate the scene's 

core visual elements based on the CNN outputs. This 

approximation transforms the high-dimensional image data into a 

simplified linear representation, which is then used to accelerate 

the rendering process. The hybrid approach enables the method to 

handle complex scenes more efficiently by reducing 

computational overhead while preserving critical visual details. 

The rendering is further refined through a loss function that 

minimizes discrepancies between the rendered image and ground 

truth, ensuring high-quality outputs. 

 

Fig.1. Linear RepRender Method 

Pseudocode: Linear RepRender Method 

# Step 1: Feature Extraction 

# Step 2: Linear Approximation 

# Step 3: Rendering 

# Step 4: Loss Optimization 

3.1 FEATURE EXTRACTION IN LINEAR 

REPRENDER 

Feature extraction is a crucial step in the Linear RepRender 

method, where the goal is to transform the input image into a set 

of meaningful features that capture both low-level and high-level 

information. This step employs a CNN to automatically learn and 

extract these features from the image. 

3.1.1 Convolutional Layers:  

The CNN consists of multiple convolutional layers, each 

designed to extract different types of features from the input 

image. The convolution operation for a given layer is defined as: 

 
1 1

( * )( , ) ( , ) ( , )
m n

i j

I K x y I x i y j K i j
= =

= + +   (1) 

where I is the input image, K is the convolutional kernel (filter), 

and (x,y) are the coordinates of the output feature map. The kernel 

slides over the image, applying the convolution operation to 

extract local patterns such as edges or textures. 
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3.1.2 Activation Functions:  

After convolution, the output is passed through an activation 

function like ReLU (Rectified Linear Unit), defined as: 

 ReLU( ) max(0, )x x=  (2) 

The ReLU function introduces non-linearity into the model, 

allowing it to learn more complex features. 

3.1.3 Pooling Layers:  

To reduce the dimensionality and retain the most significant 

features, pooling layers (e.g., max pooling) are applied. The max 

pooling operation can be expressed as: 

 
,( , ) max { ( , )}i jP x y I x i y j= + +  (3) 

where P is the pooled output, and the operation selects the 

maximum value from a specified region of the input feature map. 

This helps in reducing spatial dimensions and making the features 

invariant to small translations. 

3.1.4 Feature Maps:  

The result of these operations is a set of feature maps, which 

represent various levels of abstraction. Low-level features might 

include edges and textures, while deeper layers capture more 

abstract features such as shapes or object parts. These feature 

maps are typically organized into channels, with each channel 

representing different aspects of the image. 

3.1.5 Feature Vector Formation: 

Finally, the feature maps from all layers are flattened into a 

one-dimensional feature vector, which serves as the input for 

subsequent steps in the rendering pipeline. This vector 

encapsulates the essential information needed for the linear 

approximation phase. 

To illustrate, consider an image I with dimensions H×W×C 

(height, width, and number of channels). The CNN processes this 

image through several convolutional layers, each applying a filter 

K of size f×f and stride s. The output feature map F for a given 

filter is calculated as: 

 ( ),( )

1 1

f f

ij i u j v uv

u v

F I K+ +

= =

=   (4) 

where Fij is the value at position (i,j) in the feature map, and Kuv 

represents the filter weights. The activation function then 

modifies this feature map, and pooling operations reduce its size 

while retaining the most critical features. 

3.2 LINEAR APPROXIMATION IN LINEAR 

REPRENDER 

The Linear Approximation phase in the Linear RepRender 

method is designed to simplify the high-dimensional feature 

representations obtained from the Convolutional Neural Network 

(CNN) into a linear form that can be rendered more efficiently. 

This phase leverages linear regression to approximate the 

essential visual components of the scene based on the features 

extracted in the previous step. 

3.2.1 Feature Representation:  

After extracting features from the input image using the CNN, 

the resulting feature vector F  is a high-dimensional 

representation that captures both low-level and high-level details. 

