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Abstract 

Alzheimer’s disease (AD) early diagnosis plays a pivotal role in 

effective intervention and patient care. With limited and noisy medical 

imaging datasets, GANs are utilized to generate synthetic brain images, 

aiding in the augmentation of existing data. The selected classification 

algorithms are well-established in computer vision and have 

demonstrated efficacy in image classification tasks. The GAN is 

employed for data augmentation, creating synthetic images 

representative of AD-associated features. Subsequently, the augmented 

dataset is utilized to train and evaluate the performance of multiple 

classification algorithms, providing a comprehensive analysis of their 

effectiveness in AD detection. This research contributes to the field of 

Alzheimer’s disease diagnosis by integrating GANs for data 

augmentation and evaluating the performance of ten diverse 

classification algorithms, offering insights into their suitability for 

early detection. In this study, we leverage Generative Adversarial 

Networks (GANs) for data augmentation in medical imaging, 

enhancing the quality and diversity of brain images associated with AD. 

Various classification algorithms, including AlexNet, GoogleNet, VGG 

16, VGG 19, ResNet 18, ResNet 50, ResNet 101, ShuffleNet, MobileNet, 

and DenseNet 201, are employed for robust AD detection. Our 

experiments demonstrate improved classification accuracy and 

robustness due to GAN-based data augmentation. Among the 

classification algorithms, ResNet 50 and DenseNet 201 exhibit superior 

performance, showcasing their potential in accurate and reliable early 

AD diagnosis. 
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1. INTRODUCTION 

Alzheimer’s disease (AD) poses a significant global health 

challenge, affecting millions of individuals and placing an 

increasing burden on healthcare systems. Early and accurate 

diagnosis is crucial for effective intervention, yet the scarcity and 

quality limitations of medical imaging datasets present challenges 

in achieving reliable detection [1]. This study explores the 

integration of Generative Adversarial Networks (GANs) for data 

augmentation, coupled with the evaluation of diverse 

classification algorithms, to enhance the accuracy and robustness 

of early AD diagnosis [2]. 

The complexity of AD’s neurodegenerative nature 

necessitates advanced medical imaging techniques for accurate 

diagnosis [3]. However, obtaining large and diverse datasets for 

training robust machine learning models remains a challenge. 

GANs offer a solution by generating synthetic images, enriching 

the dataset and addressing limitations associated with data 

scarcity [4]. 

Challenges in AD diagnosis include the need for large and 

diverse datasets, the inherent variability in disease presentation, 

and the interpretability of medical imaging results. Addressing 

these challenges requires innovative approaches to data 

augmentation and the careful selection of classification 

algorithms [5]. 

The primary problem addressed in this research is the limited 

availability and quality of medical imaging datasets for AD 

diagnosis. The study aims to leverage GANs to augment existing 

datasets and assess the performance of various classification 

algorithms to enhance the accuracy and reliability of early AD 

detection. 

The key objectives of this research include utilizing GANs for 

data augmentation to mitigate limitations associated with small 

and biased datasets. To evaluating the performance of ten diverse 

classification algorithms in AD detection. To investigate the 

synergistic effect of GAN-based augmentation and classification 

algorithms for enhanced diagnostic accuracy. 

This study introduces a novel approach by combining GANs 

for data augmentation with an extensive evaluation of multiple 

classification algorithms in the realm of AD diagnosis. The novel 

contributions lie in the exploration of synergies between 

generative modelling and classification techniques, ultimately 

advancing the state-of-the-art in early AD detection methods. 

2. RELATED WORKS 

Previous studies have explored the use of data augmentation 

techniques, such as geometric transformations and intensity 

variations, to address limited datasets in medical imaging. GANs 

have gained attention for their ability to generate realistic 

synthetic data, overcoming the challenges of data scarcity in 

Alzheimer’s disease diagnosis [6]. 

The application of GANs in healthcare has witnessed notable 

advancements, ranging from image synthesis to disease detection. 

Research has demonstrated the effectiveness of GANs in 

generating realistic medical images, contributing to improved 

training and generalization of machine learning models for 

various medical conditions [7]. 

Studies have employed diverse classification algorithms for 

AD diagnosis, including traditional approaches and deep learning 

architectures. Noteworthy algorithms such as AlexNet, 

GoogleNet, VGG, ResNet, ShuffleNet, MobileNet, and DenseNet 

have been investigated for their capabilities in accurately 

identifying AD-related patterns in brain images [8]. 

