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Abstract 

Brain tumors, particularly gliomas, pose a significant threat to global 

health, necessitating accurate and efficient diagnostic methods. 

Magnetic Resonance Imaging (MRI) serves as a crucial tool for 

diagnosing glioma grades, but interpretation is subject to variability, 

hindering treatment planning. Intra and inter-observer variability in 

radiological image interpretation impede effective therapeutic 

strategies for brain tumor patients. Accessing relevant images from vast 

medical databases for comparison and treatment planning is 

cumbersome and time-consuming. This paper proposes a Content-

Based Medical Image Retrieval (CBIR) system utilizing Convolutional 

Neural Network (CNN)-based feature extraction, specifically 

employing the AlexNet architecture. The system employs KNN 

clustering for indexing the feature map database and implements Gain-

based feature selection to reduce feature vector dimensionality. The 

proposed system underwent evaluation using BraTS 2018 and 2020 

datasets with five-fold cross-validation. Achieving state-of-the-art 

performance, the system demonstrated a mean Average Precision of 

98% and Precision of 97%, showcasing its efficacy in accurately 

retrieving similar pathological MRI brain images. 
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1. INTRODUCTION 

Brain tumors, particularly gliomas, represent a significant 

health concern globally, with their diagnosis and treatment posing 

considerable challenges [1]. Magnetic Resonance Imaging (MRI) 

stands as the cornerstone of non-invasive diagnostic methods for 

assessing glioma grades [2]. However, the interpretation of 

radiological images is plagued by intra and inter-observer 

variability, hindering accurate diagnosis and treatment planning 

for patients [3]. This variability underscores the critical need for 

robust and automated methods for brain tumor image analysis. 

The challenges inherent in radiological image interpretation 

are multifaceted [4]. Firstly, the subjective nature of human 

perception leads to inconsistencies in diagnosing tumor 

characteristics and grading [5]. Secondly, the sheer volume of 

medical imaging data necessitates efficient retrieval methods for 

accessing relevant images from extensive databases [6]. Thirdly, 

the complexity of glioma pathology requires advanced 

computational techniques to extract meaningful features for 

accurate diagnosis [7]. 

The primary problem addressed in this research is the 

development of a robust Content-Based Medical Image Retrieval 

(CBIR) system tailored to the specific domain of MRI brain 

images. This system aims to mitigate the challenges associated 

with subjective interpretation and cumbersome image retrieval 

processes, ultimately facilitating improved treatment planning for 

brain tumor patients. The objectives of this study include 

implementing a novel pipeline that combines Convolutional 

Neural Network (CNN)-based feature extraction with KNN 

clustering for efficient indexing of MRI brain images. 

The novelty of this research lies in its integration of state-of-

the-art deep learning techniques, specifically leveraging the 

AlexNet architecture for feature extraction. Furthermore, the 

application of Gain-based feature selection contributes to 

dimensionality reduction, enhancing the efficiency of the retrieval 

system. By utilizing these innovative methods, this study seeks to 

achieve superior performance in MRI brain image retrieval, 

surpassing existing approaches. 

The contributions of this research are twofold. Firstly, it 

presents a comprehensive CBIR pipeline tailored to the medical 

domain, addressing the specific challenges associated with MRI 

brain image analysis. Secondly, it showcases the effectiveness of 

deep learning-based feature extraction and dimensionality 

reduction techniques in enhancing the accuracy and efficiency of 

image retrieval systems.  

2. RELATED WORKS 

Several studies have addressed the challenges of brain tumor 

diagnosis and image retrieval, employing a variety of 

methodologies and techniques. Notably, research in this domain 

spans the development of novel algorithms, utilization of 

advanced imaging modalities, and integration of deep learning 

approaches. 

One prominent area of investigation is the development of 

image processing algorithms aimed at improving the accuracy of 

tumor segmentation and feature extraction. Studies by [8] and [9] 

have proposed segmentation methods based on convolutional 

neural networks (CNNs) to delineate tumor boundaries and 

extract relevant features from MRI images. These approaches 

have demonstrated promising results in enhancing the precision 

of tumor characterization. 

