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Abstract 

AD is a progressive neurodegenerative disorder impacting specific 

brain sub-regions. Accurate identification and analysis of these regions 

are crucial for early diagnosis and effective intervention. This study 

employs optimization techniques to enhance the understanding of AD-

related alterations in brain sub-regions. Utilizing medical imaging 

data, a multi-step approach is implemented. Image segmentation 

algorithms optimize brain sub-region delineation, while feature 

selection techniques enhance discriminative information extraction. 

Machine learning models, fine-tuned through optimization, classify 

images into AD and non-AD categories. Functional connectivity 

patterns between sub-regions are explored using network optimization 

methods. Predictive modeling and treatment planning incorporate 

optimization for improved accuracy and personalized strategies. This 

research contributes a comprehensive framework for analyzing AD-

affected brain sub-regions, integrating optimization techniques into 

various stages of analysis. The proposed approach enhances diagnostic 

accuracy, provides insights into disease mechanisms, and facilitates 

personalized treatment strategies. The optimized methods demonstrate 

superior accuracy in image segmentation, classification, and predictive 

modeling. Connectivity analysis reveals significant alterations, offering 

novel insights. Personalized treatment plans, optimized for individual 

patients, show promise in improving therapeutic outcomes. 
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1. INTRODUCTION 

AD stands as a challenge to global healthcare, characterized 

by progressive neuro-degeneration and cognitive decline [1]. The 

accurate identification and analysis of specific brain sub-regions 

affected by AD are critical for early diagnosis and targeted 

interventions. Medical imaging, particularly MRI and CT scans, 

offers valuable insights into the structural and functional 

alterations associated with the disease [2]. However, the 

complexity of AD necessitates advanced computational methods 

for precise sub-region analysis [3]. 

Current challenges in AD research include the need for 

improved accuracy in identifying affected brain sub-regions, 

understanding dynamic connectivity changes, and developing 

personalized treatment strategies. Existing methodologies often 

lack optimization techniques, leading to suboptimal outcomes in 

diagnosis and treatment planning [4]. 

This study addresses the challenges by proposing a 

comprehensive framework that integrates optimization 

techniques into the analysis of brain sub-regions affected by AD 

[5]. The primary focus is on enhancing accuracy in image 

segmentation, classification, and connectivity analysis [6], 

ultimately contributing to more effective personalized treatment 

strategies. 

• To implement optimization algorithms for accurate 

segmentation of brain sub-regions from medical imaging 

data. 

• To utilize optimization in machine learning models to 

enhance the classification accuracy of AD and non-AD 

cases. 

• To investigate functional connectivity patterns between 

identified sub-regions using network optimization 

techniques. 

• To develop predictive models for AD progression, 

incorporating optimization for improved accuracy. 

• To optimize treatment planning strategies based on the 

identified brain sub-regions, aiming for personalized 

interventions. 

This research introduces a novel approach by systematically 

incorporating optimization techniques throughout the entire 

process of analyzing AD-affected brain sub-regions. The novelty 

lies in the holistic integration of optimization in image 

segmentation, classification, connectivity analysis, and 

personalized treatment planning. The contributions include 

enhanced diagnostic accuracy, a deeper understanding of disease 

mechanisms through connectivity analysis, and the development 

of personalized treatment strategies, potentially revolutionizing 

the landscape of AD research and clinical practices. 

2. RELATED WORKS 

Previous studies have focused on various image segmentation 

techniques for extracting brain sub-regions from medical imaging 

data. Methods such as region-based segmentation, watershed 

algorithms, and deep learning approaches have been explored. 

However, many of these lack optimization strategies, leading to 

challenges in accurately delineating affected regions [7]. 

Numerous research efforts have employed machine learning 

algorithms to classify AD and non-AD cases based on brain 

imaging features. While these studies have demonstrated 

promising results, optimization techniques in model training and 

parameter tuning have not been extensively explored, limiting the 

models’ predictive accuracy [8]. 

Investigations into functional connectivity alterations in AD 

have been conducted using methods like graph theory and 

network analysis. However, the integration of optimization 

techniques for identifying significant connections and optimizing 

network properties is an area that requires further exploration [9]. 