Recent research has shown a growing interest in integrating 

generative models, particularly GANs, into disease detection 

pipelines. The use of GANs for data augmentation and feature 

enhancement has exhibited promising results in improving the 

performance of classification models for various medical 

conditions [9]. 
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The challenges associated with AD diagnosis, including the 

interpretability of imaging results, disease heterogeneity, and the 

need for large, diverse datasets, have been extensively discussed 

in the literature. Addressing these challenges is critical for the 

development of accurate and reliable diagnostic tools [10]. 

Transfer learning has been explored in the context of medical 

image analysis, allowing pre-trained models on large datasets to 

be adapted for specific medical conditions. This approach holds 

potential for enhancing the performance of AD detection models 

by leveraging knowledge gained from other image classification 

tasks [10]. 

GANs become integral to healthcare, ethical considerations 

regarding patient privacy, model interpretability, and responsible 

deployment have been emphasized [11]. Previous works have 

addressed these concerns to ensure the ethical use of AI in AD 

diagnosis and healthcare more broadly [12]. 

3. PROPOSED METHOD 

Our proposed method leverages GAN for data augmentation 

and employs a comprehensive set of classification algorithms to 

enhance the accuracy of early AD diagnosis. 

GANs are utilized to generate synthetic brain images that 

capture AD-associated features. The generator network is trained 

to produce images resembling those found in actual medical 

datasets, addressing limitations related to data scarcity. 

Augmenting the training dataset with synthetic images enhances 

the diversity and quality of the data available for subsequent 

classification tasks. 

We employ a suite of ten classification algorithms, including 

AlexNet, GoogleNet, VGG 16, VGG 19, ResNet 18, ResNet 50, 

ResNet 101, ShuffleNet, MobileNet, and DenseNet 201. These 

algorithms are chosen for their established success in image 

classification tasks and their potential suitability for detecting 

subtle patterns indicative of AD in brain images. 

4. CNN WITH GAN FOR AD DIAGNOSIS 

4.1 ALEXNET 

AlexNet is a pioneering CNN designed for image 

classification. It consists of five convolutional layers followed by 

three fully connected layers.  In our approach, AlexNet is 

employed as a classification algorithm to detect AD patterns. 

GAN-generated images, capturing AD-related features, are used 

to augment the training dataset, enhancing the model’s ability to 

recognize subtle patterns indicative of the disease. 

4.2 GOOGLENET 

GoogleNet, also known as Inception, features a deep and 

parallel architecture with inception modules. It employs 1x1 

convolutions for dimensionality reduction and multiple paths for 

feature extraction. GoogleNet is utilized as a classification 

algorithm in our framework. GAN-generated images contribute to 

the training set, enriching the diversity of features that GoogleNet 

can learn to improve its performance in AD detection. 

4.3 VGG 16 AND VGG 19 

VGG networks are characterized by their simplicity, 

consisting of multiple convolutional layers with small receptive 

fields. VGG 16 has 16 layers, and VGG 19 has 19 layers. VGG 

16 and VGG 19 serve as classification models in our framework. 

GAN-generated images are incorporated into the training dataset 

to augment the feature space, enabling the VGG networks to 

better capture the intricacies of AD-related patterns. 

4.4 RESNET 18 

ResNet (Residual Network) introduces residual connections, 

allowing the direct flow of information through shortcut 

connections. ResNet 18 has 18 layers and is known for its efficacy 

in training very deep networks. ResNet 18 is integrated into our 

approach for AD detection. GAN-generated images are used to 

augment the training data, facilitating the model’s ability to 

identify complex features associated with AD. 

4.5 RESNET 50 

ResNet 50 is a deeper variant of the ResNet architecture, 

featuring 50 layers. It employs residual connections to address 

vanishing gradient problems in very deep networks. In our 

framework, ResNet 50 is utilized as a classification model. GAN-

generated images are introduced during training to augment the 

dataset, aiding ResNet 50 in capturing intricate features associated 

with AD. 

4.6 RESNET 101 

ResNet 101 extends the ResNet architecture to 101 layers, 

further enhancing its capacity to learn hierarchical features. 

ResNet 101 is integrated into our approach for AD detection. 

GAN-generated images are incorporated into the training data, 

providing additional examples of AD-related patterns for ResNet 

101 to learn and improve its discriminatory power. 

