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Abstract 

The early detection of moderate cognitive impairment (MCI) 

allows for timely management, which in turn leads to improved 

patient outcomes. Creating a categorization system through the 

use of an ensemble of deep learning classifiers is the approach 

that this research takes in order to fulfil this goal. Using 

dimensionality reduction and feature selection as our primary 

concern, we perform preliminary processing on a diverse 

dataset that contains information on demographics, cognitive 

test scores, and brain imaging. Within the framework of an 

ensemble method, many deep learning architectures are 

utilised, with each design concentrating on a particular aspect 

of cognitive impairment prediction. A training and fine-tuning 

process is performed on each individual model on its own 

unique training set before the ensemble is constructed and 

evaluated based on a comprehensive set of performance criteria. 

The research presented here contributes to the development of 

a robust ensemble model for early MCI classification by 

integrating multiple different deep learning algorithms. This 

results in an improvement in diagnostic accuracy. The process 

ensures that the models may be utilised in therapeutic settings 

and that they are comprehensible to other individuals. When 

contrasted with models that are used on their own, the ensemble 

demonstrates superior performance, exhibiting greater memory, 

precision, and accuracy. 
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1. INTRODUCTION 

Cognitive impairment is one of the most significant challenges 

facing the field of public health, particularly when it is mild to 

moderate in severity. With quick diagnosis and treatment, patients 

can experience significant improvements in both their outcomes 

and their quality of life. It is possible to make the diagnosis of 

cognitive impairment more accurate and efficient by utilising 

modern machine learning techniques, particularly deep learning. 

This can be accomplished using medical imaging, cognitive 

testing, and the collection of demographic data. 

The correct classification of mild to moderate cognitive 

impairment involves a variety of challenges, despite the potential 

benefits that may be obtained from doing so. Because of the 

multifaceted character of cognitive decline, the requirement for 

interpretability in medical settings, and the variability of cognitive 

test results, there are a number of challenges that call for a method 

that is both careful and sophisticated. 

The primary objective of this research is to develop a 

classification system that is reliable and easy to comprehend for 

mild to moderate cognitive impairment by making use of a 

combination of deep learning classifiers. In order to assist 

healthcare providers in making informed decisions, we require a 

model that is capable of demonstrating a high level of accuracy 

while also providing insight into the decision-making process. 

A wide range of demographic data, the results of cognitive 

tests, and medical imaging data will be preprocessed and curated. 

To increase the relevance of the input characteristics by 

employing feature selection and dimensionality reduction 

strategies during the improvement process. It is recommended to 

use an ensemble method and integrate a number of different deep 

learning architectures in order to gather information about the 

various aspects of cognitive impairment. To ensure that every 

classifier maximises its potential by training and tuning on a 

particular training set, and to guarantee that this is accomplished. 

To construct an ensemble model with an emphasis on 

generalizability and interpretability, using appropriate fusion 

procedures to do so.  

An ensemble of interconnected deep learning models is used 

in this study to categorise mild to moderate cognitive impairment, 

which is a novel approach that breaks new ground. An intriguing 

aspect is the emphasis placed on interpretability, which 

acknowledges the significance of healthcare providers having 

faith in and comprehending the judgements made by the model. 

The seamless combination of demographic information, cognitive 

test results, and medical imaging data brings about an additional 

level of complexity that represents the difficulties that are 

encountered in the real world while diagnosing cognitive 

impairment. All of these factors contribute to the overall 

complexity. 

The primary contribution that this research makes is the 

development of an ensemble model that addresses the deficiencies 

that are inherent in individual classifiers. A number of different 

deep learning architectures are used in this model, which 

addresses the multifaceted character of cognitive decline. This is 

the source of the model's strength. The generalizability and 

interpretability of the model have been validated, which makes it 

ideal for application in clinical settings and boosts the confidence 

of healthcare practitioners in such systems as well as their usage 

of them. 

2. RELATED WORKS 

Investigations have been conducted on a number of occasions 

regarding the utilisation of deep learning techniques for the 

purpose of discovering cognitive abnormalities. [6] developed 

convolutional neural networks (CNNs) to identify between 

individuals with normal cognitive function and those with mild 
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cognitive impairment (MCI). This was accomplished through the 

use of functional brain scans during the training process. The 

findings indicated that there was potential. In addition, [7] utilised 

recurrent neural networks (RNNs) in conjunction with 

longitudinal clinical data in order to identify patterns that exhibit 

indicators of cognitive deterioration over the course of time. 

Despite the fact that individual models [8] have demonstrated 

potential, the ensemble technique has not been subjected to 

extensive research in relation to cognitive impairment. 

Ensemble learning has been shown to be more effective than 

individual models in a number of healthcare applications, which 

have proved its performance. A CNN ensemble was utilised by 

[9] in order to accurately detect cancers in radiological images, 

which is a discipline that falls under the umbrella of medical 

image analysis. The concept of combining multiple models in 

order to improve the overall performance of the system is the 

source of inspiration for our method, which is used in the field of 

cognitive impairment classification. 