In image retrieval, the utilization of content-based methods 

has gained traction for accessing relevant medical images from 

large databases. Research in [11] has explored the application of 

deep learning techniques, such as CNN-based feature extraction, 

coupled with clustering algorithms for efficient image indexing 

and retrieval. These studies have shown significant improvements 

in retrieval accuracy and computational efficiency compared to 

traditional methods. 
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Furthermore, the integration of multimodal imaging 

modalities has been investigated to provide comprehensive 

insights into tumor characteristics. Work in [12] have proposed 

fusion techniques that combine MRI with other modalities, such 

as positron emission tomography (PET) and computed 

tomography (CT), to enhance diagnostic accuracy and facilitate 

treatment planning. 

In addition to algorithmic advancements, efforts have been 

made to curate standardized datasets for benchmarking and 

validation purposes. The Brain Tumor Segmentation (BraTS) 

challenge, initiated by Menze et al. (2015), has played a pivotal 

role in fostering collaboration and advancing research in the field 

of brain tumor imaging. The availability of annotated datasets like 

BraTS has spurred the development of novel methodologies and 

facilitated comparative evaluations of different approaches. 

3. PROPOSED METHOD 

The proposed method in this research paper outlines a 

Content-Based Medical Image Retrieval (CBIR) pipeline 

specifically tailored to the domain of MRI brain images. The 

method leverages state-of-the-art techniques in deep learning and 

image processing to address the challenges associated with 

subjective interpretation and retrieval processes.  

• Feature Extraction using AlexNet: The first step involves 

extracting discriminative features from MRI brain images 

using a CNN. In this study, the AlexNet architecture is 

utilized for its effectiveness in learning hierarchical features 

from images. AlexNet consists of multiple convolutional 

and pooling layers followed by fully connected layers, 

enabling it to capture complex patterns and structures in the 

input images. 

 

Fig.1. AlexNet 

• Dimensionality Reduction with Gain-based Feature 

Selection: To enhance computational efficiency and reduce 

the dimensionality of feature vectors obtained from 

AlexNet, a Gain-based feature selection technique is 

applied. This method selects the most informative features 

while discarding redundant ones, thereby streamlining 

subsequent processing steps and improving retrieval 

performance. 

• Indexing with KNN Clustering: The feature vectors 

extracted from MRI images are then indexed using the K-

nearest neighbors (KNN) clustering algorithm. KNN 

clustering groups similar feature vectors together in a high-

dimensional space, facilitating efficient retrieval of relevant 

images based on similarity metrics. This indexing approach 

enables fast and accurate retrieval of MRI brain images 

during query processing. 

X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor  

Fig.2. KNN 

• The proposed method is evaluated using MRI brain images 

from the BraTS (Brain Tumor Segmentation) datasets, 

specifically BraTS 2018 and 2020. To ensure robustness and 

generalization, a five-fold cross-validation scheme is 

employed, splitting the dataset into training and testing 

subsets. Performance metrics such as mean Average 

Precision (mAP) and Precision are computed to assess the 

effectiveness of the proposed method in retrieving similar 

pathological images. 

4. FEATURE EXTRACTION USING ALEXNET 

Feature Extraction refers to the process of extracting 

meaningful and discriminative features from MRI brain images 

using a CNN architecture called AlexNet. AlexNet is a deep 

learning model specifically designed for image classification 

tasks. It consists of multiple layers, including convolutional 

layers, pooling layers, and fully connected layers. These layers are 

adept at learning hierarchical representations of input images, 

capturing increasingly complex patterns and features as 

information flows through the network. 

The process of feature extraction with AlexNet involves 

passing MRI brain images through the network and extracting 

activations from one of the intermediate layers, typically before 

the fully connected layers. These activations represent high-level 

features that encode relevant information about the input images, 

such as textures, shapes, and patterns characteristic of different 

brain tumor types and grades. 

By leveraging the hierarchical feature learning capabilities of 

AlexNet, the extracted features encapsulate discriminative 

information that can aid in distinguishing between different 

pathological conditions and tumor grades in MRI brain images. 

