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Abstract 

Breast cancer remains a significant global health concern, with early 

detection crucial for effective treatment and improved patient 

outcomes. Traditional methods of detecting breast cancer lesions, such 

as mammography and ultrasound, often rely on subjective 

interpretation and may lack sensitivity. Convolutional Neural Networks 

(CNNs) have shown promise in medical imaging analysis due to their 

ability to automatically extract features from images and classify 

abnormalities. However, improving the detection accuracy of breast 

cancer lesions using CNNs remains a challenge. Existing CNN-based 

approaches for breast cancer lesion detection may suffer from limited 

sensitivity and specificity, leading to missed diagnoses or false positives. 

Additionally, extracting discriminative features from medical images 

with varying resolutions and noise levels presents a significant 

challenge. In this study, we propose an enhanced detection framework 

for breast cancer lesions using CNNs and feature fusion. Our method 

incorporates multiple CNN architectures, including DenseNet, ResNet, 

and Inception, to capture diverse image features. Furthermore, we 

employ feature fusion techniques to integrate complementary 

information from different CNN models. By combining features at 

multiple levels, our approach aims to improve the robustness and 

discriminative power of the detection model. Experimental results on a 

large dataset of breast cancer images demonstrate the effectiveness of 

our proposed method. The proposed framework achieves a sensitivity 

of 0.95 and a specificity of 0.92, outperforming state-of-the-art methods 

by a significant margin. Moreover, the proposed method exhibits an 

area under the receiver operating characteristic curve (AUC) of 0.97, 

indicating its superior discriminative ability in distinguishing between 

malignant and benign lesions. The computational efficiency of the 

proposed approach is also shows, with an average inference time of 0.2 

seconds per image. 
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1. INTRODUCTION 

Breast cancer continues to be a leading cause of cancer-related 

mortality among women worldwide. Early detection of breast 

cancer lesions is paramount for timely intervention and improved 

patient outcomes [1]. Traditional screening methods such as 

mammography and ultrasound have been the cornerstone of 

breast cancer detection for decades [2]. However, these methods 

often suffer from limitations in sensitivity and specificity, leading 

to missed diagnoses or unnecessary biopsies [3]. In recent years, 

there has been a growing interest in leveraging advanced 

computational techniques, particularly Convolutional Neural 

Networks (CNNs), for more accurate and reliable detection of 

breast cancer lesions from medical imaging data [4]. 

Despite the promise of CNNs in medical image analysis, 

several challenges hinder their widespread adoption in clinical 

practice [5]. One significant challenge is the extraction of 

discriminative features from medical images with high variability 

in resolution, noise levels, and anatomical structures [6]. 

Additionally, the inherent class imbalance between malignant and 

benign lesions poses a challenge for training accurate and robust 

detection models [7]. Moreover, the interpretability of CNN-

based models in medical settings [12] remains a concern, as 

clinicians require insights into the decision-making process of 

these algorithms [8]. 

The primary objective of this study is to develop an enhanced 

detection framework for breast cancer lesions using CNNs and 

feature fusion. Specifically, we aim to address the limitations of 

existing CNN-based approaches, including limited sensitivity, 

specificity, and interpretability. Our goal is to design a detection 

model capable of accurately distinguishing between malignant 

and benign lesions with high sensitivity and specificity, while also 

providing insights into the features driving the classification 

decisions. 

The proposed framework offers several novel contributions to 

the field of breast cancer detection: We propose novel feature 

fusion techniques to combine information from different CNN 

models, thereby improving the overall detection performance. 

2. RELATED WORKS 

Breast cancer detection using Convolutional Neural Networks 

(CNNs) has garnered significant attention in recent years, with 

numerous studies exploring various approaches to improve 

accuracy, sensitivity, and specificity. In this section, we review 

several relevant works in the field of breast cancer lesion 

detection using CNNs. 

One notable study by [8] shows the potential of CNNs in 

breast cancer detection by developing a deep learning model 

trained on a large dataset of mammography images. The model 

achieved high sensitivity and specificity in detecting malignant 

lesions, outperforming radiologists in certain cases. While this 

study showcased the promise of CNNs in breast cancer detection, 

it also highlighted the importance of dataset size and diversity in 

training accurate models. 

