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Abstract 

Transfer learning has emerged as a powerful approach in image 

analysis, leveraging pre-trained models to enhance 

performance on specific tasks. This study focuses on feature 

extraction using pre-trained models to address challenges in 

image classification. We employ state-of-the-art pre-trained 

models, such as ResNet and VGG, as feature extractors. The 

models are fine-tuned on a target dataset to adapt to the specific 

characteristics of the problem at hand. Extracted features are 

then fed into a custom classifier for task-specific learning. We 

explore the effectiveness of transfer learning in scenarios with 

limited labeled data, aiming to demonstrate the model’s ability 

to generalize and improve performance. Our research 

contributes to the understanding of transfer learning’s efficacy 

in image analysis, providing insights into its applicability and 

limitations. We propose a methodology that optimizes the use of 

pre-trained models for feature extraction, making them 

adaptable to diverse image classification tasks. Experimental 

results showcase significant improvements in classification 

accuracy compared to training models from scratch, 

particularly when dealing with small datasets. The study 

highlights the potential of transfer learning in enhancing the 

efficiency of image analysis tasks. 
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1. INTRODUCTION 

Image analysis plays a pivotal role in various fields, ranging 

from medical diagnostics to autonomous systems. With the advent 

of deep learning, pre-trained models have become instrumental in 

achieving superior performance on image-related tasks. Transfer 

learning, specifically feature extraction using pre-trained models, 

has shown promise in addressing challenges associated with 

limited labelled data and computational resources [1]. 

Despite the success of transfer learning, deploying it 

effectively in diverse image analysis tasks poses challenges. 

Adapting pre-trained models to specific domains and optimizing 

their performance with limited labelled data are crucial aspects 

that require attention [2]. 

This research addresses the challenge of enhancing image 

analysis tasks [3] through transfer learning, specifically focusing 

on feature extraction using pre-trained models [4]. The goal is to 

investigate the adaptability of these models to various datasets, 

particularly in scenarios where labelled data is scarce. 

Our study aims to explore the efficacy of transfer learning in 

image analysis, emphasizing feature extraction with pre-trained 

models. We seek to understand the model’s adaptability, 

generalization capabilities, and potential improvements in 

classification accuracy, especially when dealing with limited 

labelled data. 

The novelty of our approach lies in the meticulous exploration 

of feature extraction using pre-trained models, emphasizing their 

adaptability to specific image analysis tasks. We aim to uncover 

insights that contribute to the broader understanding of transfer 

learning’s applicability in diverse contexts. 

This research contributes a comprehensive analysis of transfer 

learning’s effectiveness in image analysis, with a specific focus 

on feature extraction using pre-trained models. The findings are 

expected to provide valuable guidelines for practitioners seeking 

optimal approaches to address challenges in various image 

classification tasks. 

2. RELATED WORKS 

The use of transfer learning in image analysis has garnered 

significant attention in recent literature, reflecting the growing 

interest in leveraging pre-trained models for improved 

performance across various domains. 

Several studies have explored the application of transfer 

learning in image classification tasks, demonstrating its 

effectiveness in enhancing model generalization and reducing the 

need for large, annotated datasets. The authors [5] applied transfer 

learning to medical imaging, utilizing a pre-trained convolutional 

neural network (CNN) to extract features for lung nodule 

classification.  

In a broader context, conducted an extensive study on the 

generalization capabilities of pre-trained CNNs across diverse 

image recognition tasks. Their work emphasized the 

transferability of features learned from large datasets, showcasing 

the adaptability of pre-trained models to various domains. This 

finding laid the foundation for subsequent research endeavors 

exploring transfer learning in different application [6]-[8]. 

Transfer learning has also been applied to specific pre-trained 

models, such as ResNet and VGG, known for their deep 

architectures. It is investigated the transferability of features in 

deep neural networks, demonstrating that earlier layers in deep 

networks capture generic features, while later layers specialize in 

task-specific information. This insight has influenced the design 

of transfer learning methodologies, particularly in feature 

extraction from pre-trained models [9]. 

Addressing the challenge of limited labelled data, [10] 

proposed a method called “DeCAF,” which utilizes pre-trained 
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CNN features as generic image representations. By fine-tuning 

these features on smaller datasets, the authors achieved 

competitive results in image classification tasks. This approach 

highlights the potential of transfer learning in scenarios were 

acquiring large, labelled datasets is impractical. 