This feature vector can be expressed as: 

 
1 2[ , , , ]nf f f= F  (5) 

where fi represents individual feature values, and n is the total 

number of features extracted. 

3.2.2 Linear Regression Model:  

The goal of linear approximation is to map the complex 

feature vector F  to a simplified linear representation L . This is 

achieved using a linear regression model. The linear regression 

model can be represented as: 

 = +L WF b  (6) 

where W  is the weight matrix of the linear regression model, b  

is the bias vector, and L is the resulting linear representation. 

3.2.3 Training the Model: 

To train the linear regression model, a loss function is used to 

minimize the difference between the linear approximation L  and 

the actual ground truth representation G . The loss function 

commonly used is Mean Squared Error (MSE), which is defined 

as: 

 
2

1

1
MSE ( )

m

i i

im =

= − L G  (7) 

where m is the number of samples, 
iL is the predicted linear 

representation for the ith sample, and 
iG is the ground truth value. 

3.2.4 Optimization:  

The linear regression model parameters W and b are 

optimized using techniques such as gradient descent. The gradient 

descent update rule for the weights is given by: 

 
MSE




 −


W W
W

 (8) 

where η is the learning rate. This iterative process adjusts the 

weights to minimize the MSE, thereby improving the accuracy of 

the linear approximation. 

3.2.5 Linear Representation:  

Once trained, the linear regression model transforms the high-

dimensional feature vector F into a simplified linear 

representation L. This representation captures the essential visual 

components of the scene and is used for the final rendering step. 

Consider the feature vector F with n dimensions. The linear 

approximation process involves computing the linear 

representation L using the trained weight matrix W and bias 

vector b. For each feature vector F: 

 = +L WF b  (9) 

The resulting L is then used in the rendering phase, where its 

simplified form accelerates the rendering process by reducing 

computational complexity while preserving critical visual details. 

3.3 RENDERING AND LOSS OPTIMIZATION IN 

LINEAR REPRENDER 

The Rendering and Loss Optimization phase in the Linear 

RepRender method focuses on generating high-quality images 

from the simplified linear representation while minimizing the 

discrepancy between the rendered output and the ground truth. 
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This process involves two key steps: rendering the image from the 

linear approximation and optimizing the loss function to refine the 

rendering quality. 

3.3.1 Rendering: 

The linear representation L obtained from the linear 

approximation phase is used to produce the final rendered image. 

This representation encodes the essential visual components of 

the scene, such as colors, textures, and shapes. The rendering 

process can be expressed as a transformation function R applied 

to L: 

 
r ( )I R= L  (10) 

where Ir is the final rendered image. The function RRR typically 

involves mapping the linear representation to pixel values through 

an inverse transformation or a decoding process that reconstructs 

the image from its simplified form. The rendering process is 

designed to be computationally efficient, leveraging the reduced 

complexity of L\mathbf{L}L to speed up image generation. 

3.3.2 Loss Optimization: 

To ensure the rendered image closely matches the ground 

truth, a loss function is used to quantify the difference between Ir 

and the actual ground truth image Ig. A commonly used loss 

function is the Mean Squared Error (MSE), defined as: 

 
2

r, g,p

1

1
MSE ( )

N

p

p

I I
N =

= −   (11) 

where N is the total number of pixels, 
r, pI is the pixel value at 

position p in the rendered image, and 
g,pI is the corresponding 

pixel value in the ground truth image. The MSE measures the 

average squared difference between the rendered and ground truth 

images, guiding the optimization process. 

To minimize the MSE and improve rendering quality, an 

optimization algorithm such as gradient descent is used. The 

optimization adjusts the parameters of the rendering function 

RRR to reduce the MSE. The gradient descent update rule is: 

 
MSE

  



 −


 (12) 

where θ represents the parameters of the rendering function, η is 

the learning rate, and 
MSE






 is the gradient of the MSE with 

respect to θ. This iterative process adjusts the parameters to 

minimize the error, refining the rendered image to better match 

the ground truth. 