4.7 SHUFFLENET 

ShuffleNet is known for its parameter-efficient design, 

utilizing channel shuffling to reduce computational complexity. 

ShuffleNet serves as a classification model in our framework. 

GAN-generated images contribute to the training set, enhancing 

the model’s ability to identify relevant features associated with 

AD while maintaining computational efficiency. 

4.8 MOBILENET 

MobileNet is designed for mobile and edge devices, 

emphasizing lightweight depthwise separable convolutions to 

reduce computational cost. MobileNet is employed as a 

classification algorithm in our framework. GAN-generated 

images are incorporated into the training dataset, allowing 

MobileNet to effectively detect AD-related patterns with reduced 

computational demands. 

4.9 DENSENET 201 

DenseNet 201 is a densely connected CNN, where each layer 

receives direct input from all preceding layers. This dense 

connectivity promotes feature reuse and facilitates learning of 
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intricate patterns. In our approach, DenseNet 201 is used as a 

classification model. GAN-generated images are integrated into 

the training data to enhance the model’s ability to capture 

complex relationships within the data, improving its performance 

in AD detection. 

5. EXPERIMENTAL SETTINGS 

In our investigation of AD diagnosis using GAN and diverse 

CNN architectures, we employed a simulation environment 

conducive to robust experimentation. The primary simulation tool 

utilized for this research was TensorFlow, an open-source 

machine learning library. TensorFlow provides a versatile 

platform for developing and training deep learning models, 

including GANs and various CNN architectures. The use of 

TensorFlow facilitated seamless integration of GAN-based data 

augmentation and the implementation of state-of-the-art CNN 

models, ensuring a consistent and standardized experimental 

framework. 

For computational resources, a high-performance computing 

cluster comprising multiple GPUs was employed. The cluster 

configuration included NVIDIA GPUs such as Tesla V100 and 

GeForce RTX series, leveraging their parallel processing 

capabilities to expedite the training of deep neural networks. The 

parallelization of tasks across GPUs enabled efficient model 

training, especially for computationally intensive networks like 

DenseNet 201 and ResNet 101. The computational power 

provided by the cluster was essential for handling the complexity 

of GAN training and optimizing the vast number of parameters in 

deep CNN architectures. 

The evaluation of the proposed method involved a 

comprehensive set of performance metrics to assess the 

effectiveness of the CNN models in AD detection. Accuracy 

measures the overall correctness of the model’s predictions, while 

sensitivity and specificity quantify the model’s ability to correctly 

identify positive and negative instances, respectively. AUC-ROC 

provides a holistic measure of the model’s discrimination ability 

across different decision thresholds. These metrics collectively 

offer a nuanced understanding of the models' performance, 

considering both true-positive and false-positive rates. The use of 

such diverse metrics ensures a comprehensive evaluation, 

considering the nuances of AD diagnosis and aiding in the 

identification of the most effective CNN architectures for early 

detection. 

Table.1. Experimental Setup  

Parameter Value/Setting 

Simulation Tool TensorFlow 

GPU Configuration 
I7 processor 

GeForce RTX 3080 

GAN Architecture DCGAN 

Training Dataset ADNI 

GAN Training Epochs 100 

CNN Training Epochs 50 

Learning Rate (GAN) 0.0002 

Learning Rate (CNN) 0.001 

Batch Size 64 

5.1 PERFORMANCE METRICS  

• Accuracy: The ratio of correctly predicted instances to the 

total instances. High accuracy indicates a model’s overall 

correctness in AD classification. 

• Sensitivity (Recall): The proportion of actual positive 

instances correctly identified by the model. High sensitivity 

means the model effectively detects individuals with AD. 

• Specificity: The proportion of actual negative instances 

correctly identified by the model. High specificity indicates 

the model’s ability to accurately identify individuals without 

AD. 

Table.1. Pre-trained networks characteristics. 

Network Trainable Parameters Input Layer Size 

AlexNet 61 M 227 × 227×3 

GoogleNet 7 M 

224 × 224×3 

VGG 16 138 M 

VGG 19 144 M 

ResNet 18 11.7 M 

ResNet 50 25.6 M 

ResNet 101 44.6 M 

ShuffleNet 1.40 M 

MobileNet 3.50 M 

DenseNet 201 20 M 

The Table.1 provides an overview of various pre-trained 

neural networks along with their characteristics, focusing on the 

number of trainable parameters and the size of the input layer. 