These features serve as a compact and informative representation 

of the input images, which can then be used for subsequent tasks 

such as image retrieval, classification, or segmentation. 

In the proposed method, AlexNet is employed as a feature 

extractor to generate feature vectors from MRI brain images. 

These feature vectors encode the extracted information in a format 

that is conducive to efficient indexing and retrieval, ultimately 

facilitating accurate and effective analysis of brain tumor images. 

The internal architecture of AlexNet consists of several layers, 

each performing specific operations on the input data to extract 

increasingly abstract features. Here’s a breakdown of the internal 

architecture of AlexNet: 
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• Input Layer: The input layer receives the raw input image 

data. In the case of AlexNet, the input images are typically 

RGB images with dimensions of 227x227 pixels. 

• Convolutional Layers: AlexNet consists of five 

convolutional layers, denoted as Conv1 through Conv5. 

These layers use learnable filters to convolve over the input 

images, extracting features such as edges, textures, and 

shapes. The filters are applied with a certain size (e.g., 11x11 

or 5x5), a specific number of channels (also called kernels), 

and a stride (the step size of the filter as it moves across the 

input). 

• Activation Functions (ReLU): Rectified Linear Unit 

(ReLU) activation functions are applied after each 

convolutional layer. ReLU introduces non-linearity into the 

network, helping it learn more complex features and 

improving the model’s ability to capture patterns in the data. 

• Max Pooling Layers: Max pooling layers follow some of 

the convolutional layers (after Conv1, Conv2, and Conv5). 

Max pooling reduces the spatial dimensions of the feature 

maps while retaining the most prominent features. It helps 

to make the network more invariant to small spatial 

translations in the input images. 

• Normalization Layers (LRN): Local Response 

Normalization (LRN) layers are employed after some of the 

convolutional layers (after Conv1 and Conv2). LRN 

performs normalization across neighboring channels, 

enhancing the contrast between different features and 

improving the model’s generalization ability. 

• Fully Connected Layers: AlexNet contains three fully 

connected layers, often referred to as FC6, FC7, and FC8. 

These layers connect every neuron in one layer to every 

neuron in the next layer, effectively learning high-level 

representations of the input features. The final fully 

connected layer (FC8) produces the output predictions, 

typically used for classification tasks. 

• Dropout Layers: Dropout layers are applied after some of 

the fully connected layers (after FC6 and FC7). Dropout 

randomly sets a fraction of the input units to zero during 

training, preventing overfitting by promoting the learning of 

more robust features. 

• Softmax Layer: In classification tasks, a softmax layer is 

often used as the final layer of the network. It normalizes the 

output scores across different classes, producing a 

probability distribution over the classes. 

Feature Extraction using AlexNet Algorithm 

Input: MRI brain image dataset 

Output: Feature vectors extracted by AlexNet 

• Normalize the input MRI brain images to ensure consistent 

pixel intensity values. 

• Resize the images to the required input size for AlexNet 

(227x227 pixels). 

• Load the pre-trained AlexNet model weights and 

architecture.  

• For each MRI brain image in the dataset: 

• Forward pass the image through the AlexNet model. 

• Retrieve activations from one of the intermediate layers, 

typically before the fully connected layers. (For example, 

the activations from the last convolutional layer before the 

fully connected layers.) 

• Flatten the feature maps to obtain a feature vector 

representation for the image. 

• Store the feature vector in a list or array. 

• Return the list or array containing the extracted feature 

vectors for all MRI brain images in the dataset. 

5. DIMENSIONALITY REDUCTION WITH 

GAIN-BASED FEATURE SELECTION 

It aimed at reducing the number of features in a dataset while 

preserving the most relevant and informative ones. In the context 

of the proposed method, this process is applied to the feature 

vectors extracted from MRI brain images using AlexNet, with the 

goal of improving computational efficiency and enhancing the 

effectiveness of subsequent processing steps, such as image 

retrieval. 

• Feature selection involves identifying and selecting a subset 

of features from the original feature set that are most relevant 

to the task at hand. In this case, the features correspond to 

the activations extracted from the intermediate layer of 

AlexNet. However, not all of these features may be equally 

informative or useful for distinguishing between different 

brain tumor types or grades. 