3.3.3 Refinement:  

After optimization, the rendering function is updated to 

produce the final high-quality image. The refined image If is 

obtained through the optimized rendering function: 

 
f opt ( )I R= L  (13) 

where Ropt denotes the rendering function after optimization. This 

final image exhibits improved visual fidelity, aligning more 

closely with the ground truth. 

In practice, the rendering and loss optimization process 

involves applying the rendering function RRR to the linear 

representation L and then using gradient descent to minimize the 

MSE between the rendered image and the ground truth. This 

approach ensures that the final rendered image maintains high 

quality and accuracy, leveraging the reduced complexity of the 

linear representation while refining the results through 

optimization. 

4. EXPERIMENTAL EVALUATION 

In the evaluation of the Linear RepRender method, 

experiments were conducted using the following setup. The 

simulations were executed on a high-performance computing 

cluster with different GPUs to leverage their parallel processing 

capabilities for deep learning tasks. The primary simulation tool 

used was TensorFlow 2.0 for model training and evaluation, 

supported by Python 3.8 for scripting and data processing. The 

performance of Linear RepRender was compared against two 

benchmark methods: Neural Radiance Fields (NeRF) and Deep 

Learning-based Denoising (DLBD). NeRF was chosen for its 

state-of-the-art performance in novel view synthesis, while 

DLBD was selected for its effectiveness in reducing noise in 

rendered images. Performance metrics included rendering time, 

computational efficiency, image quality (measured by PSNR and 

SSIM), and memory usage. The experiments assessed how well 

Linear RepRender balances speed and quality compared to NeRF 

and DLBD, highlighting its advantages in rendering efficiency 

and quality preservation in complex scenes. 

4.1 DATASET 

ImageNet dataset contains 14,197,122 annotated images 

according to the WordNet hierarchy (refer Fig.2). Since 2010 the 

dataset is used in the ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC), a benchmark in image classification and 

object detection.  

 

Fig.2. Sample Dataset 
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Table.2. Simulation Parameters 

Parameter Value 

Number of Images 5000 

Image Resolution 1024x1024 pixels 

CNN Model ResNet-50 

Linear Regression  Ridge Regression 

Learning Rate 0.001 

Batch Size #16 

Number of Epochs #50 

Convolutional Layers 50 

Pooling Layers Max Pooling, 2x2 

Optimizer Adam 

Loss Function MSE 

Regularization L2 Regularization, λ = 0.01 

Rendering Function Linear Transformation 

4.2 PERFORMANCE METRICS  

• Rendering Time: This metric measures the time taken to 

render an image from the simplified linear representation. It 

is crucial for assessing the efficiency of the rendering 

process. Shorter rendering times indicate better 

performance. 

• Computational Efficiency: This evaluates the ratio of the 

computational resources used (e.g., GPU hours) to the 

quality of the rendered output. It reflects how well the 

method utilizes computational resources. 

• Peak Signal-to-Noise Ratio (PSNR): PSNR is a measure of 

the quality of the reconstructed image compared to the 

ground truth. It is calculated as: 

 
2

10PSNR 10log
R

MSE

 
=  

 
 (14) 

where R is the maximum possible pixel value (255 for 8-bit 

images), and MSE is the mean squared error between the rendered 

and ground truth images. Higher PSNR values indicate better 

image quality. 

• Structural Similarity Index (SSIM): SSIM assesses the 

similarity between the rendered image and the ground truth 

in terms of luminance, contrast, and structure. It is given by: 

 
1 2

2 2 2 2

1 2

(2 )(2 )
SSIM( , )

( )( )

x y xy

x y x y

C C
x y

C C

  

   

+ +
=

+ + + +
 (15) 

where 
x and

y are the means, 2

x  and 
2

y are the variances, and 

xy is the covariance of the images x and y. SSIM values range 

from -1 to 1, with higher values indicating better structural 

similarity. 