Building upon the success of CNNs, [9] proposed a novel deep 

learning framework for breast cancer diagnosis using multimodal 

imaging data, including mammography, ultrasound, and magnetic 

resonance imaging (MRI). Their model integrated information 

from multiple modalities to improve detection accuracy and 

reduce false positives. By leveraging complementary features 

from different imaging modalities, the proposed framework 

shows superior performance compared to single-modality 

approaches. 

In addition to leveraging multimodal imaging data, some 

studies have focused on enhancing the interpretability of CNN-

based detection models. For instance, [10] proposed a method for 
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visualizing the features learned by CNNs to provide insights into 

the decision-making process of the model. By analyzing the 

learned features, clinicians could better understand the 

characteristics of malignant and benign lesions, improving 

diagnostic confidence and decision-making. 

Feature fusion techniques have also been explored to enhance 

the discriminative power of CNN-based detection models. [11] 

proposed a feature fusion approach that combined deep features 

extracted from mammography images with handcrafted features 

derived from clinical data. By integrating information from both 

imaging and clinical domains, their model achieved improved 

detection performance and robustness across diverse patient 

populations. 

Furthermore, transfer learning has emerged as a powerful 

technique for training CNN-based detection models with limited 

annotated data. [12] shows the effectiveness of transfer learning 

in breast cancer detection by fine-tuning pre-trained CNN models 

on a small dataset of mammography images. The transferred 

features from pre-trained models significantly improved the 

generalization performance of the detection model, enabling 

accurate lesion detection with limited training data. 

These studies show the diverse approaches and techniques 

employed in CNN-based breast cancer lesion detection. While 

significant progress has been made in improving detection 

accuracy, sensitivity, and specificity, challenges such as 

interpretability, dataset diversity, and generalization to diverse 

patient populations remain areas for future research. By 

addressing these challenges, CNN-based detection models have 

the potential to revolutionize early detection and diagnosis of 

breast cancer, ultimately improving patient outcomes. 

3. PROPOSED METHOD 

The proposed method for enhanced detection of breast cancer 

lesions leverages CNNs and feature fusion techniques to improve 

accuracy, sensitivity, specificity, and interpretability.  

• CNN Architecture Selection: The first step involves 

selecting appropriate CNN architectures for feature 

extraction from medical images. Common architectures 

such as DenseNet, ResNet, and Inception are typically 

chosen due to their effectiveness in learning discriminative 

features from complex data. Each CNN architecture captures 

different aspects of the image, enabling a more 

comprehensive representation of breast cancer lesions. 

• Feature Extraction: Once the CNN architectures are 

selected, the next step involves feeding medical images, 

such as mammography or ultrasound scans, into each CNN 

to extract deep features. These features represent the 

characteristics of the lesions at various levels of abstraction, 

capturing both local and global information. 

• Feature Fusion: After extracting features from each CNN, 

feature fusion techniques are employed to combine the 

information from different models. This fusion process aims 

to leverage the complementary nature of features extracted 

by different CNN architectures, enhancing the overall 

discriminative power of the detection model. Various fusion 

methods, such as concatenation, summation, or attention 

mechanisms, can be explored to integrate the extracted 

features effectively. 

• Classifier Training: The fused features are then fed into a 

classification layer, typically consisting of fully connected 

layers and a softmax activation function. The classifier is 

trained using labeled data to distinguish between malignant 

and benign lesions. During training, the model learns to map 

the extracted features to the corresponding class labels, 

optimizing classification performance using techniques like 

backpropagation and gradient descent. 

4. CNN ARCHITECTURE SELECTION  

CNN architecture selection involves choosing suitable CNN 

architectures for the task of feature extraction from medical 

images, such as mammography or ultrasound scans [13]-[15]. 

Three CNN architectures considered are DenseNet, ResNet, and 

Inception. 

• DenseNet (Densely Connected Convolutional Networks): 

DenseNet is a deep learning architecture introduces the 

concept of densely connected layers, where each layer is 

connected to every other layer in a feed-forward fashion. 

This dense connectivity facilitates feature reuse and 

promotes feature propagation throughout the network. 

DenseNet architectures typically consist of densely 

connected blocks, which contain convolutional layers 

followed by batch normalization and activation functions. 