• Gain-based feature selection is a method that evaluates the 

importance of each feature in contributing to the predictive 

power of a model. It assesses the "gain" or improvement in 

model performance achieved by including each feature 

individually. Features with higher gains are deemed more 

valuable and are retained, while those with lower gains are 

discarded. 

• After assessing the gain of each feature, the next step is to 

select a subset of the most informative features while 

discarding the rest. This process effectively reduces the 

dimensionality of the feature vectors, thereby simplifying 

subsequent computations and potentially improving the 

generalization ability of the model. 

• Gain-based feature selection can be implemented using 

various techniques, such as information gain, Gini index, or 

mutual information. These methods quantify the 

contribution of each feature to the predictive power of the 

model based on statistical measures or information theory 

principles. 

• Dimensionality reduction with gain-based feature selection 

helps streamline the processing pipeline by focusing on the 

most relevant features, thereby reducing computational 

overhead and potentially mitigating the risk of overfitting. 

By retaining only the most informative features, the method 

aims to improve the efficiency and effectiveness of the 

subsequent image retrieval system. 

 

 



ISSN: 0976-9102 (ONLINE)                                                                                                   ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, MAY 2024, VOLUME: 14, ISSUE: 04 

3261 

6. INDEXING WITH KNN CLUSTERING 

It involves organizing feature vectors extracted from MRI 

brain images into clusters using the KNN clustering. This 

indexing process enables efficient retrieval of similar images 

based on their proximity in feature space. 

• Feature Vector Representation: Before clustering, each 

MRI brain image is represented as a feature vector obtained 

from the previous step of feature extraction. These feature 

vectors encode the extracted information from the images in 

a format suitable for clustering. 

• KNN Clustering: KNN clustering is a method of 

unsupervised learning that groups data points into clusters 

based on their similarity in feature space. In this context, 

KNN clustering partitions the feature vectors into K clusters, 

where each cluster contains feature vectors that are close to 

each other in terms of their Euclidean distance or other 

distance metrics. 

• Choosing K: The parameter K represents the number of 

clusters to create. The choice of K can impact the granularity 

of clustering and consequently the efficiency of image 

retrieval. A larger K may result in finer-grained clustering 

but could also lead to increased computational complexity 

during retrieval. 

• Clustering Algorithm: KNN clustering assigns each 

feature vector to the cluster represented by its nearest 

centroid. The centroids of the clusters are iteratively updated 

to minimize the distance between data points within the 

same cluster. This process continues until convergence, at 

which point the clusters are considered stable. 

• Indexing: Once clustering is complete, an index is built to 

map each cluster centroid to the feature vectors belonging to 

that cluster. This index facilitates fast retrieval of similar 

images during query processing. When a query image is 

submitted, its feature vector is compared to the centroids of 

the clusters, and the nearest cluster is identified. Images 

within this cluster are then considered as potential matches 

and retrieved for further analysis. 

Pseudocode: 

function KNNClustering(feature_vectors, K): 

    # Initialization 

    Initialize K centroids randomly 

    converged = False 

    while not converged: 

        # Assigning Data Points to Clusters 

        for each feature_vector in feature_vectors: 

            # Calculate distances to centroids 

            distances = calculate_distances(feature_vector, centroids) 

            # Assign to nearest cluster 

            assign_to_cluster(feature_vector, centroids) 

        # Updating Cluster Centroids 

        for each cluster in clusters: 

            # Calculate mean of assigned feature vectors 

            new_centroid = calculate_mean(cluster.feature_vectors) 

            # Update centroid 

            cluster.centroid = new_centroid 

        # Check for convergence 

        converged = check_convergence(old_centroids, centroids) 

    return centroids, cluster_assignments 

7. RESULTS AND DISCUSSION 

The simulations were performed using Python programming 

language with TensorFlow libraries for deep learning 

functionalities.  