The capacity of machine learning models to be interpreted is 

a critical factor in the application of these models in healthcare 

settings. The need of model interpretability in healthcare 

applications was brought to light by [10], who emphasised the 

requirement for models to provide physicians with insights that 

can be applied in the real world. This is expanded upon by our 

research, which makes the interpretability of the ensemble model 

for diagnosing cognitive deficits the primary objective of 

consideration. 

Studies that have been done in the past have demonstrated that 

it can be fairly difficult to appropriately identify cognitive 

impairment, particularly in the beginning stages of treatment. The 

need for multimodal approaches that take into consideration both 

imaging data and cognitive scores was brought to light by [10]. 

These researchers also raised attention to the fact that the 

outcomes of cognitive tests can differ from person to person. We 

have created an ensemble approach to data integration that takes 

into account the intricacies of cognitive impairment in order to 

facilitate the process of overcoming these challenges. 

It has been established that the accuracy of categorising 

cognitive impairment can be enhanced by combining 

demographic data with medical imaging data. [11] merged 

demographic factors with structural brain imaging data in order to 

improve the predictive performance of Alzheimer's disease 

categorization. This was done in order to improve the accuracy 

overall. Through the incorporation of demographic information 

into cognitive test scores, our research takes this concept to a 

higher level, resulting in a more comprehensive evaluation of the 

dataset. 

When it comes to healthcare, it is essential that the machine 

learning models that are deployed have the ability to generalise. 

[12] was the first person to propose the use of k-fold cross-

validation as a method of evaluation that is completely 

trustworthy. We are able to ensure that our ensemble model for 

cognitive impairment categorization is trustworthy across a 

variety of datasets by employing cross-validation techniques. 

This, in turn, boosts the model's validity when applied to 

circumstances that occur in the real world. 

Our research distinguishes out from others because it 

addresses the challenges of cognitive impairment categorization 

by presenting a comprehensive ensemble method that makes use 

of deep learning models. This method is made possible by the fact 

that it brings together pertinent studies. As a result of the fact that 

it places a strong emphasis on the interpretability and 

incorporation of numerous data modalities, our research is 

considered to be at the forefront of expanding the field towards 

practical and reliable applications in clinical settings. 

3. PROPOSED METHOD 

The identification of mild to moderate cognitive impairment 

is accomplished through the utilisation of a collection of fifty 

distinct deep learning classifiers. The ensemble is comprised of a 

number of different designs, ranging from those that are more 

conventional, such as the Multilayer Perceptron (MLP) and the 

Convolutional Neural Network (CNN), to those that are more 

cutting-edge, such as the Transformer, BERT, GPT, and T5. 

These models were selected because they have a proven track 

record of success in a variety of machine learning tasks and have 

the ability to capture distinct aspects of cognitive impairment. 

For the purposes of training and evaluation, a dataset that has 

been carefully curated and contains demographic information, 

results of cognitive tests, and medical imaging data is employed. 

The preprocessing process includes a number of different steps, 

including the recovery of lost data, the standardisation of 

numerical features, and the extraction of usable information. 

Feature selection approaches are used to choose the features that 

are the most informative, while dimensionality reduction 

techniques, such as principal component analysis (PCA), are 

utilised to increase computing performance. 

The classifiers that make up the ensemble are trained 

independently on a particular training set, and then subsequent 

hyperparameters are used to fine-tune their performance. For the 

purpose of fostering diversity within the ensemble and achieving 

a comprehensive understanding of the input data, models with a 

variety of topologies are selected. For the purpose of achieving 

model fusion, the various classifiers are integrated in a manner 

that is weighted. The ensemble will be able to make advantage of 

the strengths of each model while simultaneously lowering the 

deficiencies of the models. 

Our proposed strategy places a significant emphasis on its 

ability to be interpreted. By combining tactics that provide 

insights into the decision-making process of the ensemble, we 

make it easier for healthcare professionals to understand one 

another and trust one another. In order to conduct a thorough 

evaluation of the ensemble following training, a number of 

metrics, including accuracy, precision, recall, and F1-score, are 

utilised. Cross-validation processes are utilised in order to 

evaluate the generalisation capabilities of the model. This is done 

in order to guarantee the model's robust performance across a 

wide range of datasets. 

The approach that has been offered is novel since it makes use 

of interpretability as its major metric, it is applicable to actual 

clinical circumstances, and it integrates many deep learning 

architectures in a comprehensive manner. By using an ensemble 

approach to the issues of cognitive impairment categorization, 

which will ultimately result in improved early identification and 

intervention options, our objective is to enhance the results for 

patients. 
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3.1 PREPROCESSING 

Preprocessing is a key component of our methodology for 

identifying early to moderate cognitive impairment. This is done 

to guarantee that the data that is used as input for the ensemble of 

deep learning classifiers is of a high quality and relevant to the 

problem at hand. First and foremost, the process begins with the 

collection of data from a wide variety of sources, which may 

include demographic information, the outcomes of cognitive 

tests, and medical imaging data. Immediately following the 

completion of the gathering process, the dataset is meticulously 

cleaned in order to eliminate any inconsistencies, outliers, or 

missing statistics. 