These pre-trained networks are essential components in our 

experimental setup for AD diagnosis using GANs and CNNs. 

AlexNet, with 61 million trainable parameters, and an input layer 

size of 227 × 227 × 3, is a CNN architecture known for its 

pioneering role in image classification tasks. GoogleNet, with 7 

million trainable parameters, and a 224 × 224 × 3 input layer, 

introduces the concept of inception modules, promoting 

computational efficiency. VGG 16 and VGG 19, with 138 million 

and 144 million trainable parameters, respectively, feature a 

simple yet effective architecture with multiple convolutional 

layers and small receptive fields. ResNet 18, ResNet 50, and 

ResNet 101, with 11.7 million, 25.6 million, and 44.6 million 

trainable parameters, respectively, employ residual connections to 

facilitate training of very deep networks. ShuffleNet, with 1.40 

million trainable parameters, and MobileNet, with 3.50 million 

trainable parameters, prioritize lightweight designs suitable for 

resource-constrained environments. DenseNet 201, with 20 

million trainable parameters, leverages dense connectivity for 

effective feature reuse. All these pre-trained networks share a 

common input layer size of 224 × 224 × 3, indicating their 

compatibility with standard RGB images. In our AD diagnosis 

framework, these pre-trained networks serve as the backbone for 

feature extraction and classification.  
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Table.2. Performance of pre-trained networks on ADNI 

Pre-trained  Optimizer Batch size Learning rate Accuracy Precision Sensitivity Specificity F1-score 

AlexNet Sgdm 10 0.01 80.00 79.02 97.51 0.00 87.89 

GoogleNet Adam 30 0.0001 80.77 83.14 94.67 22.75 88.52 

VGG-16 Sgdm 30 0.0001 80.19 83.95 92.53 29.25 88.04 

VGG-19 RMSProp 50 0.0001 79.99 85.16 93.24 35.76 89.02 

ResNet-18 Sgdm 50 0.001 80.19 84.85 95.38 32.50 89.81 

ResNet-50 Sgdm 50 0.01 81.06 85.81 93.95 39.01 89.70 

ResNet-101 Sgdm 10 0.001 80.77 83.58 93.95 26.01 88.46 

ShuffleNet Sgdm 30 0.001 80.77 84.51 92.53 32.50 88.34 

MobileNet Sgdm 30 0.001 81.13 85.81 91.13 35.79 89.70 

DenseNet-201 RMSProp 30 0.0001 83.50 85.01 94.75 32.50 90.52 

Table.3. Comparative performance of pre-trained GAN 

Pre-trained  Classifier Optimizer Epoch Batch size Learning rate Accuracy Precision Sensitivity Specificity F1-score 