The dense connections enable effective gradient flow during 

training, mitigating the vanishing gradient problem and 

promoting feature reuse, leading to more efficient and 

accurate feature extraction as in Fig.1. 

• ResNet (Residual Neural Networks): ResNet is a 

groundbreaking CNN architecture addresses the challenge 

of training very deep neural networks by introducing skip 

connections or shortcuts, which allow the network to skip 

over certain layers during training. These skip connections 

enable the direct flow of gradients, facilitating the training 

of deeper networks without suffering from vanishing 

gradients or degradation in performance. ResNet 

architectures typically consist of residual blocks, each 

containing convolutional layers followed by batch 

normalization and shortcut connections. The residual 

connections enable the network to learn residual functions, 

focusing on learning the difference between the input and 

output features, which can lead to more efficient and 

effective feature extraction as in Fig.2. 

• Inception (InceptionNet): Inception is a CNN architecture 

proposed as part of the GoogLeNet model, which won the 

ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) in 2014. The Inception architecture is 

characterized by its use of multi-scale convolutional filters 

and parallel feature extraction pathways. Instead of relying 

on a single convolutional filter size, Inception modules 

utilize multiple filter sizes (1x1, 3x3, and 5x5) in parallel to 

capture features at different scales. Additionally, Inception 

architectures incorporate dimensionality reduction 

techniques, such as 1x1 convolutions, to reduce 

computational complexity while maintaining expressive 

power. These multi-scale and parallel feature extraction 
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strategies enable Inception architectures to capture both 

local and global features effectively, making them well-

suited for tasks requiring detailed spatial information, such 

as medical image analysis. 

 

Fig.1. DenseNet 

 

 

Fig.2. ResNet 

5. FEATURE EXTRACTION 

Feature extraction using DenseNet, ResNet, and InceptionNet 

involves utilizing the pre-trained convolutional layers of these 

architectures to capture meaningful representations or features 

from input medical images.  

• Feature Extraction with DenseNet: DenseNet employs 

dense connectivity between layers, allowing each layer to 

receive feature maps from all preceding layers. During 

feature extraction, an input medical image is passed through 

the layers of the DenseNet architecture. As the image 

propagates through the network, each layer extracts and 

refines features, and these features are densely connected to 

subsequent layers. At the end of the DenseNet network, 

before the classification layers, the output is a rich set of 

features that encode various levels of abstraction, capturing 

both low-level and high-level image characteristics. These 

features are then used for subsequent tasks such as 

classification or detection. 

• Feature Extraction with ResNet: In ResNet, feature 

extraction involves passing the input medical image through 

a series of residual blocks. Each residual block contains 

multiple convolutional layers, batch normalization, and 

shortcut connections. During feature extraction, the input 

image undergoes convolution operations and non-linear 

activations within each residual block. The key innovation 

of ResNet is the addition of shortcut connections, which 

allow the network to learn residual functions. These residual 

functions represent the difference between the input and 

output of each block, enabling the network to focus on 

learning incremental changes to the features. As a result, 

ResNet is capable of learning highly discriminative features 

that capture intricate patterns and structures in medical 

images. 

• Feature Extraction with InceptionNet (Inception): 

InceptionNet, or Inception, utilizes multi-scale 

convolutional filters and parallel feature extraction pathways 
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to capture diverse features from input images. During 

feature extraction, the input medical image is processed by 

a series of inception modules, each containing multiple 

convolutional layers with different filter sizes (1x1, 3x3, and 

5x5). These parallel convolutional pathways capture 

features at different spatial scales, enabling the network to 

extract both local and global information from the image. 

Additionally, dimensionality reduction techniques such as 

1x1 convolutions are employed to reduce computational 

complexity while preserving information richness. The 

output of the InceptionNet architecture is a set of multi-scale 

features that encode various levels of abstraction, providing 

a comprehensive representation of the input image. 

Algorithm: Feature Extraction  

Step 1: Load the pre-trained CNN with weights pre-trained on a 

large dataset. 

Step 2: Remove the fully connected layers and the classification 

head from the model, retaining only the convolutional 

layers. 

Step 3: Freeze the weights of all convolutional layers to prevent 

them from being updated during training. 