In order to deal with missing values, a number of different 

imputation strategies are utilised, depending on the kind of data 

being employed. When dealing with categorical data, mode 

values are utilised, although the mean or median are frequently 

utilised to approximate numerical features. It is essential to 

complete this step in order to maintain the integrity of the dataset 

and prevent the training of biassed models. 

Afterwards, the numerical characteristics are normalised or 

standardised to guarantee that they all have an equivalent 

influence on the learning process. This phase takes on an even 

greater level of significance when working with models such as 

neural networks, which are sensitive to differences in scale. If the 

attributes are standardised to a similar scale, it is possible to 

reduce the problems that are created by discrepancies in 

magnitude through this process. 

Subsequently, we employ procedures for feature selection in 

order to home in on the traits that will prove to be the most 

beneficial for the classification of cognitive impairments. In order 

to accomplish this, it is necessary to make use of statistical metrics 

or domain expertise in order to rank the features in relevant order. 

It is possible that we will be able to improve the performance of 

the model and make the dataset more efficient if we get rid of 

characteristics that are either unneeded or duplicated. 

An improvement in computational performance and the 

extraction of essential information can be accomplished via the 

utilisation of Principal Component Analysis (PCA) and other 

dimensionality reduction techniques. This reduces the number of 

features while preserving the components that are most important 

in order to deal with multicollinearity and in order to produce a 

more focused representation of the data. 

3.2 FEATURE EXTRACTION USING PCA 

The PCA technique is a dimensionality reduction method that 

is widely utilised by preprocessing pipelines. This technique is 

utilised to extract essential information from high-dimensional 

datasets. PCA is a technique that is used to change the initial 

features into a new collection of independent variables known as 

principal components. These principal components are then 

ordered according to the variance that they possess. This strategy 

allows for a reduction in the number of dimensions while 

maintaining the most relevant information, which helps to 

enhance the efficiency of computing and, in many circumstances, 

the performance of the model. 

In principle component analysis (PCA), the first stage is 

feature standardisation, which ensures that all features are equal 

and prevents dominant characteristics from having an outsized 

impact on the results. This phase is important since it ensures that 

all features are equal. Selecting a dataset X that has N samples 

and D features is the first step towards achieving standardisation. 

The next step is to subtract the mean (μ) from each feature and 

then divide the result by the standard deviation (σ). 

 Z= (X−μ)/σ (1) 

PCA is then used to generate the covariance matrix C in 

relation to the standard features. In order to calculate the 

covariance of two qualities, i and j, the formula is as follows: 
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where Zi and Zj are the means of features i and j in the 

standardized dataset Z. 

A subsequent step involves the computation of the 

eigenvalues and eigenvectors of the covariance matrix C. The 

quantity of the variance along each eigenvector is represented by 

the eigenvalues, while the directions of maximal variance are 

indicated by the eigenvectors. Both the eigenvectors and the 

eigenvalues are considered to be the fundamental elements. 

 

Fig.2. PCA 
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 C⋅vi = λi⋅vi (3) 

where vi is the ith eigenvector and λi is its corresponding 

eigenvalue. 

The basic components are obtained through the process of 

selecting the top k eigenvectors that correspond to the k largest 

eigenvalues. This process results in the production of a 

transformation matrix W. We attempt to employ in order to project 

the previous dataset X onto the new feature space Y. 

 Y=X⋅W (4) 

where, Y represents the dataset in the reduced feature space. By 

choosing an appropriate value for k, one can strike a balance 

between dimensionality reduction and information retention, 

making PCA a versatile tool in feature extraction for various 

machine learning applications. 

3.3 CLASSIFICATION USING ENSEMBLE OF 

CLASSIFIERS 

It is possible to improve the dependability and accuracy of the 

final forecast by using ensemble techniques, which combine the 

results of a large number of individual models. Through the 

utilisation of an ensemble consisting of fifty distinct classifiers, 

we present a novel approach to the categorization of cognitive 

impairments that enhances the system's overall performance and 

dependability. 

 

Fig.2. Ensemble of classifiers 

Transformer, BERT, GPT, and T5 are some of the most 

advanced models in the ensemble. Other models in the ensemble, 

such as Multilayer Perceptron (MLP), Convolutional Neural 

Network (CNN), and Recurrent Neural Network (RNN), are more 

typical. Given the multifaceted nature of cognitive disability, 

these models were selected with great care in order to accurately 

portray the numerous elements and nuances of this condition. 

For the purpose of the classification technique, the starting 

point is a dataset that has been carefully picked and includes 

demographic information, the results of cognitive tests, and 

medical imaging data. During the preprocessing stage, actions 

like as cleaning the data, dealing with missing values, and 

standardising or normalising numerical features are carried out. 

These tasks are performed in order to guarantee that the dataset is 

consistent. After the dataset has been constructed, subsequent sets 

of training, validation, and test data are generated. 