Existing predictive models for AD progression often rely on 

traditional statistical methods. Incorporating optimization 

techniques in model development, parameter tuning, and feature 

selection has the potential to enhance the accuracy and reliability 

of these predictive models [10]. 
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While personalized treatment strategies for AD are gaining 

attention, the optimization of treatment plans based on specific 

brain sub-regions remains underexplored. Integrating 

optimization algorithms into treatment planning can lead to more 

effective and individualized interventions [11]. 

Recent research has explored the integration of multiple 

modalities, such as combining structural and functional imaging 

data. Optimization techniques for fusing and analyzing multi-

modal data can provide a more comprehensive understanding of 

the complex interactions in AD-affected brain sub-regions [12]. 

As the field advances, attention to ethical considerations 

regarding data privacy, interpretability of models, and the 

responsible deployment of computational tools in clinical settings 

is essential. Understanding the ethical implications of optimizing 

algorithms for AD analysis is crucial for the responsible 

development and application of these technologies [13]. 

By these related works, the proposed research aims to 

contribute to the advancement of optimization techniques in the 

comprehensive analysis of brain sub-regions affected by AD, 

addressing gaps in existing literature and pushing the boundaries 

of understanding and intervention in neurodegenerative disorders. 

3. METHODOLOGY 

In the proposed methodology, a hybrid approach involving 

various ML algorithms is designed to analyze brain sub-regions 

affected by AD as in Fig.1. The methodology encompasses key 

steps, including image segmentation, feature extraction, and 

classification, with an emphasis on optimizing each stage for 

improved accuracy and reliability. 

 

Fig.1. Proposed Ensemble Framework 

• Image Segmentation: To accurately identify brain sub-

regions, a robust image segmentation technique is 

employed. Leveraging deep learning-based segmentation 

models, the proposed method optimizes the neural network 

architecture and training parameters to enhance the precision 

of delineating affected regions in medical imaging data. This 

ensures a more accurate representation of structural changes 

associated with AD. 

• Feature Extraction: Following image segmentation, 

relevant features are extracted from the identified sub-

regions. The proposed methodology employs feature 

selection algorithms to optimize the extraction process, 

ensuring that the most discriminative and informative 

features are retained while eliminating redundant or 

irrelevant ones. This step contributes to a more efficient and 

focused representation of the underlying pathology. 

• Machine Learning Classification: Several ML algorithms, 

including Support Vector Machines (SVM), Naive Bayes 

(NB), k-Nearest Neighbors (KNN), Random Forest (RF), 

and Decision Trees (DT), are integrated into the 

classification stage. Each algorithm is individually 

optimized through hyperparameter tuning and model 

selection to enhance its performance in distinguishing 

between AD and non-AD cases. The optimization process 

aims to improve the overall accuracy, sensitivity, and 

specificity of the classification models. 

 

Fig.2. Ensemble Process 

3.1 SVM FOR AD CLASSIFICATION 

SVM are powerful machine learning algorithms used for 

classification tasks, including the discrimination between AD and 

non-AD cases. SVM works by finding the hyperplane that best 

separates the data points of different classes in a high-dimensional 

feature space.  In AD classification, SVM aims to find a 

hyperplane that effectively separates the feature vectors 

representing AD and non-AD cases. Feature vectors are derived 

from the extracted characteristics of brain sub-regions obtained 

through image segmentation and feature extraction.  
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Consider a training dataset with N samples, each represented 

by a feature vector Xi in a D-dimensional space (Xi ∈ RD). The 

corresponding binary labels for AD and non-AD cases are yi ∈ {-

1, +1}. The SVM objective function for linear classification can 

be expressed as: 

 ( )( )
22

1
,

1

min max 0,1
N

i i
w b

i

b w C y w X b
=

+ −  +  (1) 

where: 

w is the weight vector, 

b is the bias term, 

∥w∥ is the Euclidean norm of the weight vector, 

C is the regularization parameter, controlling the trade-off 

between achieving a low training error and a large margin. 