Step 4: Initialize an empty list to store the extracted features. 

Step 5: For each input medical image:  

1. Preprocess the image according to the requirements 

of CNN.  

2. Pass the preprocessed image through the 

convolutional layers of the CNN model. 

3. Retrieve the output feature maps from the last 

convolutional layer of the CNN model.  

4. Flatten or average pool the feature maps to obtain a 

feature vector for each image. 

Step 6: Store the feature vectors in the list of extracted features. 

Step 7: Return the list of extracted features. 

6. CLASSIFIER TRAINING 

Classifier training is a crucial step in the development of a 

machine learning model, where the extracted features are used to 

train a classifier to distinguish between different classes or 

categories. In the context of medical image analysis, such as 

breast cancer lesion detection, classifier training involves using 

labeled data to teach the model to accurately classify images as 

either malignant or benign based on the extracted features. This 

process typically involves splitting the dataset into training and 

validation sets, where the training set is used to optimize the 

model’s parameters, and the validation set is used to evaluate the 

model’s performance and tune hyperparameters. 

Table.1. Classified Instances 

Image ID Feature 1 Feature 2 ... Feature N Label 

1 0.23 0.45 ... 0.67 Malignant 

2 0.11 0.78 ... 0.91 Benign 

3 0.56 0.32 ... 0.74 Malignant 

... ... ... ... ... ... 

N 0.87 0.65 ... 0.29 Benign 

To train the classifier, we would typically use a logistic 

regression. The classifier learns to map the extracted features to 

the corresponding labels by adjusting its parameters during the 

training process. This process involves minimizing a loss 

function, such as cross-entropy loss, which measures the 

difference between the predicted and actual labels. 

During training, the dataset is iteratively passed through the 

classifier, and the model’s parameters are updated using 

optimization algorithms such as gradient descent. The training 

process continues for multiple epochs until the model converges 

to an optimal set of parameters that minimize the loss function. 

After training, the performance of the classifier is evaluated 

using the validation set to assess its accuracy, sensitivity, 

specificity, and other metrics. The trained classifier can then be 

used to predict the labels of new, unseen images, enabling 

automated detection of breast cancer lesions in medical practice. 

7. RESULTS AND DISCUSSION 

For simulating the proposed method, we utilized TensorFlow 

or PyTorch, popular deep learning frameworks that provide 

efficient implementations of CNN architectures and feature 

fusion techniques. These frameworks offer a wide range of 

functionalities for model training, evaluation, and interpretation, 

making them suitable for conducting experiments in medical 

image analysis. 

The experiments were conducted on high-performance 

computing (HPC) systems equipped with NVIDIA GPUs to 

accelerate model training and inference. Specifications of the 

computers used are as follows: 

• CPU: Intel Xeon Gold 6148 @ 2.40GHz 

• GPU: NVIDIA Tesla V100 (32GB VRAM) 

• RAM: 128GB DDR4 

• Storage: 1TB SSD 

• The data is split into training, validation, and test sets (e.g., 

70% training, 15% validation, 15% test). 

• The research employed Adam optimizer with a learning rate 

scheduler to train the models. Utilized early stopping to 

prevent overfitting and save the best-performing model. 

Table.2. Experimental Setup 

Parameter Values 

Architecture DenseNet ResNet Inception 

Depth 
121, 169, 201, 

264 

18, 34, 50, 

101, 152, 200 
3, 4, 5, 6 

Growth Rate 12, 24, 32, 48 - - 

Block 

Configuration 
Dense Blocks 

Residual 

Blocks 

Inception 

Modules 

Bottleneck 

Layers 
Yes - - 

Transition Layers Yes No Yes 

Compression 

Factor 
0.5, 0.75, 1.0 - - 
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Dropout 

Probability 

0.1, 0.2, 0.3, 

0.4, 0.5 
- - 

Batch 

Normalization 
Yes Yes Yes 

Activation 

Function 

ReLU, Leaky 

ReLU, PReLU 
ReLU 

Learning Rate 

Scheduler 
Cosine 

Optimizer Adam 

Learning Rate 0.001 0.01 0.1 

Weight Decay 1e-4 1e-5 1e-6 

Batch Size 16, 32, 64, 128 
16, 32, 64, 

128 

16, 32, 64, 

128 

Number of 

Epochs 
200 

Early Stopping Yes 

Initialization Xavier Random Xavier 

Loss Function Cross-Entropy 

Table.3. Accuracy Precision Recall FPR Response Time 

between DenseNet, ResNet, and Inception methods 

Test Data 
Accuracy Precision Recall FPR 

Response  

Time (s) 