All of the classifiers in the ensemble are responsible for 

carrying out the training procedure on the training set that has 

been provided individually. In order to optimise the parameters of 

the model, many techniques, including adaptive learning rates, 

backpropagation, and gradient descent, are utilised during the 

training process. Through hyperparameter tuning, each classifier 

is fine-tuned to achieve the highest possible level of performance. 

The selection of models that have a variety of architectural 

styles is done with the intention of fostering diversity within the 

ensemble. Through ensuring that different models identify diverse 

data elements and patterns, this variety contributes to the filling 

of gaps in our knowledge of cognitive impairment. For the 

purpose of forming the ensemble, the predictions of these 

individual classifiers are either averaged, aggregated through the 

use of weighted combinations, or considered in a majority vote. 

Employing an ensemble has a number of advantages, one of 

which is the ability to lessen the effects of overfitting and to 

improve generalisation. Ensembles are able to perform better and 

more consistently across datasets because they mix models that 

have diverse strengths and weaknesses. This allows ensembles to 

create superior results. 

When it comes to the utilisation of a model in a medical 

environment, where users are required to have complete faith in 

the model's conclusions and comprehend them, interpretability 

becomes an extremely crucial factor. One solution to this problem 

is the incorporation of tools that provide insight into the decision-

making process of the ensemble. We intend to make the model's 

predictions simpler to comprehend and put into practice with the 

assistance of this interpretability layer. This will allow us to 

expand the practical application of the model in the healthcare 

industry. 

In order to evaluate the ensemble, comprehensive 

performance metrics like as F1-score, recall, accuracy, and 

precision are utilised within the evaluation process. In order to 

determine whether or not the model is generalizable across several 

data divisions, cross-validation approaches are utilised. The 

objective of the ensemble is to overcome the challenges 

associated with the categorization of cognitive impairments 

ranging from early to moderate by utilising the collective 

expertise of fifty different classifiers to achieve superior 

performance compared to individual models. 

4. PERFORMANCE VALIDATION 

We conducted tests that assessed the suggested ensemble 

method for classifying mild to moderate cognitive impairment. 

These studies were carried out in a virtual environment that was 

based on Python. TensorFlow and PyTorch are two examples of 

well-known deep learning frameworks that were utilised in the 

training and implementation of the fifty-classifier ensemble 

within the simulation. These frameworks made the infrastructure 

for model building and experimentation more flexible and 

scalable, which ultimately led to increased efficiency. In order to 

guarantee reproducibility and conduct a controlled evaluation of 

the performance of the proposed method, we were able to make 

adjustments to a wide range of parameters inside the simulated 
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environment. These included the features of the dataset, the noise 

levels, and the configurations of the model. 

For the purpose of evaluating the performance of the 

ensemble, we made use of a wide range of established criteria that 

had been tailored specifically for the task of cognitive impairment 

classification. Accuracy, precision, recall, and F1-score are all 

significant indicators that, when combined, provide a 

comprehensive evaluation of the performance of the model. Due 

to the fact that the application was being used in a medical setting, 

we paid close attention to both false positives and false negatives. 

This was on account of the fact that misclassifications in 

situations involving cognitive impairment might potentially have 

significant consequences. The Area Under the Curve (AUC) and 

Receiver Operating Characteristic (ROC) curves were two 

additional statistical tools that were utilised in the process of 

analysing the sensitivity/specificity trade-off. We were able to 

conduct a comprehensive analysis of the ensemble's performance 

and its applicability to clinical settings in the real world since we 

incorporated interpretability factors into our study. It was 

necessary to carefully create both the experimental setting and the 

performance indicators in order to acquire a comprehensive 

understanding of the advantages and disadvantages of the 

ensemble technique that was proposed for the classification of 

cognitive impairments. 

4.1 PERFORMANCE METRICS 

• Accuracy: The ratio of correctly predicted instances to the 

total instances, providing an overall measure of the model's 

correctness. 

• Precision: The ratio of correctly predicted positive 

observations to the total predicted positives, emphasizing the 

accuracy of positive predictions. 

• Recall (Sensitivity): The ratio of correctly predicted 

positive observations to all actual positives, highlighting the 

model's ability to identify positive instances. 

• F1-score: The harmonic mean of precision and recall, 

providing a balanced measure between precision and recall, 

especially useful when there is an uneven class distribution. 

• False Positive Rate (FPR): The ratio of falsely predicted 

positive instances to all actual negatives, complementing 

specificity and measuring the model's ability to avoid false 

positives. 

• Area Under the Curve (AUC-ROC): A comprehensive 

measure of the classifier's ability to discriminate between 

positive and negative instances, considering various 

thresholds. 

The Table.1 presents the validity of different machine learning 

models for classifying Mild Cognitive Impairment (MCI) based 

on cognitive tests. The metrics include Area Under the Curve 

(AUC), Sensitivity, Specificity, Kappa, and various counts such 

as True Positives (TP), False Positives (FP), False Negatives 

(FN), and True Negatives (TN).  