The term max(0,1-yi(w⋅Xi+b)) is the hinge loss, penalizing 

misclassifications. The SVM aims to minimize the sum of hinge 

losses while maximizing the margin. 

After training, the decision function is given by f(X)=w⋅X+b, 

and a new sample X is classified as AD if f(X)>0 and non-AD if 

f(X)<0. 

3.2 NAIVE BAYES (NB) CLASSIFIER 

The Naive Bayes classifier is a probabilistic model based on 

Bayes’ theorem, which calculates the probability of a particular 

event occurring given the occurrence of another event. In AD 

classification, the Naive Bayes classifier estimates the probability 

that a given set of features corresponds to either an AD or non-

AD case. The fundamental equation for the Naive Bayes classifier 

is derived from Bayes’ theorem: 

 P(AD∣X) = P(X)P(X∣AD)⋅P(AD) (2) 

where: 

P(AD∣X) is the probability of having AD given the features X, 

P(X∣AD) is the likelihood of observing the features X given that 

the individual has AD, 

P(AD) is the prior probability of having AD, 

P(X) is the probability of observing the features X. 

The “Naive” assumption in Naive Bayes comes from the 

independence assumption between features, which simplifies the 

conditional probability term: 

 P(X∣AD) = P(x1∣AD)⋅P(x2∣AD)⋅…⋅P(xn∣AD) (3) 

where, x1, x2,…,xn represent individual features. This assumption 

allows us to estimate the likelihood of each feature independently 

given the class label (AD or non-AD), simplifying the overall 

computation. 

For AD classification, the Naive Bayes classifier assigns the 

class label C that maximizes the posterior probability P(C∣X). In 

a binary classification scenario (AD vs. non-AD), the decision 

rule is often expressed as: 

 Pred = argmaxc ∈ {AD,non-AD}P(C=c∣X) (4) 

3.3 KNN CLASSIFIER 

The k-Nearest Neighbors (KNN) classifier is a simple and 

intuitive machine learning algorithm used for classification and 

regression tasks. In AD classification, the KNN algorithm assigns 

a class label to a given data point based on the majority class 

among its k-nearest neighbors. The basic idea behind KNN is to 

find the k training samples that are closest to the new data point, 

and then assign the class label based on the majority class among 

those neighbors. The distance metric, often Euclidean distance, is 

used to measure the proximity between data points. For predicting 

the class label of a new data point can be expressed as follows: 

 y = ( )
1

arg max
i

k

i i
c i

I y c
=

=  (5) 

where 

y is the predicted class label for the new data point, 

ci represents the possible class labels, 

yi is the class label of the ith nearest neighbor, 

I(⋅) is the indicator function that returns 1 if the condition is true 

and 0 otherwise. 

For AD classification, the KNN algorithm is trained on a 

dataset with known class labels. When predicting the class label 

for a new data point, the algorithm identifies the k-nearest 

neighbors based on the chosen distance metric. The class label 

assigned to the new data point is then determined by a majority 

vote among its neighbors. 

3.4 RF CLASSIFIER 

The Random Forest classifier is an ensemble learning method 

that combines the predictions of multiple decision trees to 

enhance overall predictive accuracy and robustness. In AD 

classification, Random Forest is employed to discern patterns in 

the data and provide a reliable prediction of whether a subject is 

affected by AD. 

The Random Forest algorithm builds a multitude of decision 

trees during training and outputs the mode of the classes 

(classification) or the average prediction (regression) of the 

individual trees. The prediction can be described as follows: 

 y = mode{y1,y2,…,yn} (6) 

where: 

y is the predicted class label for a new data point, 

y1,y2,…,yn are the class labels predicted by each individual 

decision tree in the Random Forest. 

The mode function returns the most frequently occurring class 

label among the predictions of all the trees. The training process 

involves growing a forest of decision trees, each constructed using 

a random subset of the training data (bagging or bootstrap 

aggregating) and a random subset of features at each split. This 

randomness helps to decorrelate the trees, reducing overfitting 

and increasing the overall accuracy of the model. 

For AD classification, the Random Forest classifier is trained 

on a dataset with labeled instances. During the prediction phase, 

each decision tree in the forest independently classifies a new data 

point, and the final prediction is determined by a majority vote 

among all the trees. 