In object detection, it is introduced the Faster R-CNN 

architecture, combining region proposal networks with deep 

feature extraction. Leveraging a pre-trained ResNet backbone, the 

model achieved state-of-the-art results in object detection 

benchmarks. This work emphasizes the importance of pre-trained 

models in facilitating advancements in complex tasks beyond 

classification [11]. 

Despite the success of transfer learning, challenges persist in 

adapting pre-trained models to specific domains and tasks. It is 

highlighted the domain shift problem, where the source and target 

domains exhibit variations in their underlying distributions. This 

challenge necessitates careful fine-tuning and adaptation of pre-

trained models to achieve optimal performance in diverse 

application scenarios [12]. 

Thus, the exploration of pre-trained models like ResNet and 

VGG, coupled with insights into feature transferability and 

domain adaptation, has paved the way for advancements in image 

analysis across various domains. The literature provides a rich 

foundation for our research, guiding our investigation into feature 

extraction using pre-trained models and their adaptability to 

specific image analysis tasks, particularly in scenarios with 

limited labelled data. 

3. PROPOSED METHOD 

The proposed method builds upon the principles of transfer 

learning, specifically focusing on feature extraction using pre-

trained models to enhance image analysis tasks. The methodology 

is designed to address challenges related to limited labelled data 

and the need for computationally efficient solutions.  

The first step involves selecting state-of-the-art pre-trained 

models known for their deep architectures and success in various 

image-related tasks. Common choices include ResNet and VGG, 

which have demonstrated strong feature extraction capabilities. 

The selected pre-trained model is utilized as a feature extractor. 

The idea is to leverage the knowledge learned by these models on 

large datasets and extract informative features from images. The 

deeper layers of the pre-trained model, often capturing high-level 

and task-specific features, are of particular interest. To adapt the 

pre-trained model to the specific characteristics of the target 

dataset, fine-tuning is performed. The model is trained on the 

target dataset, which may have limited labelled samples. Fine-

tuning allows the model to adjust its parameters to the unique 

features and patterns present in the target dataset while retaining 

the valuable knowledge gained from the pre-training phase. 

Following feature extraction and fine-tuning, a custom classifier 

is integrated into the model. This classifier is designed to work 

seamlessly with the extracted features and is trained on the 

labelled samples from the target dataset. The classifier can be a 

simple linear layer or a more complex structure, depending on the 

complexity of the classification task. Recognizing the challenge 

of limited labelled data, the proposed method aims to optimize the 

use of available samples. The combination of pre-trained feature 

extraction and fine-tuning on a small dataset allows the model to 

generalize well even in scenarios where obtaining a large amount 

of labelled data is impractical. 

3.1 PRE-TRAINED MODELS SELECTION 

It refers to the process of choosing a suitable pre-trained deep 

learning model that has been trained on a large dataset and has 

demonstrated strong performance in a specific domain or task. In 

transfer learning, the selected pre-trained model serves as a 

feature extractor, capturing hierarchical and generic features from 

the input data, which can then be fine-tuned for a target task with 

limited labelled data. The choice of a pre-trained model depends 

on the nature of the target task and the characteristics of the input 

data. Commonly used pre-trained models include architectures 

like ResNet, VGG, Inception, and MobileNet, which have been 

trained on large-scale image datasets like ImageNet. Each of these 

models has its own strengths and may perform better on certain 

types of images or tasks due to differences in architecture and 

training strategies. The selection process involves evaluating the 

trade-offs between model complexity, computational efficiency, 

and task-specific requirements.  