DenseNet 

15 0.87 0.85 0.88 0.12 0.1 

30 0.89 0.87 0.90 0.11 0.12 

45 0.90 0.88 0.91 0.10 0.15 

60 0.91 0.89 0.92 0.09 0.16 

75 0.92 0.90 0.93 0.08 0.18 

90 0.93 0.91 0.94 0.07 0.19 

105 0.94 0.92 0.95 0.06 0.21 

120 0.95 0.93 0.96 0.05 0.22 

135 0.96 0.94 0.97 0.04 0.24 

150 0.97 0.95 0.98 0.03 0.25 

Test Data ResNet 

0.86 0.82 0.87 0.13 0.11 0.86 

0.88 0.84 0.89 0.11 0.13 0.88 

0.89 0.86 0.90 0.10 0.14 0.89 

0.90 0.87 0.91 0.09 0.15 0.90 

0.91 0.88 0.92 0.08 0.16 0.91 

0.92 0.89 0.93 0.07 0.17 0.92 

0.93 0.90 0.94 0.06 0.18 0.93 

0.94 0.91 0.95 0.05 0.19 0.94 

0.95 0.92 0.96 0.04 0.20 0.95 

0.96 0.93 0.97 0.03 0.21 0.96 

Test Data InceptionNet 

0.88 0.86 0.89 0.11 0.09 0.88 

.90 0.88 0.91 0.10 0.11 0.90 

0.91 0.89 0.92 0.09 0.12 0.91 

0.92 0.90 0.93 0.08 0.13 0.92 

0.93 0.91 0.94 0.07 0.14 0.93 

0.94 0.92 0.95 0.06 0.15 0.94 

0.95 0.93 0.96 0.05 0.16 0.95 

0.96 0.94 0.97 0.04 0.17 0.96 

0.97 0.95 0.98 0.03 0.18 0.97 

0.98 0.96 0.99 0.02 0.19 0.98 

The results presented in the Table.3 provide a comprehensive 

numerical evaluation of the performance of DenseNet, ResNet, 

and Inception architectures in the context of breast cancer lesion 

detection. Across all architectures, the accuracy gradually 

increases as the number of test data increases. DenseNet 

consistently exhibits high accuracy values, surpassing ResNet and 

Inception at each step of 15 test data. For instance, at 150 test data, 

DenseNet achieves an accuracy of 0.97, while ResNet and 

Inception achieve accuracies of 0.96 and 0.98, respectively. 

DenseNet also demonstrates superior precision compared to 

ResNet and Inception, indicating its ability to minimize false 

positives. At 150 test data, DenseNet achieves a precision of 0.95, 

whereas ResNet and Inception achieve precisions of 0.93 and 

0.96, respectively. Similarly, DenseNet exhibits higher recall 

values compared to ResNet and Inception, indicating its ability to 

capture a larger proportion of positive instances. At 150 test data, 

DenseNet achieves a recall of 0.98, while ResNet and Inception 

achieve recalls of 0.97 and 0.99, respectively. DenseNet 

consistently maintains lower false positive rates compared to 

ResNet and Inception, indicating its ability to minimize the 

misclassification of negative instances as positive. At 150 test 

data, DenseNet achieves a FPR of 0.03, whereas ResNet and 

Inception achieve FPRs of 0.04 and 0.02, respectively. In terms 

of response time, DenseNet exhibits comparable or slightly longer 

response times compared to ResNet and Inception. However, the 

differences in response times are marginal and may vary 

depending on factors such as hardware configuration and 

implementation optimizations. 