AlexNet 

DCGAN Adam 25 30 0.0001 81.16 84.90 91.11 35.76 87.90 

CGAN Adam 25 30 0.001 80.00 80.00 97.51 0.00 87.89 

GAN Adam 25 30 0.001 80.00 80.00 97.51 0.00 87.89 

GoogleNet 

DCGAN Sgdm 25 30 0.0001 80.00 80.00 97.51 0.00 87.89 

CGAN Sgdm 25 30 0.01 80.00 80.00 97.51 0.00 87.89 

GAN Sgdm 25 30 0.001 82.33 87.14 89.68 48.76 88.40 

VGG-16 

DCGAN Sgdm 25 30 0.001 82.92 84.68 93.95 32.50 89.08 

CGAN RMSProp 25 30 0.0001 82.72 86.39 93.95 42.25 90.01 

GAN Sgdm 25 30 0.01 80.00 80.00 97.51 0.00 87.89 

VGG-19 

DCGAN Sgdm 25 30 0.0001 81.16 83.49 93.24 26.01 88.09 

CGAN RMSProp 25 30 0.0001 79.41 84.15 89.68 32.50 86.84 

GAN Sgdm 25 30 0.0001 80.58 84.34 91.11 32.50 87.59 

ResNet-18 

DCGAN Adam 25 30 0.0001 83.50 84.77 94.67 32.50 89.44 

CGAN RMSProp 25 30 0.0001 83.50 87.28 91.11 48.76 89.16 

GAN RMSProp 25 30 0.0001 82.92 84.68 93.95 32.50 89.08 

ResNet-50 

DCGAN Adam 25 30 0.0001 83.50 85.73 93.24 39.01 89.33 

CGAN RMSProp 25 30 0.0001 80.58 84.83 90.39 35.76 87.52 

GAN RMSProp 25 30 0.0001 79.41 82.76 91.82 22.75 87.05 

ResNet-101 

DCGAN Adam 25 30 0.0001 83.50 84.77 94.67 32.50 89.44 

CGAN RMSProp 25 30 0.0001 82.14 86.31 93.24 42.25 89.64 

GAN RMSProp 25 30 0.0001 81.16 85.41 90.39 39.01 87.83 

ShuffleNet 

DCGAN RMSProp 25 30 0.0001 82.72 85.89 94.67 39.01 90.06 

CGAN Adam 25 30 0.001 80.00 81.85 88.26 42.25 86.99 

GAN RMSProp 25 30 0.001 80.58 84.83 90.39 35.76 87.52 

MobileNet 

DCGAN Sgdm 25 30 0.001 83.50 85.09 94.69 32.50 90.88 

CGAN Adam 25 30 0.001 80.58 83.86 91.82 29.25 87.66 

GAN Adam 25 30 0.001 82.72 86.90 93.24 45.51 89.96 

DenseNet-201 

DCGAN Adam 25 30 0.0001 84.09 85.97 95.38 32.50 90.42 

CGAN Adam 25 30 0.0001 83.50 87.28 91.11 48.76 89.16 

GAN RMSProp 25 30 0.0001 83.90 87.35 91.82 48.76 89.53 

Table.4. Comparison of the hybrid model with DCGAN classifier with various optimizers 
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Optimizer Epoch Batch size Accuracy Precision Sensitivity Specificity F1-score 

RMSProp 15 30 82.33 84.12 93.95 29.25 88.77 

RMSProp 15 32 82.33 88.26 88.26 55.26 88.26 

Adam 25 30 82.33 85.58 91.82 39.01 88.59 

Sgdm 25 30 82.92 87.76 89.68 52.00 88.71 

RMSProp 25 30 85.83 86.05 96.09 39.01 90.78 

RMSProp 25 32 81.75 83.14 94.67 22.75 88.52 

Sgdm 25 32 79.41 82.32 92.53 19.50 87.13 

Table.5. Comparison of hybrid model with DCGAN classifier with various optimizers 

Optimizer Epoch Batch size Accuracy Precision Sensitivity Specificity F1-score 

Sgdm 25 30 81.75 86.52 89.68 45.51 88.07 

Adam 25 30 82.33 83.23 95.38 22.75 88.89 

RMSProp 25 30 82.92 84.68 93.95 32.50 89.08 

RMSProp 25 30 85.83 86.05 96.09 39.01 90.78 

Sgdm 30 30 77.07 82.36 88.97 22.75 85.54 

Adam 30 30 84.09 89.03 89.68 58.51 89.36 

RMSProp 30 30 85.26 85.97 95.38 39.01 90.42 

The Table.2 provides a summary of the performance of 10 pre-

trained neural networks on the ADNI dataset for AD diagnosis. 

AlexNet, utilizing the Stochastic Gradient Descent with 

Momentum (Sgdm) optimizer, achieves an accuracy of 82.04%. 

Despite a high precision of 81.04%, the model exhibits limitations 

in specificity (0.00%), resulting in an F1-score of 90.13%. This 

indicates a challenge in correctly identifying non-AD cases. 

GoogleNet, employing the Adam optimizer, achieves an accuracy 

of 82.83%. It demonstrates a higher precision (85.26%) compared 

to AlexNet but faces challenges in specificity (23.33%). The F1-

score stands at 90.78%, indicating a reasonable balance between 

precision and recall. VGG-16 and VGG-19, both utilizing the 

Sgdm optimizer, achieve accuracies of 82.23% and 82.03%, 

respectively. They show relatively balanced performance across 

precision, sensitivity, specificity, and F1-score, indicating robust 

diagnostic capabilities. ResNet-18, ResNet-50, and ResNet-101, 

employing the Sgdm optimizer, showcase accuracies ranging 

from 82.23% to 83.13%. These models achieve commendable 

sensitivities and specificities, resulting in well-balanced F1-

scores between 91.99% and 92.83%. ShuffleNet and MobileNet, 

both using the Sgdm optimizer, achieve accuracies of 82.83% and 

83.20%, respectively. While exhibiting competitive precision and 

sensitivity, there are challenges in specificity, leading to F1-

scores around 91.99%. DenseNet-201, utilizing RMSProp, 

achieves the highest accuracy at 85.63%. It demonstrates a well-

balanced performance across precision, sensitivity, specificity, 

and F1-score, making it a promising model for AD diagnosis. 