Table.1. Training, testing and validation accuracy on various 

architecutre with ResNet, VGG, Inception, and MobileNet, 

Architecture Training (%) Testing (%) Validation (%) 

ResNet 92.5 88.2 87.8 

VGG 89.8 86.5 85.2 

Inception 91.2 87.6 86.3 

MobileNet 87.3 83.9 82.1 

The results of the transfer learning experiment across different 

architectures, namely ResNet, VGG, Inception, and MobileNet, 

revealed distinct performance characteristics on the specific 

image analysis task. Each architecture demonstrated varying 

levels of training, testing, and validation accuracy, showcasing the 

impact of architectural nuances and pre-trained model weights on 

the task at hand. InceptionNet exhibited the highest training 

accuracy at 92.5%, indicating a strong ability to capture intricate 

features within the training dataset. However, its testing and 

validation accuracies of 88.2% and 87.8%, respectively, suggest 

a slightly lower generalization capacity, possibly due to model 

overfitting. VGG, with a training accuracy of 89.8%, 

demonstrated good learning capabilities but exhibited similar 

challenges in generalization, as seen in its testing and validation 

accuracies of 86.5% and 85.2%, respectively. The relatively 

simpler architecture might be contributing to a lower capacity to 

capture diverse patterns in the data. Inception, with a training 

accuracy of 91.2%, showed promising generalization capabilities, 

as reflected in its testing and validation accuracies of 87.6% and 

86.3%, respectively. The ResNet ability to capture features at 

multiple scales could contribute to its robust performance. 

MobileNet, a lightweight architecture, displayed a training 

accuracy of 87.3%, indicating a reasonable ability to learn from 

the data. However, its testing and validation accuracies of 83.9% 

and 82.1%, respectively, suggest a potential trade-off between 

computational efficiency and task-specific performance. 

Considering the overall performance, ResNet emerges as the 

best-performing method in this context, striking a balance 

between training accuracy and generalization. Its ability to 



ISSN: 0976-9102 (ONLINE)                                                                                      ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, FEBRUARY  2024, VOLUME: 14, ISSUE: 03 

3205 

capture features at various scales and adapt to the target task is 

reflected in competitive testing and validation accuracies.  

3.2 FEATURE EXTRACTION USING SMOTE  

Feature Extraction using SMOTE refers to a combination of 

techniques involving Synthetic Minority Over-sampling 

Technique (SMOTE) with feature extraction methods in a 

machine learning or data preprocessing context. SMOTE is a 

resampling technique commonly used to address class imbalance 

in datasets, particularly in classification tasks. It works by 

generating synthetic samples for the minority class to balance the 

class distribution. In feature extraction, the process involves 

extracting relevant features from the original dataset while 

simultaneously addressing class imbalance through SMOTE.  

 

Fig.1. SMOTE 

SMOTE is applied to the dataset after feature extraction, 

specifically focusing on the minority class. Synthetic samples are 

generated by interpolating between existing minority class 

instances. This helps balance the class distribution, ensuring that 

the model is not biased toward the majority class. The 

combination involves performing feature extraction on the 

original dataset and then applying SMOTE to the minority class. 

This way, the synthetic samples generated by SMOTE also go 

through the feature extraction process. The final output is a 

balanced dataset with relevant features, where both the majority 

and minority classes are adequately represented. This dataset is 

then used for model training and evaluation. 

Let X be the original dataset with n samples and m features. 

After feature extraction, the transformed dataset is denoted as X′, 

where X′ has n samples and k features (k≤m). After feature 

extraction, SMOTE is applied to balance the class distribution. 

Let X′m represent the subset of the transformed dataset 

corresponding to the minority class. SMOTE involves generating 

synthetic samples for the minority class. Let Xs′ be the set of 

synthetic samples generated for the minority class. 

 Xs′ = SMOTE(X′m) (1) 

The SMOTE operation is defined by: 

 ( ) ( ),

1

k
n

i k i j i j

j

SMOTE x x x x 
=

= + −   (2) 

where: 

xi is an instance from the minority class. 

xn is a randomly selected neighbor of xi. 

λj is a random value in the range [0,1]. 

k is the number of nearest neighbors to consider. 

The final balanced dataset Xb′ is obtained by combining the 

original majority class samples with the original minority class 

samples and the synthetic minority class samples. 

 Xb′ = (Xm′  Xm′  Xs′) (3) 

Algorithm: Feature Extraction using SMOTE 

Input: 

X: Original dataset with features and labels. 

k: Number of nearest neighbors for SMOTE. 

Output: Xb′: Transformed and balanced dataset. 

Apply a feature extraction to dataset X to obtain X′. 

Identify minority class instances in the transformed dataset 

Xm′. 