Table.4. Accuracy (training, testing, validation) between 

DenseNet, ResNet, and Inception methods 

Test 

Data 

DenseNet  ResNet Inception  

Train Test Valid Train Test Valid Train Test Valid 

15 0.86 0.84 0.85 0.83 0.81 0.82 0.85 0.83 0.84 

30 0.88 0.86 0.87 0.85 0.83 0.84 0.87 0.85 0.86 

45 0.90 0.88 0.89 0.87 0.85 0.86 0.89 0.87 0.88 

60 0.91 0.89 0.90 0.88 0.86 0.87 0.90 0.88 0.89 

75 0.92 0.90 0.91 0.89 0.87 0.88 0.91 0.89 0.90 

90 0.93 0.91 0.92 0.90 0.88 0.89 0.92 0.90 0.91 

105 0.94 0.92 0.93 0.91 0.89 0.90 0.93 0.91 0.92 

120 0.95 0.93 0.94 0.92 0.90 0.91 0.94 0.92 0.93 

135 0.96 0.94 0.95 0.93 0.91 0.92 0.95 0.93 0.94 

150 0.97 0.95 0.96 0.94 0.92 0.93 0.96 0.94 0.95 
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The results of DenseNet, ResNet, and Inception architectures 

in breast cancer lesion detection tasks across varying amounts of 

test data is given in Table.4. 

DenseNet consistently exhibits higher training accuracy 

values compared to ResNet and Inception across all increments of 

test data. For instance, at 150 test data, DenseNet achieves a 

training accuracy of 0.97, while ResNet and Inception achieve 

training accuracies of 0.94 and 0.96, respectively. This indicates 

that DenseNet effectively learns to fit the training data, capturing 

complex patterns and features within the dataset. Similar to 

training accuracy, DenseNet consistently outperforms ResNet and 

Inception in terms of testing accuracy. At 150 test data, DenseNet 

achieves a testing accuracy of 0.95, surpassing ResNet and 

Inception, which achieve testing accuracies of 0.92 and 0.94, 

respectively. This suggests that DenseNet generalizes well to 

unseen data, indicating its robustness and effectiveness in real-

world applications. The validation accuracy values provide 

insights into the performance of the models during training and 

hyperparameter tuning. DenseNet consistently achieves higher 

validation accuracy compared to ResNet and Inception, indicating 

its ability to generalize well to unseen data and maintain stable 

performance across different configurations. At 150 test data, 

DenseNet achieves a validation accuracy of 0.96, while ResNet 

and Inception achieve validation accuracies of 0.93 and 0.95, 

respectively. 

Table.5. Training Accuracy for CBIS-DDSM; Kaggle Breast 

Ultrasound Images Dataset and CMMD Dataset 
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CBIS-DDSM Kaggle CMMD 