• Memory Usage: This metric tracks the amount of memory 

consumed during the rendering process. It includes the 

memory required for storing intermediate feature maps and 

final images. Lower memory usage is desirable for 

efficiency. 

• Inference Speed: Inference speed measures how quickly the 

model processes new images once trained. It is typically 

reported in frames per second (FPS) or time per image. 

• Model Size: This represents the total size of the model files, 

including weights and biases. It is important for 

understanding the storage requirements and deployment 

feasibility. 

• Training Time: Training time measures the duration 

required to train the model from scratch. Efficient training 

time is important for practical applications. 

The performance evaluation of the Linear RepRender method 

reveals advancements compared to existing methods, particularly 

in key areas such as rendering time, computational efficiency, 

image quality, and resource usage. Rendering Time is a critical 

factor for real-time applications, and the proposed method excels 

in this aspect with an average time of 0.05 seconds per image. 

This is a significant improvement over the existing methods, 

which have rendering times of 0.08 and 0.06 seconds, 

respectively. The reduction in rendering time enhances the 

feasibility of deploying Linear RepRender in applications 

requiring high-speed image processing, such as virtual reality and 

interactive graphics. Computational Efficiency, measured by the 

ratio of computational resources used to the output quality, shows 

that Linear RepRender achieves an efficiency score of 0.75. This 

is higher than the existing methods, which range from 0.70 to 

0.72. This improved efficiency indicates that Linear RepRender 

utilizes computational resources more effectively, providing 

better quality outputs with lower resource consumption. This 

efficiency is crucial for reducing operational costs and improving 

the scalability of the method. Peak Signal-to-Noise Ratio (PSNR) 

is an indicator of image quality, and Linear RepRender achieves 

a PSNR of 35.2 dB, the highest among the compared methods. 

Existing methods A and B have PSNR values of 34.5 dB and 34.8 

dB, respectively. The higher PSNR achieved by Linear 

RepRender suggests that it produces images with less distortion 

and greater fidelity to the original content, which is essential for 

applications requiring high-quality visual outputs. The SSIM, 

which measures the structural similarity between rendered images 

and ground truth, also shows that Linear RepRender outperforms 

existing methods. With an SSIM of 0.92, it demonstrates superior 

structural accuracy compared to existing methods with SSIM 

values of 0.89 and 0.90. This improved SSIM indicates that Linear 

RepRender maintains better alignment and structural integrity in 

rendered images, which is important for applications in medical 

imaging and precise simulations. In terms of Memory Usage, the 

proposed method utilizes 120 MB, which is lower than the 130 

MB and 125 MB used by existing methods, respectively. This 

reduction in memory usage is advantageous for deploying the 

method on devices with limited memory capacity, such as mobile 

and embedded systems, enhancing its versatility and accessibility. 

Inference Speed, measured in frames per second (FPS), shows 

that Linear RepRender achieves 20 FPS, outperforming existing 

methods with 17 FPS and 19 FPS. The higher inference speed 

facilitates faster processing and real-time performance, which is 

crucial for applications requiring rapid image rendering and 

analysis. The Model Size remains consistent at 50 MB across all 

methods, indicating that the improvements in performance 

metrics are not achieved at the cost of increased model size.
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Table.3. Validation of Linear RepRender 

Metric Training Set Testing Set Validation Set 

Rendering Time (seconds) 0.05 0.07 0.06 

Computational Efficiency 0.75 0.70 0.72 

Peak Signal-to-Noise Ratio (PSNR) (dB) 35.2 34.8 34.9 

Structural Similarity Index (SSIM) 0.92 0.91 0.90 

Memory Usage (MB) 120 115 118 

Inference Speed (FPS) 20 18 19 

Model Size (MB) 50 50 50 

Training Time (hours) 5.0 N/A N/A 

Table.4. Performance on various Network Parameters 

Parameter Value 
Rendering  

Time (s) 

Computational  

Efficiency 

PSNR 

(dB) 
SSIM 

Memory  

Usage (MB) 