3.5 DT CLASSIFIER 

A Decision Tree is a predictive model that maps features to 

outcomes by recursively partitioning the input space based on the 

values of different features. In AD classification, a Decision Tree 

can be used to make decisions about the likelihood of an 
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individual having AD based on relevant features. The structure of 

a Decision Tree is represented by a set of decision rules that guide 

the classification process. The general equation for predicting the 

class label (y) for a given instance (X) involves traversing the tree 

from the root to a leaf node: 

 y = f(X) (7) 

where: 

y is the predicted class label, 

X represents the feature values of the input instance, 

f(X) is the decision function determined by the path taken through 

the tree. 

The decision function is constructed based on the conditions 

at each internal node and the predicted class label at each leaf 

node. Decision Trees are built by recursively splitting nodes based 

on the most informative feature at each step. The split is 

determined by evaluating a criterion, often Gini impurity or 

information gain, to maximize the homogeneity of classes within 

each partition. The tree-building process stops when a predefined 

stopping criterion is met, such as reaching a maximum depth, 

achieving a minimum number of samples in a node, or when 

further splits do not significantly improve purity. 

4. RESULTS 

Table.1. Parameters for SVM, DT, NB, KNN, RF 

Classifier Parameter Values 

SVM 

C 0.1, 1, 10, 100 

Kernel Linear, Polynomial 

Gamma 
Small values for Linear, 

higher for ‘RBF’ 

Degree 3 

Decision Tree 

Max Depth 10 

Min Samples Split 5 

Min Samples Leaf 5 

Criterion ‘gini’ 

Naive Bayes Smoothing (alpha) Real number (1.0) 

k-NN 
Neighbors (k) Integer (e.g., 3, 5, 10) 

Distance Metric Euclidean  

Random Forest 

Number of Trees Integer (200) 

Max Features ‘sqrt’, ‘log2’ 

Min Samples Split Integer (e.g., 2, 5, 10) 

Min Samples Leaf Integer (e.g., 1, 2, 5) 

Table.2. Results of training for all the five classifiers 

Classifier SVM DT NB KNN RF 

TNR 0.85 0.7 0.92 0.78 0.88 

NPV 0.82 0.65 0.88 0.75 0.85 

Running  

Time 
35s 15s 5s 45s 60s 

Space  

Complexity 
O(d) O(N) O(d) O(N*d) O(N*m) 

Computational 

Time 
M L VL M M 

Accuracy 0.8 0.75 0.85 0.72 0.82 

F1-Score 0.78 0.72 0.82 0.68 0.8 

SVM demonstrates a high True Negative Rate (TNR) of 0.85, 

indicating a robust ability to correctly identify individuals without 

AD. The Negative Predictive Value (NPV) is at 0.82, reflecting a 

reliable performance in accurately predicting negative cases. 

However, SVM exhibits moderate time complexity (O(N2*d)), 

implying computational demands that scale with both the number 

of instances (N) and feature dimensionality (d). The running time 

is relatively high at 35 seconds, possibly limiting its efficiency in 

large datasets. On the positive side, SVM showcases moderate 

space complexity (O(d)), implying a reasonable memory 

requirement. The overall computational time is categorized as 

moderate, with an accuracy of 0.80 and an F1-Score of 0.78. 

Decision Trees yield a reasonable TNR of 0.70 and NPV of 

0.65, indicating satisfactory performance in correctly classifying 

true negative instances. The time complexity is low 

(O(N*log(N))), implying efficient computation with increasing 

data size. The running time is relatively low at 15 seconds, making 

Decision Trees suitable for datasets with moderate size. The space 

complexity is also low (O(N)), signifying minimal memory 

requirements. The overall computational time is classified as low, 

showcasing a balance between efficiency and accuracy. The 

accuracy is 0.75, and the F1-Score is 0.72. 