Xs′ = SMOTE(X′m) 

Xb′ = (Xm′  Xm′  Xs′) 

3.3 FINE-TUNING ON TARGET DATASET FOR 

RESNET  

Fine-tuning on a Target Dataset for ResNet involves taking a 

pre-trained ResNet model, which has been previously trained on 

a large dataset and adapting it to a specific target dataset. The goal 

is to leverage the knowledge gained by the ResNet model on the 

source dataset and transfer it to a new dataset for a more 

specialized task. Fine-tuning is particularly useful when the target 

dataset is smaller and may not have enough labelled examples to 

train a deep neural network from scratch. 

It starts with a ResNet model that has been pre-trained on a 

large dataset, typically ImageNet. The pre-trained model has 

already learned hierarchical features, making it a powerful feature 

extractor. It removes the final fully connected layer (output layer) 

of the pre-trained ResNet model. This layer is specific to the 

original classification task and needs to be replaced with a new 

one suitable for the target dataset. It adds a new output layer to 

the ResNet model, designed according to the target dataset’s 

specific requirements. For instance, if the target task involves 

binary classification, the new output layer would typically have 

one neuron with a sigmoid activation function.  

For multiclass classification, the output layer would have 

multiple neurons with softmax activation. It freezes some of the 

early layers of the ResNet model. Freezing means preventing the 

weights in these layers from being updated during training. This 

can be beneficial when the target dataset is small, as it helps retain 

the knowledge learned by the model on the source dataset. It trains 

the modified ResNet model on the target dataset. Use the target 

dataset for fine-tuning by updating the weights of the new output 

layer and, if applicable, the unfrozen layers. It monitors the 

training process and evaluate the model’s performance on a 

validation set. Fine-tuning should be stopped when the model 

reaches satisfactory performance or when overfitting becomes a 

concern. 

Once fine-tuning is complete and the model achieves desired 

performance on the target dataset, it can be used for making 

predictions on new, unseen data. Fine-tuning on a target dataset 

for ResNet allows for the transfer of knowledge from a pre-trained 

model to a new, domain-specific task. This process helps in 

achieving good performance even with limited labelled data for 

the target task. 

 Y′t = f(Wt⋅R(X)+bt)  (4) 

where: 

Y′t is the predicted output for the t task. 

Wt are the weights of the new output layer. 

sample point nearest 

neighbor 

synthetic point 
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bt is the bias term of the new output layer. 

R(X) represents the feature extraction of the ResNet applied to 

input data X. 

Cross-entropy loss is used to measure the difference between 

predicted and actual labels in dataset t. 

 Lt = Loss(Y′t, Yt)  (4) 

where: 

Lt is the loss on the t dataset. 

Y′t is the predicted output for the t task. 

Yt is the true label in the t dataset. 

3.4 CLASSIFICATION OF RESNET FOR BRAIN 

TUMOR IMAGES FROM ADNI DATASET 

Classifying ResNet for cancer from brain tumor images 

involves leveraging the capabilities of the ResNet architecture for 

image classification tasks, specifically on brain tumor images 

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

dataset. ResNet, short for Residual Network, is a deep learning 

architecture known for its ability to train very deep neural 

networks effectively as in Fig.2.  

 

Fig.2. ResNet Architecture 

The ResNet architecture introduced a residual learning 

framework that made it possible to train very deep neural 

networks. ResNet is particularly effective in image classification 

tasks. ResNet is built upon the idea of residual blocks, where the 

input of a block is added to its output. Mathematically, the output 

H(x)) of a residual block is defined as follows: 

 H(x)=F(x)+x (5) 

where: 

H(x) is the output of the residual block. 

F(x) represents the transformation applied within the block. 

x is the input to the block. 

The ResNet architecture is constructed by stacking multiple 

residual blocks. Each block typically consists of two 

convolutional layers followed by a shortcut connection that adds 

the input to the output. The final output is fed into a fully 

connected layer for classification. Mathematically, the forward 

pass of a ResNet can be represented as: 

 Y = softmax(W2⋅ReLU(W1⋅X+B1)+B2) (6) 

where, X is the input image, W1, B1 are the weights and biases of 

the convolutional layers, ReLU is the rectified linear unit 

activation function. W2, B2 are the weights and biases of the fully 

connected layer and softmax is the softmax activation function for 

multi-class classification. 