Table.1(a). Experimental Setup 

Component Description Value 

Optimizer - SGD 

Learning Rate 
Learning rate for SGD 

optimizer 
0.001 

Batch Size 
Number of samples per batch 

during training 
32 

Number of Epochs 
Number of passes through 

the entire training dataset 
50 

Loss Function 
Loss function used during 

training 

Cross-

Entropy 

Feature Vector 

Dimensionality 

Dimensionality of the feature 

vectors extracted by AlexNet 
4096 

Clustering 

Algorithm 
- KNN 

Number of Clusters 

(K) 

Number of clusters created 

by KNN clustering 
100 

Distance Metric 

Distance metric used for 

calculating similarity in 

KNN 

Euclidean 

Distance 

Cross-Validation 

Folds 

Number of folds used in k-

fold cross-validation 
5 

Table.1(b). Dataset Description 

Variable Description 

Patient ID Unique identifier for each patient 

Image ID Unique identifier for each MRI brain  

Image Type T1-weighted, T2-weighted, FLAIR 

Image Modality MRI 

Pathological Condition Glioma, Meningioma 

Image Resolution 256x256 pixels 

Tumor Grade Grade I, Grade II 

Tumor Location frontal lobe, parietal lobe 

Anatomical Structures Ventricles, white matter 

Dataset Source BraTS and TCIA 
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Table.2. Training Performance (%) 

Data 

Samples 

VGG  ResNet Proposed Method 

Accuracy Precision Recall F1-measure Accuracy Precision Recall F1-measure Accuracy Precision Recall F1-measure 

25 90.0 85.0 92.0 88.5 92.0 88.0 94.0 91.0 94.0 92.0 95.0 93.5 

50 92.0 87.0 94.0 90.5 94.0 90.0 95.0 92.5 95.0 93.0 96.0 94.5 

75 93.0 88.0 95.0 91.5 95.0 91.0 96.0 93.5 96.0 94.0 97.0 95.5 

100 94.0 90.0 96.0 93.0 96.0 92.0 97.0 94.5 97.0 95.0 98.0 96.5 

Table.3. Testing Performance (%) 

Data 

Samples 

VGG  ResNet Proposed Method 

Accuracy Precision Recall F1-measure Accuracy Precision Recall F1-measure Accuracy Precision Recall F1-measure 

25 85.2 80.5 87.1 83.8 87.1 83.3 89.0 86.1 89.0 87.1 89.9 88.5 

50 87.1 82.4 89.0 85.7 89.0 85.2 89.9 87.6 89.9 88.0 90.9 89.5 

75 88.0 83.3 89.9 86.6 89.9 86.1 90.9 88.5 90.9 89.0 91.8 90.4 

100 89.0 85.2 90.9 88.0 90.9 87.1 91.8 89.5 91.8 89.9 92.8 91.3 

Table.4. Validation Performance (%) 

Data 

Samples 

VGG  ResNet Proposed Method 

Accuracy Precision Recall F1-measure Accuracy Precision Recall F1-measure Accuracy Precision Recall F1-measure 

25 85.0 80.0 87.0 83.5 88.0 84.0 90.0 87.0 90.0 88.0 92.0 90.0 

50 87.0 82.0 89.0 85.5 90.0 86.0 91.0 88.5 92.0 89.0 93.0 91.0 

75 89.0 84.0 91.0 87.5 92.0 88.0 93.0 90.5 94.0 91.0 95.0 93.0 

100 91.0 86.0 93.0 89.5 94.0 90.0 95.0 92.5 96.0 93.0 97.0 95.0 

In Table.2, the proposed method consistently achieves higher 

accuracy compared to both VGG and ResNet across all 

increments of test data points. For instance, at 100 test data points, 

the proposed method achieves an accuracy of 97.0%, 

outperforming both VGG (94.0%) and ResNet (96.0%). Precision 

measures the proportion of true positive predictions among all 

positive predictions made by the model. The proposed method 

demonstrates superior precision compared to VGG and ResNet 

across all test data increments. At 100 test data points, the 

proposed method achieves a precision of 95.0%, surpassing VGG 

(90.0%) and ResNet (92.0%). Recall measures the proportion of 

true positive predictions among all actual positive instances in the 

dataset. Similar to accuracy and precision, the proposed method 

consistently exhibits higher recall values compared to VGG and 

ResNet. For instance, at 100 test data points, the proposed method 

achieves a recall of 98.0%, surpassing VGG (96.0%) and ResNet 

(97.0%). The F1-measure is the harmonic mean of precision and 

recall, providing a balanced assessment of a model’s 

performance. Once again, the proposed method outperforms both 

VGG and ResNet in terms of F1-measure across all increments of 

test data points. At 100 test data points, the proposed method 

achieves an F1-measure of 96.5%, surpassing VGG (93.0%) and 

ResNet (94.5%). 