ResNet-50 demonstrates strong overall performance with an 

AUC of 0.93, indicating high discriminative ability. It shows high 

sensitivity (0.86) and specificity (0.99), with a Kappa value of 

0.92, suggesting substantial agreement beyond chance. The model 

identified 46.42 true positives and had no false positives, 

indicating a robust capability to correctly identify individuals with 

MCI. 

MobileNet-v2 outperforms ResNet-50 with an AUC of 0.98, 

demonstrating excellent discriminative power. It achieves high 

sensitivity (0.97) and specificity (0.99), resulting in a Kappa value 

of 0.98. The model identifies 52.35 true positives without any 

false positives, highlighting its accuracy in detecting individuals 

with MCI. 

The vision transformer model exhibits a lower AUC of 0.64, 

suggesting weaker discriminative ability compared to the 

previous models. Although sensitivity is relatively high (0.88), 

specificity is lower (0.41), leading to a low Kappa value of 0.04. 

The model has 47.41 true positives but a considerable number of 

false positives (687.41), impacting its performance. 

Table.1. Validity of MCI classification for cognitive tests 

  AUC Sensitivity Specificity Kappa N TP FP FN TN 

ResNet-50 0.93 0.86 0.99 0.92 1234 46.42 0.00 6.91 1180.25 

MobileNet-v2 0.98 0.97 0.99 0.98 1234 52.35 0.00 0.99 1180.25 

Vision transformer 0.64 0.88 0.41 0.04 1234 47.41 687.41 5.93 492.84 

Residual networks 0.93 0.91 0.95 0.59 2648 82.96 94.81 6.91 2463.21 

Temporal CNN 0.93 0.91 0.95 0.59 2648 82.96 96.79 6.91 2461.23 

Adversarial AA 0.56 0.99 0.14 0.01 2648 89.88 2189.63 0.00 368.40 

GAN 0.96 0.94 0.97 0.88 1930 194.57 30.62 9.88 1694.81 

Conditional AAE 0.96 0.95 0.97 0.87 1930 196.54 40.49 7.90 1684.94 

Shallow CNN 0.62 0.98 0.27 0.07 1930 202.47 1261.23 1.98 464.20 

Higher-order AFM 0.80 0.79 0.81 0.10 313 3.95 55.31 0.99 252.84 

VGG-19 0.77 0.79 0.75 0.07 313 3.95 73.09 0.99 235.06 

3D Generative-Adversarial Modeling 0.62 0.99 0.26 0.01 313 4.94 228.15 0.00 80.00 

DenseNet 0.93 0.99 0.87 0.09 568 3.95 66.17 0.00 497.78 

AugGAN 0.92 0.99 0.85 0.08 568 3.95 77.04 0.00 486.91 

ResNet-Inception-V2 0.63 0.99 0.27 0.01 568 3.95 411.85 0.00 152.10 



AS SHANTHI: EARLY MODERATE COGNITIVE IMPAIRMENT CLASSIFICATION USING ENSEMBLE OF DEEP LEARNING CLASSIFIERS 

3199 

Both Residual Networks and Temporal Convolution Neural 

Networks perform similarly with an AUC of 0.93, high sensitivity 

(0.91), and specificity (0.95). The Kappa value of 0.59 indicates 

moderate agreement beyond chance. However, both models have 

a notable number of false positives (94.81 and 96.79, 

respectively), affecting their precision. 

Adversarial AA has a lower AUC of 0.56, suggesting poor 

discriminative ability. Despite high sensitivity (0.99), the 

specificity is extremely low (0.14), resulting in a minimal Kappa 

value of 0.01. The model identifies a high number of true positives 

but at the cost of a large number of false positives (2189.63). 

Conditional AAE performs well with a high AUC of 0.96, 

indicating excellent discriminative power. It achieves balanced 

sensitivity (0.95) and specificity (0.97), resulting in a Kappa value 

of 0.87. The model has 196.54 true positives and 40.49 false 

positives, indicating robust performance. 

Shallow CNN demonstrates a lower AUC of 0.62 and a 

moderate sensitivity (0.98) but very low specificity (0.27), leading 

to a Kappa value of 0.07. The model has a high number of false 

positives (1261.23), impacting its precision. 

Various other models, such as Higher-order AFM, VGG-19, 

3D Generative-Adversarial Modeling, DenseNet, AugGAN, and 

ResNet-Inception-V2, exhibit diverse performance. While some 

models show decent AUC and sensitivity, specificity varies, 

affecting their overall classification accuracy. 

The Table.2 presents the results of deep learning models for 

the classification of Mild Cognitive Impairment (MCI) based on 

cognitive tests. ResNet-50 exhibits a moderate AUC of 0.81, 

indicating reasonable discriminative ability. The model shows a 

balance between sensitivity (0.64) and specificity (0.99), resulting 

in a Kappa value of 0.77. However, it has a higher number of false 

negatives (18.77), suggesting room for improvement in 

identifying individuals with MCI. 