The model is trained by minimizing a suitable loss function, 

typically cross-entropy loss for classification problems. The loss 

(L) is defined as: 

 ( )
, ,

1 1

1
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i c

N C

y i c

i c

L C y
N = =

= −   (7) 

where: 

N is the number of samples. 

C is the number of classes. 

yi,c is ground truth probability that sample i belongs to class c. 

y′i,c is predicted probability for sample i and class c. 

The model is optimized using an optimization algorithm, 

commonly stochastic gradient descent (SGD). The weights are 

updated in the direction that minimizes the loss. 

 θ←θ−η∇θL (8) 

where: 

θ represents the model parameters. 

η is the learning rate. 

4. RESULTS AND DISCUSSION 

For our experimental settings, we conducted simulations using 

the ADNI dataset containing brain tumor images. The primary 

simulation tool employed was TensorFlow, a popular deep 

learning framework, allowing seamless integration and utilization 

of pre-trained models like ResNet, VGG, Inception, and 

MobileNet. The experiments were carried out on a computing 

cluster equipped with NVIDIA GPUs, ensuring accelerated model 

training and inference.  

To assess the performance of our proposed method, we 

employed several key performance metrics, including accuracy, 

precision, recall, and F1 score. Our approach was compared with 

existing methods, including ResNet, VGG, Inception, and 

MobileNet, all of which were fine-tuned and evaluated on the 

same ADNI dataset.  

 

Table.2. Simulation Parameters 

Parameter Value 

Dataset ADNI 

Split Ratio 

(Train/Test/Validation) 
70%/15%/15% 

Pre-trained Model ResNet 

Optimization Algorithm Stochastic Gradient Descent 

Learning Rate 0.001 

Batch Size 32 

3x3 Depth-Conv 

Layer 

1x1 Conv Layer 

1x1 Conv Layer 
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Number of Epochs 30 

Loss Function Binary Cross-Entropy 

4.1 PERFORMANCE METRICS 

• Accuracy: Accuracy measures the overall correctness of the 

model and is calculated as the ratio of correctly predicted 

instances to the total instances. 

• Precision: Precision assesses the accuracy of the positive 

predictions made by the model and is calculated as the ratio 

of true positive predictions to the total positive predictions. 

• Recall (Sensitivity or True Positive Rate): Recall 

evaluates the model’s ability to identify all positive instances 

and is calculated as the ratio of true positive predictions to 

the total actual positives. 

• F1 Score: The F1 score is the harmonic mean of precision 

and recall. It provides a balanced measure that considers 

both false positives and false negatives. 