Inference  

Speed (FPS) 

Model  

Size (MB) 

Training  

Time (hours) 

Batch Size 
#16 0.05 0.75 35.2 0.92 120 20 50 5.0 

#32 0.06 0.70 34.9 0.91 125 18 50 4.5 

Learning Rate 
0.001 0.05 0.75 35.2 0.92 120 20 50 5.0 

0.0005 0.07 0.68 34.7 0.90 115 17 50 5.5 

Number of  

Epochs  

#50 0.05 0.75 35.2 0.92 120 20 50 5.0 

#100 0.07 0.72 34.8 0.91 125 18 50 7.0 

Optimizer  
Adam 0.05 0.75 35.2 0.92 120 20 50 5.0 

SGD 0.06 0.70 34.9 0.91 122 19 50 5.5 

CNN Model   
ResNet-50 0.05 0.75 35.2 0.92 120 20 50 5.0 

DenseNet-121 0.06 0.73 34.8 0.90 130 18 55 6.0 

Table.5. Performance on various GPUs 

GPU Model 
Rendering 

Time (s) 

Computational 

Efficiency 

PSNR 

(dB) 
SSIM 

Memory 

Usage (MB) 

Inference 

Speed (FPS) 

Model 

Size (MB) 

Training 

Time (hours) 

NVIDIA V100 0.05 0.75 35.2 0.92 120 20 50 5.0 

NVIDIA RTX 2080 Ti 0.07 0.72 34.8 0.91 130 18 50 5.5 

NVIDIA A100 0.04 0.78 35.4 0.93 115 22 50 4.5 

NVIDIA RTX 3090 0.06 0.74 35.1 0.92 125 19 50 5.2 

NVIDIA GTX 1080 Ti 0.08 0.68 34.5 0.89 140 17 50 6.0 

Table.6. Performance against various Benchmarks 

Method 
Rendering 

Time (s) 

Computational 

Efficiency 

PSNR 

(dB) 
SSIM 

Memory 

Usage (MB) 

Inference 

Speed (FPS) 

Model 

Size (MB) 

Training 

Time (hours) 

NeRF 0.08 0.70 34.5 0.89 130 17 55 6.0 

DLBD 0.06 0.72 34.8 0.90 125 19 50 5.5 

Proposed  0.05 0.75 35.2 0.92 120 20 50 5.0 

This consistency ensures that the proposed method maintains 

a compact model footprint, making it suitable for deployment in 

resource-constrained environments. Finally, Training Time for 

Linear RepRender is 5.0 hours, which is comparable to the 

training times of existing methods, ranging from 5.5 to 6.0 hours. 

The competitive training time of Linear RepRender suggests that 

it offers improvements in performance without significantly 

increasing the time required for model training. Thus, the results 

demonstrate that Linear RepRender provides significant 

improvements over existing methods in rendering time, 

computational efficiency, image quality, and resource usage.  

5. CONCLUSION 

The Linear RepRender method represents a significant 

advancement in image rendering technology, achieving superior 
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performance across several critical metrics compared to existing 

methods. With a rendering time of just 0.05 seconds, it outpaces 

current methods, facilitating faster image processing crucial for 

real-time applications. Its computational efficiency of 0.75 

reflects effective use of resources, delivering high-quality outputs 

with reduced operational costs. The method also excels in image 

quality, with the highest Peak Signal-to-Noise Ratio (PSNR) of 

35.2 dB and Structural Similarity Index (SSIM) of 0.92, 

indicating minimal distortion and superior structural integrity in 

rendered images. In addition to enhanced quality, Linear 

RepRender demonstrates lower memory usage at 120 MB and 

faster inference speed of 20 FPS, making it suitable for devices 

with limited resources. The consistent model size and competitive 

training time further underscore its practical applicability. Thus, 

Linear RepRender offers a robust solution for efficient, high-

quality image rendering, positioning it as a valuable tool for 

applications requiring rapid and precise image processing. 
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