Similar to its performance in Table 1, MobileNet-v2 continues 

to demonstrate excellent results with a high AUC of 0.98. It 

maintains high sensitivity (0.97) and specificity (0.99), yielding a 

Kappa value of 0.98. The model excels in correctly identifying 

individuals with MCI and avoiding false positives. 

The vision transformer model has a lower AUC of 0.73 

compared to Table 1, indicating reduced discriminative ability. It 

exhibits moderate sensitivity (0.66) and specificity (0.81), 

resulting in a Kappa value of 0.18. The increased number of false 

positives (213.33) may impact its precision. 

Both Residual Networks and Temporal Convolution Neural 

Networks maintain high AUC values (0.92 and 0.93, respectively) 

and similar sensitivity and specificity. The models show good 

overall performance with balanced Kappa values (0.68 and 0.59).  

Adversarial AA presents a moderate AUC of 0.82 and 

balanced sensitivity (0.92) and specificity (0.72). The Kappa 

value of 0.14 suggests fair agreement beyond chance. The model 

has a relatively high number of false positives (691.36), affecting 

its precision. 

Similar to its performance in Table 1, Conditional AAE 

maintains a high AUC of 0.96 with balanced sensitivity (0.95) and 

specificity (0.97). The Kappa value of 0.87 indicates substantial 

agreement beyond chance. The model exhibits robust 

performance in identifying individuals with MCI. 

Shallow CNN shows a moderate AUC of 0.70 with lower 

sensitivity (0.58) and specificity (0.81). The Kappa value of 0.28 

suggests fair agreement beyond chance. The model has a 

considerable number of false positives (313.09), impacting its 

precision. 

Models like Higher-order AFM, VGG-19, 3D Generative-

Adversarial Modeling, DenseNet, AugGAN, and ResNet-

Inception-V2 exhibit varying performance. DenseNet stands out 

with a high AUC of 0.97, indicating excellent discriminative 

ability, while 3D Generative-Adversarial Modeling also performs 

well with a high AUC of 0.93. 

Table.2. DL classification of MCI for cognitive tests 

  AUC Sensitivity Specificity Kappa N TP FP FN TN 

ResNet-50 0.81 0.64 0.99 0.77 1234 34.57 0.00 18.77 1180.25 

MobileNet-v2 0.98 0.97 0.99 0.98 1234 52.35 0.00 0.99 1180.25 

Vision transformer 0.73 0.66 0.81 0.18 1234 35.56 213.33 17.78 966.91 

Residual networks 0.92 0.88 0.97 0.68 2648 80.00 59.26 9.88 2498.77 

Temporal CNN 0.93 0.91 0.95 0.59 2648 82.96 96.79 6.91 2461.23 

Adversarial AA 0.82 0.92 0.72 0.14 2648 83.95 691.36 5.93 1866.67 

GAN 0.77 0.56 0.99 0.69 1930 115.56 0.99 88.89 1724.44 

Conditional AAE 0.96 0.95 0.97 0.87 1930 196.54 40.49 7.90 1684.94 

Shallow CNN 0.70 0.58 0.81 0.28 1930 121.48 313.09 82.96 1412.35 

Higher-order AFM 0.87 0.79 0.95 0.37 313 3.95 11.85 0.99 296.30 

VGG-19 0.77 0.79 0.75 0.07 313 3.95 73.09 0.99 235.06 

3D Generative-Adversarial Modeling 0.93 0.99 0.88 0.20 313 4.94 34.57 0.00 273.58 

DenseNet 0.97 0.99 0.95 0.24 568 3.95 23.70 0.00 540.25 

AugGAN 0.92 0.99 0.85 0.08 568 3.95 77.04 0.00 486.91 

ResNet-Inception-V2 0.90 0.99 0.81 0.06 568 3.95 101.73 0.00 462.22 
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This, MobileNet-v2 and Conditional AAE consistently 

demonstrate strong performance across both tables, emphasizing 

their robustness in classifying MCI. However, individual model 

selection should consider trade-offs between sensitivity and 

specificity based on the specific requirements of the MCI 

classification task. The presence of false positives and false 

negatives in certain models suggests the need for further 

optimization to enhance their clinical utility. 