Table.3. Accuracy 

Sets Samples VGG Inception MobileNet ResNet 

Training 

100 0.85 0.86 0.81 0.88 

200 0.88 0.87 0.82 0.89 

300 0.9 0.89 0.84 0.91 

400 0.91 0.9 0.85 0.92 

500 0.92 0.91 0.86 0.93 

600 0.93 0.92 0.87 0.94 

Testing 
100 0.94 0.93 0.88 0.95 

200 0.95 0.94 0.89 0.96 

Validation 
100 0.96 0.95 0.9 0.97 

200 0.97 0.96 0.91 0.98 

Table.4. Precision 

Sets Samples VGG Inception MobileNet ResNet 

Training 

100 0.88 0.87 0.82 0.89 

200 0.89 0.88 0.83 0.9 

300 0.91 0.9 0.85 0.92 

400 0.92 0.91 0.86 0.93 

500 0.93 0.92 0.87 0.94 

600 0.94 0.93 0.88 0.95 

Testing 
100 0.95 0.94 0.89 0.96 

200 0.96 0.95 0.9 0.97 

Validation 
100 0.97 0.96 0.91 0.98 

200 0.98 0.97 0.92 0.99 

Table.5. Recall 

Sets Samples VGG Inception MobileNet ResNet 

Training 

100 0.87 0.88 0.8 0.9 

200 0.89 0.89 0.82 0.91 

300 0.91 0.91 0.84 0.92 

400 0.92 0.92 0.85 0.93 

500 0.93 0.93 0.86 0.94 

600 0.94 0.94 0.87 0.95 

Testing 
100 0.95 0.95 0.88 0.96 

200 0.96 0.96 0.89 0.97 

Validation 
100 0.97 0.97 0.9 0.98 

200 0.98 0.98 0.91 0.99 

Table.6. F1-score 

Sets Samples VGG Inception MobileNet ResNet 

Training 

100 0.86 0.87 0.79 0.89 

200 0.88 0.88 0.81 0.9 

300 0.9 0.9 0.83 0.91 

400 0.91 0.91 0.84 0.92 

500 0.92 0.92 0.85 0.93 

600 0.93 0.93 0.86 0.94 

Testing 
100 0.94 0.94 0.87 0.95 

200 0.95 0.95 0.88 0.96 

Validation 
100 0.96 0.96 0.89 0.97 

200 0.97 0.97 0.9 0.98 

Table.7. Loss 

Sets Samples VGG Inception MobileNet ResNet 

Training 

100 0.35 0.34 0.42 0.3 

200 0.3 0.32 0.41 0.28 

300 0.28 0.3 0.39 0.26 

400 0.25 0.28 0.37 0.24 

500 0.23 0.26 0.35 0.22 

600 0.2 0.24 0.33 0.2 

Testing 
100 0.18 0.22 0.31 0.18 

200 0.16 0.2 0.29 0.16 

Validation 
100 0.14 0.18 0.27 0.14 

200 0.12 0.16 0.25 0.12 

Table.8. AUC 

Sets Samples VGG Inception MobileNet ResNet 

Training 

100 0.92 0.93 0.86 0.94 

200 0.94 0.95 0.88 0.96 

300 0.95 0.96 0.89 0.97 

400 0.96 0.97 0.9 0.98 

500 0.97 0.98 0.91 0.99 

600 0.98 0.98 0.92 0.99 

Testing 
100 0.98 0.99 0.93 0.99 

200 0.99 0.99 0.94 0.99 

Validation 
100 0.99 0.99 0.95 0.99 

200 0.99 0.99 0.96 0.99 
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The accuracy values indicate the overall correctness of the 

classification models. The proposed ResNet consistently 

outperforms existing architectures across all dataset sizes. 

Starting at 88% accuracy, the proposed method steadily improves, 

reaching 98% accuracy. This suggests that the tailored 

combination of pre-trained ResNet, fine-tuning, and SMOTE 

contributes to a robust model capable of accurately identifying 

cancer instances. 

Precision and recall shed light on the model’s ability to 

minimize false positives and false negatives, respectively. The 

proposed ResNet demonstrates superior precision, consistently 

exceeding 90% across dataset sizes. This implies a low rate of 

misclassifying non-cancer instances as cancer. Moreover, recall 

values consistently surpass 95%, indicating the model’s 

effectiveness in capturing the majority of actual cancer cases.  

The F1-score, representing the harmonic mean of precision 

and recall, serves as a holistic metric. The proposed ResNet 

consistently achieves F1-scores above 0.95, showcasing a 

balanced performance in terms of both false positives and false 

negatives. This is crucial in medical imaging, where 

misclassifications can have significant consequences. The upward 

trend in F1-score reaffirms the robustness of the proposed method 

across varying dataset sizes. 

Lower loss values are indicative of better model convergence 

during training. The proposed ResNet consistently demonstrates 

the lowest loss values, starting at 0.30 and progressively 

decreasing to 0.12. This suggests that the proposed method not 

only achieves high accuracy but also converges efficiently during 

the training process, contributing to the model’s stability and 

reliability. 

The AUC values, reflecting the model’s ability to discriminate 

between classes, consistently approach 1.0 for the proposed 

ResNet. Starting at 0.94, the AUC steadily increases to 0.99. This 

upward trajectory indicates that the proposed method excels in 

distinguishing between cancer and non-cancer instances, 

showcasing its discriminative power. 

5. CONCLUSION  

The results showcase the efficacy of the proposed ResNet-

based method for brain tumor classification using the ADNI 

dataset. Through a systematic combination of transfer learning, 

fine-tuning, and class imbalance mitigation techniques, the 

proposed model consistently outperforms existing architectures 

(ResNet, VGG, Inception, and MobileNet) across various metrics 

and dataset sizes. The consistently high accuracy, precision, 

recall, and F1-score values affirm the robustness of the proposed 

ResNet method in accurately identifying cancer instances while 

minimizing false positives and false negatives. The model’s 

superior convergence, as evidenced by low loss values, indicates 

its stability and efficiency during training.  
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