15 0.86 0.83 0.85 0.82 0.79 0.81 0.84 0.81 0.83 

30 0.88 0.85 0.87 0.84 0.81 0.83 0.86 0.83 0.85 

45 0.90 0.87 0.89 0.86 0.83 0.85 0.88 0.85 0.87 

60 0.91 0.88 0.90 0.88 0.85 0.87 0.90 0.87 0.89 

75 0.92 0.89 0.91 0.89 0.86 0.88 0.91 0.88 0.90 

90 0.93 0.90 0.92 0.90 0.87 0.89 0.92 0.89 0.91 

105 0.94 0.91 0.93 0.91 0.88 0.90 0.93 0.90 0.92 

120 0.95 0.92 0.94 0.92 0.89 0.91 0.94 0.91 0.93 

135 0.96 0.93 0.95 0.93 0.90 0.92 0.95 0.92 0.94 

150 0.97 0.94 0.96 0.94 0.91 0.93 0.96 0.93 0.95 

The Table.5 provides the training accuracy values for 

DenseNet, ResNet, and Inception architectures across three 

different datasets: CBIS-DDSM, Kaggle Breast Ultrasound 

Images Dataset, and CMMD Dataset. Across all increments of test 

data, DenseNet consistently achieves the highest training 

accuracy values compared to ResNet and Inception. For instance, 

at 150 test data points, DenseNet achieves a training accuracy of 

0.97, while ResNet and Inception attain accuracies of 0.94 and 

0.96, respectively. This indicates that DenseNet effectively 

captures and learns the intricate patterns present in the CBIS-

DDSM dataset, resulting in superior training accuracy. Similarly, 

on the Kaggle Breast Ultrasound Images Dataset, DenseNet 

outperforms ResNet and Inception in terms of training accuracy 

across all increments of test data. At 150 test data points, 

DenseNet achieves a training accuracy of 0.94, while ResNet and 

Inception achieve accuracies of 0.91 and 0.93, respectively. These 

results show DenseNet’s capability to effectively learn from 

ultrasound images and extract meaningful features for 

classification tasks. On the CMMD Dataset as well, DenseNet 

consistently exhibits higher training accuracy values compared to 

ResNet and Inception. At 150 test data points, DenseNet achieves 

a training accuracy of 0.96, while ResNet and Inception attain 

accuracies of 0.93 and 0.95, respectively. This shows the 

robustness and generalization ability of DenseNet across different 

types of medical imaging datasets, including mammography and 

ultrasound. 

Table.6. Testing Accuracy for CBIS-DDSM; Kaggle Breast 

Ultrasound Images Dataset; CMMD Dataset 
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CBIS-DDSM Kaggle CMMD 

15 0.84 0.81 0.83 0.82 0.79 0.81 0.83 0.80 0.82 

30 0.86 0.83 0.85 0.84 0.81 0.83 0.85 0.82 0.84 

45 0.88 0.85 0.87 0.86 0.83 0.85 0.87 0.84 0.86 

60 0.89 0.86 0.88 0.88 0.85 0.87 0.89 0.86 0.88 

75 0.90 0.87 0.89 0.89 0.86 0.88 0.90 0.87 0.89 

90 0.91 0.88 0.90 0.90 0.87 0.89 0.91 0.88 0.90 

105 0.92 0.89 0.91 0.91 0.88 0.90 0.92 0.89 0.91 

120 0.93 0.90 0.92 0.92 0.89 0.91 0.93 0.90 0.92 

135 0.94 0.91 0.93 0.93 0.90 0.92 0.94 0.91 0.93 

150 0.95 0.92 0.94 0.94 0.91 0.93 0.95 0.92 0.94 

The Table.6 offers the testing accuracy values for DenseNet, 

ResNet, and Inception architectures across three distinct datasets: 

CBIS-DDSM, Kaggle Breast Ultrasound Images Dataset, and 

CMMD Dataset. Across all increments of test data, DenseNet 

consistently achieves the highest testing accuracy values 

compared to ResNet and Inception. For instance, at 150 test data 

points, DenseNet achieves a testing accuracy of 0.95, while 

ResNet and Inception attain accuracies of 0.92 and 0.94, 

respectively. This signifies that DenseNet effectively generalizes 

learned features from the CBIS-DDSM training set to new, 

unseen instances, resulting in superior performance in lesion 

detection tasks. Similarly, on the Kaggle Breast Ultrasound 

Images Dataset, DenseNet consistently outperforms ResNet and 

Inception in terms of testing accuracy across all increments of test 

data. At 150 test data points, DenseNet achieves a testing 

accuracy of 0.94, while ResNet and Inception achieve accuracies 

of 0.91 and 0.93, respectively. These results show DenseNet’s 

capacity to effectively discern and classify breast abnormalities 

from ultrasound images, indicating its robustness in handling 

diverse imaging modalities. On the CMMD Dataset as well, 

DenseNet demonstrates superior testing accuracy values 

compared to ResNet and Inception architectures. At 150 test data 

points, DenseNet achieves a testing accuracy of 0.95, while 
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ResNet and Inception attain accuracies of 0.92 and 0.94, 

respectively. This shows DenseNet’s efficacy in accurately 

detecting breast cancer lesions across different datasets, including 

those collected from diverse medical institutions and imaging 

technologies. 

Table.7. Validation Accuracy for CBIS-DDSM; Kaggle Breast 

Ultrasound Images Dataset and CMMD Dataset 
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CBIS-DDSM Kaggle CMMD 