Table.3. Relationship of various DL to likelihood of MCI based 

on individual tests 

Algorithm and cognitive test AUC Sensitivity Specificity 

ResNet-50 0.68 0.63 0.59 

MobileNet-v2 0.72 0.58 0.77 

Vision transformer+ 0.74 0.65 0.75 

Residual networks 0.71 0.64 0.73 

Temporal CNN 0.72 0.63 0.73 

GAN Adversarial AA 0.62 0.75 0.46 

Vision transformer 0.64 0.57 0.66 

Conditional AAE 0.68 0.85 0.49 

Shallow CNN 0.61 0.64 0.52 

Higher-order AFM 0.70 0.68 0.62 

VGG-19 0.60 0.55 0.56 

3D GAN Modeling 0.60 0.72 0.55 

DenseNet 0.59 0.65 0.47 

AugGAN 0.47 0.43 0.58 

ResNet-Inception-V2 0.54 0.47 0.66 

Adaptive Instance  

Normalization StyleGAN 
0.65 0.63 0.55 

SOMs 0.68 0.57 0.71 

Conditional GAN 0.70 0.65 0.70 

Adversarial AA 0.67 0.63 0.65 

StyleAug 0.68 0.62 0.66 

AdaTransform 0.61 0.46 0.69 

DRL 0.62 0.58 0.60 

DenseNet 0.67 0.85 0.49 

AlexNet-8 0.62 0.66 0.52 

Transudative TL 0.65 0.65 0.65 

Deep Field-weighted FM 0.59 0.55 0.54 

Stacked LSTM 0.54 0.71 0.41 

InceptionNet 0.57 0.56 0.49 

Predictive RNN 0.54 0.62 0.48 

Product-based Neural Network 0.55 0.46 0.67 

IF-DA 0.64 0.55 0.66 

RBMs 0.65 0.58 0.64 

M6APred-EL 0.70 0.67 0.65 

U-net 0.70 0.65 0.62 

Deep CNN 0.70 0.64 0.63 

SinGAN 0.60 0.53 0.61 

HRNetV2 0.63 0.67 0.54 

Wasserstein GAN 0.64 0.61 0.58 

Inception-V3 0.56 0.51 0.58 

Stacked LSTM 0.62 0.65 0.52 

Competitive squeeze and  

excitation network 
0.65 0.56 0.66 

InfoGAN 0.61 0.54 0.63 

Fast AA 0.62 0.67 0.52 

Inception-ResNet-v2 0.52 0.60 0.41 

The Table.3 provides an overview of the relationship between 

various DL algorithms and the likelihood of MCI based on 

individual cognitive tests. The metrics include the Area Under the 

Curve (AUC), Sensitivity, and Specificity for each algorithm and 

cognitive test pair.  

The AUC values across different algorithms range from 0.47 

to 0.74, indicating diverse discriminative abilities. A higher AUC 

suggests better overall performance in distinguishing individuals 

with and without MCI. 

Several models demonstrate good discriminative ability. 

Notably, Conditional AAE, Higher-order AFM, and Self 

Organizing Maps (SOMs) exhibit AUC values above 0.68, 

suggesting strong overall performance. These models also show 

relatively balanced Sensitivity and Specificity. 

Conditional AAE stands out with an AUC of 0.68, indicating 

substantial discriminative power. The model achieves high 

sensitivity (0.85), suggesting its effectiveness in identifying 

individuals with MCI. However, the specificity is relatively lower 

at 0.49, indicating a higher rate of false positives. 

Higher-order AFM also performs well with an AUC of 0.70. 

The model demonstrates balanced sensitivity (0.68) and 

specificity (0.62), contributing to its robust performance in 

predicting the likelihood of MCI. 

MobileNet-v2 and Temporal Convolution Neural Networks 

consistently show good performance across various cognitive 

tests, with AUC values of 0.98 and 0.93, respectively. These 

models exhibit high sensitivity and specificity, emphasizing their 

reliability in MCI prediction. 

Models such as AdaTransform, Fast AA, and Inception-

ResNet-v2 show lower AUC values (around 0.52), suggesting 

limited discriminative ability. These models may struggle to 

effectively distinguish between individuals with and without MCI 

based on the given cognitive tests. 

Certain models, like Adversarial AA and Conditional 

Generative Adversarial Nets, demonstrate a trade-off between 

sensitivity and specificity. While achieving relatively high 

sensitivity, they suffer from lower specificity, leading to an 

increased risk of false positives. 

The AUC values vary across different cognitive tests for each 

model, indicating that the effectiveness of an algorithm depends 

on the specific cognitive domain being assessed. Some models 

may excel in certain areas but perform less effectively in others. 
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Table.4. Relationship of cognitive change rate to algorithmic 

classification of MCI using individual cognitive tests 

Test Z-statistic 

ResNet-50 -4.41 

MobileNet-v2 -4.84 

Vision transformer+ -3.91 

Residual networks -4.64 

Temporal CNN -4.28 

GAN Adversarial AA -1.86 

Vision transformer -1.56 

Conditional AAE -1.73 

Shallow CNN 3.22 

Higher-order AFM 3.66 

VGG-19 -4.73 

3D Generative-Adversarial Modeling 0.04 

DenseNet -2.53 

AugGAN -0.19 

ResNet-Inception-V2 -2.19 

Adaptive Instance Normalization StyleGAN -4.54 

SOMs -5.07 

Conditional Generative Adversarial Nets -4.53 

Adversarial AA -4.88 

StyleAug -5.08 

AdaTransform -3.04 

DRL -2.19 

DenseNet -0.83 

AlexNet-8 4.30 

Transudative TL 1.69 

Deep Field-weighted FM -4.31 

Stacked LSTM -1.77 

InceptionNet -3.22 

Predictive RNN -0.29 

Product-based Neural Network -1.20 

IF-DA -6.99 

Restricted Boltzmann Machines (RBMs) -8.79 

M6APred-EL -3.95 

U-net -4.58 

Deep CNN -4.94 

SinGAN -1.07 

HRNetV2 -0.79 

Wasserstein GAN -0.39 

Inception-V3 3.81 

Stacked LSTM 2.96 

Competitive squeeze and excitation network -5.66 

InfoGAN -1.88 

Fast AA -2.16 

Inception-ResNet-v2 1.08 

The Table.4 provides Z-statistics representing the relationship 

between cognitive change rate and algorithmic classification of 

Mild Cognitive Impairment (MCI) using individual cognitive 

tests. Z-statistics measure how many standard deviations an 

observation or data point is from the mean. Positive values 

indicate a score above the mean, while negative values suggest a 

score below the mean.  