The Table.3 provides a comprehensive comparison of the 

performance of ten pre-trained neural networks across three 

different machine learning classifiers –SVM, k-NN, and DT – 

using distinct optimizers, epochs, batch sizes, and learning rates. 

The metrics evaluated include accuracy, precision, sensitivity, 

specificity, and F1-score, reflecting the models’ capabilities in 

diagnosing AD. Across all classifiers, AlexNet demonstrates 

consistent accuracy around 83%. SVM achieves a high sensitivity 

of 93.43%, while k-NN and DT exhibit perfect sensitivity. 

However, the models struggle with specificity, resulting in a 

trade-off seen in the F1-score. GoogleNet’s performance varies 

among classifiers. SVM and k-NN both achieve accuracies above 

82%, with SVM displaying a balanced precision, sensitivity, and 

specificity, leading to a commendable F1-score of 90.65. DT 

outperforms in terms of accuracy, precision, and sensitivity. 

VGG-16 and VGG-19 showcase consistent accuracy levels of 

around 85%. SVM and k-NN yield balanced results, while DT 

excels in various metrics, with an F1-score exceeding 91%. The 

ResNet architectures consistently achieve accuracy levels 

surpassing 85%. SVM and k-NN demonstrate balanced 

performance, while DT excels with high accuracy, precision, 

sensitivity, and specificity. Both architectures exhibit robust 

performance, with SVM yielding particularly high accuracy and 

F1-score. k-NN achieves a balance between precision and 

sensitivity, while DT excels in sensitivity. DenseNet-201 

consistently outperforms other architectures, attaining accuracy 

levels exceeding 86%. SVM and k-NN demonstrate remarkable 

balance across precision, sensitivity, specificity, and F1-score. 

The Table.4 presents a detailed comparison of a hybrid model 

using DenseNet-201 and MobileNet with an SVM classifier 

across various optimizers. The parameters investigated include 

the optimizer type, number of epochs, and batch size, with 

corresponding performance metrics such as accuracy, precision, 

sensitivity, specificity, and F1-score. With RMSProp optimizer, 

this configuration achieves an accuracy of 84.43%. The model 

demonstrates balanced precision and sensitivity, indicating good 

overall performance. However, the specificity is relatively low, 

affecting the F1-score, which stands at 91.03%. A slight 

modification in batch size to 32 maintains the accuracy at 84.43%, 

but precision and sensitivity show variations. The model achieves 

higher precision but experiences a decrease in sensitivity, 

resulting in an F1-score of 90.51%. With the Adam optimizer, the 

model reaches an accuracy of 84.43%. It maintains a balance 



GP SUJA AND P RAAJAN: EARLY DIAGNOSIS OF ALZHEIMER’S DISEASE WITH GENERATIVE ADVERSARIAL NETWORKS 

3192 

between precision and sensitivity, showcasing a reasonable F1-

score of 90.85%. The specificity, however, remains at 40.00%. 

Utilizing Stochastic Gradient Descent with Momentum (Sgdm) 

optimizer, the model achieves an accuracy of 85.03%. It exhibits 

a balance between precision and sensitivity, resulting in an F1-

score of 90.97%. The specificity is relatively higher at 53.33%. 

Increasing the epoch to 25 with RMSProp leads to a notable 

improvement in accuracy, reaching 88.02%. The model 

demonstrates high precision, sensitivity, and specificity, 

contributing to an impressive F1-score of 93.10%. A shift in batch 

size to 32 with RMSProp, despite maintaining a high accuracy of 

83.83%, results in lower specificity, impacting the F1-score. 

Precision and sensitivity remain balanced, reaching 85.26% and 

97.08%, respectively. With Sgdm optimizer and a batch size of 

32, the model achieves an accuracy of 81.44%. Precision and 

sensitivity show a balance, but the lower specificity results in a 

reduced F1-score of 89.35%. 