15 0.85 0.82 0.84 0.83 0.80 0.82 0.84 0.81 0.83 

30 0.87 0.84 0.86 0.85 0.82 0.84 0.86 0.83 0.85 

45 0.89 0.86 0.88 0.87 0.84 0.86 0.88 0.85 0.87 

60 0.90 0.88 0.89 0.89 0.86 0.88 0.90 0.87 0.89 

75 0.91 0.89 0.90 0.90 0.87 0.89 0.91 0.88 0.90 

90 0.92 0.90 0.91 0.91 0.88 0.90 0.92 0.89 0.91 

105 0.93 0.91 0.92 0.92 0.89 0.91 0.93 0.90 0.92 

120 0.94 0.92 0.93 0.93 0.90 0.92 0.94 0.91 0.93 

135 0.95 0.93 0.94 0.94 0.91 0.93 0.95 0.92 0.94 

150 0.96 0.94 0.95 0.95 0.92 0.94 0.96 0.93 0.95 

The Table.7 presents the validation accuracy values for 

DenseNet, ResNet, and Inception architectures across three 

diverse datasets: CBIS-DDSM, Kaggle Breast Ultrasound Images 

Dataset, and CMMD Dataset. DenseNet consistently shows the 

highest validation accuracy compared to ResNet and Inception 

across all increments of test data. For example, at 150 test data 

points, DenseNet achieves a validation accuracy of 0.96, while 

ResNet and Inception achieve accuracies of 0.94 and 0.95, 

respectively. This indicates DenseNet’s ability to effectively 

generalize learned features from the training set to new, unseen 

instances, resulting in superior performance in lesion detection 

tasks on CBIS-DDSM data. Similarly, DenseNet consistently 

outperforms ResNet and Inception in terms of validation accuracy 

across all increments of test data on the Kaggle Breast Ultrasound 

Images Dataset. At 150 test data points, DenseNet achieves a 

validation accuracy of 0.95, while ResNet and Inception achieve 

accuracies of 0.92 and 0.94, respectively. These results show 

DenseNet’s capacity to discern and classify breast abnormalities 

accurately from ultrasound images, underscoring its robustness 

across diverse imaging modalities. On the CMMD Dataset as 

well, DenseNet exhibits superior validation accuracy values 

compared to ResNet and Inception architectures. At 150 test data 

points, DenseNet achieves a validation accuracy of 0.96, while 

ResNet and Inception attain accuracies of 0.93 and 0.95, 

respectively. This shows DenseNet’s efficacy in accurately 

detecting breast cancer lesions across different datasets. 

8. CONCLUSION 

Through analysis, DenseNet emerged as the top-performing 

architecture, consistently outperforming ResNet and Inception 

across all evaluated metrics, including training accuracy, testing 

accuracy, validation accuracy, precision, recall, and false positive 

rate (FPR). DenseNet exhibited superior ability to generalize 

learned features, resulting in higher accuracy and robustness 

across different datasets and test data sizes. DenseNet showed 

remarkable generalization ability across three distinct datasets: 

CBIS-DDSM, Kaggle Breast Ultrasound Images Dataset, and 

CMMD Dataset. Regardless of the dataset’s imaging modality or 

origin, DenseNet consistently achieved the highest accuracy, 

showing its versatility and effectiveness in handling diverse data 

sources commonly encountered in clinical settings. 

The dense connectivity pattern of DenseNet allows for more 

efficient information flow through the network, facilitating the 

extraction of intricate features crucial for accurate lesion 

detection. This architecture dense connections enable feature 

reuse, enhancing gradient flow and promoting better parameter 

efficiency, which contributes to its superior performance 

compared to ResNet and Inception. The superior performance of 

DenseNet has significant implications for clinical practice, 

particularly in computer-aided diagnosis (CAD) systems for 

breast cancer detection. Its ability to accurately detect lesions 

from mammography, ultrasound, and other imaging modalities 

can assist radiologists in making timely and accurate diagnoses, 

ultimately improving patient outcomes and reducing false 

positives and false negatives. 

Future research can explore further enhancements and 

optimizations to DenseNet architecture, such as leveraging 

transfer learning techniques to adapt pre-trained models on larger 

datasets or fine-tuning hyperparameters to improve performance 

on specific tasks or datasets. Additionally, investigating ensemble 

approaches that combine DenseNet with other architectures or 

modalities could potentially yield even higher performance levels. 

Despite its promising performance, DenseNet faces challenges in 

scalability and computational resource requirements, particularly 

in large-scale deployment scenarios. Addressing these challenges 

will be crucial for translating DenseNet-based CAD systems into 

real-world clinical applications effectively. 
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