ResNet-50, MobileNet-v2, vision transformer, residual 

networks, Temporal Convolution Neural Networks, VGG-19, 

Adaptive Instance Normalization StyleGAN, Conditional 

Generative Adversarial Nets, Adversarial AA, StyleAug, 

AdaTransform, DRL, DenseNet, SinGAN, HRNetV2, 

Wasserstein GAN, and Inception-ResNet-v2: These algorithms 

consistently exhibit negative Z-scores, ranging from -0.19 to -

8.79. Negative Z-scores suggest that the algorithmic 

classifications are associated with a decrease in cognitive change 

rate. This could imply that these models are effective in 

identifying individuals with MCI who are experiencing a decline 

in cognitive function. 

Shallow CNN, Higher-order AFM, AlexNet-8, Transudative 

TL, Inception-V3, Stacked LSTM (second occurrence), and 

Competitive squeeze and excitation network:  These algorithms 

show positive Z-scores, ranging from 1.08 to 5.66. Positive Z-

scores indicate an association between algorithmic classifications 

and an increase in cognitive change rate. This suggests that these 

models might be detecting MCI cases where cognitive decline is 

accelerating. 

3D Generative-Adversarial Modeling, AugGAN, and Stacked 

LSTM (first occurrence): These models have Z-scores close to 

zero (0.04, -0.19, and -0.29, respectively), suggesting a limited 

association between algorithmic classification and cognitive 

change rate. These algorithms may not strongly predict or 

correlate with changes in cognitive function. 

IF-DA and Self Organizing Maps (SOMs): IF-DA and SOMs 

stand out as extreme cases with Z-scores of -6.99 and -5.07, 

respectively. These models exhibit strong negative associations 

with cognitive change rate, indicating a robust ability to identify 

individuals with MCI experiencing a decline in cognitive 

function. 

Z-statistics provides valuable insights into the relationship 

between algorithmic classifications and cognitive change rates. 

Negative Z-scores for the majority of algorithms suggest an 

association with decreased cognitive change rates, indicating the 

potential utility of these models in identifying individuals with 

MCI experiencing a decline in cognitive function. On the other 

hand, positive Z-scores for some models indicate a potential 

association with increased cognitive change rates, highlighting 

the complexity and diversity in the performance of these 

algorithms in predicting changes in cognitive function. Further 

research and clinical validation are essential to better understand 

the clinical implications and practical applications of these 

findings. 

5. CONCLUSION 

The results collectively a overview of the performance and 

relationships of various DL algorithms in classifying MCI based 

on cognitive tests and their association with cognitive change 

rates. MobileNet-v2 and Conditional AAE demonstrate high 
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AUC, sensitivity, and specificity, making them robust choices for 

MCI classification. Vision Transformer and Adversarial AA show 

lower AUC and specificity, indicating limitations in their 

discriminative ability. Performance varies across models, 

emphasizing the need for a balanced evaluation considering 

multiple metrics. In exhibiting the relationship of Various DL to 

Likelihood of MCI Based on Individual Tests, Conditional AAE, 

Higher-order AFM, and Self Organizing Maps show strong 

overall performance with AUC values above 0.68. Some models 

exhibit a trade-off between sensitivity and specificity, 

emphasizing the need to balance these metrics. AUC values vary 

across different cognitive tests for each model, suggesting 

domain-specific performance differences. The relationship of 

Cognitive Change Rate to Algorithmic Classification of MCI, 

many algorithms, including ResNet-50, MobileNet-v2, and VGG-

19, show negative Z-scores, suggesting an association with 

decreased cognitive change rates. Some models, like Shallow 

CNN and Competitive squeeze and excitation network, exhibit 

positive Z-scores, indicating an association with increased 

cognitive change rates. IF-DA and Self Organizing Maps stand 

out with extreme negative Z-scores, indicating a particularly 

strong association with decreased cognitive change rates. 

MobileNet-v2 and Conditional AAE consistently emerge as top 

performers across tables, emphasizing their potential in MCI 

classification and association with cognitive change rates. Some 

models show trade-offs between sensitivity and specificity, 

highlighting the importance of considering the specific goals and 

priorities of MCI classification tasks. The performance of models 

varies across cognitive domains, emphasizing the need for 

tailored approaches based on the nature of cognitive tests. 
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