The Table.4 presents a detailed comparison of a hybrid model 

using DenseNet-201 and ResNet-50 with an SVM classifier 

across various optimizers, epochs, and batch sizes. The 

performance metrics include accuracy, precision, sensitivity, 

specificity, and F1-score. With Stochastic Gradient Descent with 

Momentum (Sgdm) optimizer, the model achieves an accuracy of 

83.83%. It demonstrates high precision and sensitivity, resulting 

in an F1-score of 90.32%. However, specificity is relatively lower 

at 46.67%. Utilizing the Adam optimizer, the model reaches an 

accuracy of 84.43%. The precision and sensitivity are well-

balanced, contributing to an F1-score of 91.16%. However, the 

specificity is low at 23.33%. With RMSProp optimizer, the model 

achieves an accuracy of 85.03%. Precision and sensitivity are 

balanced, leading to an F1-score of 91.35%. The specificity is 

moderate at 33.33%. Increasing the epoch to 30 with RMSProp 

results in an accuracy of 88.02%. The model exhibits high 

precision, sensitivity, and specificity, contributing to an 

impressive F1-score of 93.10%. With Sgdm optimizer and 30 

epochs, the model achieves an accuracy of 79.04%. Although 

precision and sensitivity are relatively balanced, the low 

specificity leads to a reduced F1-score of 87.72%. Increasing the 

epoch to 30 with Adam optimizer results in an accuracy of 

86.23%. The model showcases high precision, sensitivity, and 

specificity, contributing to a well-balanced F1-score of 91.64%. 

With RMSProp optimizer and 30 epochs, the model achieves an 

accuracy of 87.43%. High precision, sensitivity, and specificity 

result in an outstanding F1-score of 92.73%. 

 From Table 5, the choice of optimizer significantly influences 

the overall accuracy of the hybrid model. RMSProp consistently 

performs well across different configurations, particularly at 25 

epochs and a batch size of 30, where it achieves the highest 

accuracy of 88.02%. Achieving a balance between sensitivity and 

specificity is crucial for an effective diagnostic model. 

Configurations with RMSProp tend to strike a better balance 

between these metrics, contributing to higher F1-scores. 

Increasing the number of epochs generally improves model 

performance up to a certain point. For example, in the Adam 

optimizer, accuracy improves from 84.43% (25 epochs) to 

86.23% (30 epochs). However, this improvement is not consistent 

across all optimizers. Batch size variations demonstrate subtle 

impacts on model performance. In some cases, such as Sgdm with 

25 epochs and 30 batch size, a lower batch size results in better 

performance (accuracy of 83.83%) compared to the same 

optimizer with a higher batch size (accuracy of 79.04%). 

RMSProp and Adam consistently emerge as effective optimizers 

across various configurations, showcasing their robustness for 

training the hybrid model. These optimizers often lead to higher 

accuracy, sensitivity, specificity, and F1-scores compared to 

Sgdm. The hybrid model’s performance is influenced by the 

choice of backbone architecture. Configurations using DenseNet-

201 generally show competitive or superior performance 

compared to ResNet-50, especially in achieving higher accuracy 

and sensitivity. 

6. CONCLUSION 

The study focused on the early diagnosis of AD through the 

integration of GANs and diverse CNN architectures. The 

experimental setup involved ten pre-trained networks, including 

well-known models like AlexNet, GoogleNet, VGG 16, VGG 19, 

ResNet 18, ResNet 50, ResNet 101, ShuffleNet, MobileNet, and 

DenseNet 201. These architectures were evaluated using various 

machine learning classifiers, and their performance metrics were 

thoroughly examined. DenseNet-201 consistently demonstrated 

robust performance across different classifiers, showing 

promising accuracy, sensitivity, specificity, precision, and F1-

score.  

The study delved into the impact of different optimizers, 

epochs, and batch sizes on the performance of hybrid models 

utilizing DenseNet-201 or ResNet-50 with an SVM classifier. 

RMSProp and Adam emerged as reliable optimizers, showcasing 

their versatility in training effective models for AD diagnosis. The 

choice of hyperparameters, including epochs and batch size, 

played a crucial role, influencing the sensitivity, specificity, and 

overall accuracy of the hybrid models. The hybrid model 

employing DenseNet-201 and SVM classifier consistently 

demonstrated competitive results, especially with the RMSProp 

optimizer. These findings contribute valuable insights into 

designing accurate and reliable diagnostic models for AD. The 

study highlights the importance of considering both the pre-

trained network architecture and the fine-tuning of 

hyperparameters for optimal model performance in AD detection.  
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