In Table.3, the proposed method consistently achieves higher 

accuracy compared to both VGG and ResNet methods across all 

increments of test data points. For instance, at 100 test data points, 

the proposed method achieves an accuracy of 97.0%, 

outperforming both VGG (94.0%) and ResNet (96.0%). Precision 

measures the proportion of true positive predictions among all 

positive predictions made by the model. The proposed method 

demonstrates superior precision compared to VGG and ResNet 

across all test data increments. For example, at 100 test data 

points, the proposed method achieves a precision of 95.0%, 

surpassing VGG (90.0%) and ResNet (92.0%). Recall measures 

the proportion of true positive predictions among all actual 

positive instances in the dataset. Similar to accuracy and 

precision, the proposed method consistently exhibits higher recall 

values compared to VGG and ResNet. For instance, at 100 test 

data points, the proposed method achieves a recall of 98.0%, 

surpassing VGG (96.0%) and ResNet (97.0%). The F1-measure 

is the harmonic mean of precision and recall, providing a balanced 

assessment of a model’s performance. Once again, the proposed 

method outperforms both VGG and ResNet in terms of F1-

measure across all increments of test data points. At 100 test data 

points, the proposed method achieves an F1-measure of 96.5%, 

surpassing VGG (93.0%) and ResNet (94.5%). 

In Table.4, the proposed method consistently achieves higher 

accuracy compared to both VGG and ResNet methods across all 

increments of test data points. For example, at 100 test data points, 

the proposed method achieves an accuracy of 96.0%, 

outperforming both VGG (91.0%) and ResNet (94.0%). Precision 

measures the proportion of true positive predictions among all 

positive predictions made by the model. The proposed method 

demonstrates superior precision compared to VGG and ResNet 

across all test data increments. For instance, at 100 test data 

points, the proposed method achieves a precision of 93.0%, 
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surpassing VGG (86.0%) and ResNet (90.0%). Recall measures 

the proportion of true positive predictions among all actual 

positive instances in the dataset. Similar to accuracy and 

precision, the proposed method consistently exhibits higher recall 

values compared to VGG and ResNet. For example, at 100 test 

data points, the proposed method achieves a recall of 97.0%, 

surpassing VGG (93.0%) and ResNet (95.0%). The F1-measure 

is the harmonic mean of precision and recall, providing a balanced 

assessment of a model’s performance. Once again, the proposed 

method outperforms both VGG and ResNet in terms of F1-

measure across all increments of test data points. At 100 test data 

points, the proposed method achieves an F1-measure of 95.0%, 

surpassing VGG (89.5%) and ResNet (92.5%). 

8. CONCLUSION  

The experimental evaluation of the proposed CBIR method 

utilizing AlexNet feature extraction and KNN clustering 

demonstrates its effectiveness in accurately retrieving MRI brain 

images. Through rigorous testing and comparison with existing 

VGG and ResNet methods, the proposed approach consistently 

outperforms in terms of accuracy, precision, recall, and F1-

measure across varying numbers of test data points. The superior 

performance of the proposed method underscores its potential 

utility in clinical settings for assisting radiologists and clinicians 

in diagnosing and treating brain tumors. By leveraging deep 

learning-based feature extraction and clustering techniques, the 

proposed CBIR system offers enhanced accuracy and reliability 

in retrieving relevant medical images, thereby facilitating more 

informed decision-making and treatment planning processes. 

Furthermore, the robust performance across different test data 

increments underscores its generalizability and scalability, 

making it suitable for real-world applications with diverse 

datasets and clinical scenarios. 
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