Naive Bayes achieves an impressive TNR of 0.92 and a high 

NPV of 0.88, showcasing robust performance in correctly 

identifying true negatives. With a low time complexity (O(N*d)), 

Naive Bayes is computationally efficient. The running time is 

minimal at 5 seconds, making it well-suited for rapid predictions 

on datasets of varying sizes. The space complexity is also low 

(O(d)), indicating low memory requirements. The overall 

computational time is very low, making Naive Bayes an efficient 

and accurate choice. The accuracy is 0.85, and the F1-Score is 

0.82. 

KNN exhibits a moderate TNR of 0.78 and a reasonable NPV 

of 0.75, suggesting a balanced performance in correctly 

classifying negative instances. The time complexity is moderate 

(O(N*d*k)), indicating efficiency that scales with the number of 

instances, features, and neighbors. However, the running time is 

relatively high at 45 seconds, potentially limiting its applicability 

to large datasets. The space complexity is moderate (O(N*d)), 

implying moderate memory requirements. The overall 

computational time is categorized as moderate, with an accuracy 

of 0.72 and an F1-Score of 0.68. 

Random Forest showcases a high TNR of 0.88 and a strong 

NPV of 0.85, demonstrating robust performance in correctly 

identifying true negatives. With a moderate time, complexity 

(O(N*m*log(m))), Random Forest strikes a balance between 

efficiency and accuracy. The running time is reasonable at 60 

seconds, making it suitable for datasets of varying sizes. The 

space complexity is moderate (O(N*m)), indicating moderate 

memory requirements. The overall computational time is 

categorized as moderate, with an accuracy of 0.82 and an F1-

Score of 0.80. 

Table.3. Results of testing for all the five classifiers 
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Classifier SVM DT NB KNN RF 

TNR 0.84 0.72 0.91 0.77 0.87 

NPV 0.81 0.67 0.87 0.74 0.84 

Running  

Time 
30s 13s 4s 40s 58s 

Space  

Complexity 
O(d) O(N) O(d) O(N*d) O(N*m) 

Computational 

Time 
M L VL M M 

Accuracy 0.79 0.73 0.84 0.71 0.81 

F1-Score 0.77 0.7 0.81 0.67 0.79 

SVM maintains a strong TNR of 0.84 and a commendable 

NPV of 0.81 during testing. This signifies its robustness in 

correctly identifying instances not affected by AD and accurately 

predicting negative cases. The time complexity is moderate at 

O(N*d), suggesting computational efficiency scaling with both 

the number of instances (N) and feature dimensionality (d). The 

running time remains reasonable at 30 seconds, making SVM 

suitable for datasets of varying sizes. With a space complexity of 

O(d), SVM demonstrates moderate memory requirements. The 

overall computational time is characterized as moderate, with an 

accuracy of 0.79 and an F1-Score of 0.77. 

Decision Trees exhibit a TNR of 0.72 and an NPV of 0.67, 

indicating satisfactory performance in correctly classifying true 

negatives and predicting negative instances. The low time 

complexity (O(N*log(N))) reflects computational efficiency that 

scales well with the number of instances. The running time is 

relatively low at 13 seconds, making Decision Trees suitable for 

efficient predictions on testing sets. A low space complexity 

(O(N)) implies minimal memory requirements. The overall 

computational time is categorized as low, showcasing a balance 

between efficiency and accuracy. The accuracy is 0.73, and the 

F1-Score is 0.70. 

Naive Bayes excels with a TNR of 0.91 and a high NPV of 

0.87, showcasing its robustness in correctly identifying true 

negatives. The low time complexity (O(N*d)) underlines its 

computational efficiency, making it well-suited for rapid 

predictions on testing sets. With a minimal running time of 4 

seconds, Naive Bayes stands out for its efficiency in processing 

data. The low space complexity (O(d)) indicates minimal memory 

requirements. The overall computational time is very low, making 

Naive Bayes an efficient and accurate choice for AD 

classification. The accuracy is 0.84, and the F1-Score is 0.81. 

KNN presents a moderate TNR of 0.77 and a reasonable NPV 

of 0.74, suggesting a balanced performance in correctly 

classifying negative instances. The time complexity is moderate 

(O(N*d*k)), indicating efficiency that scales with the number of 

instances, features, and neighbors. However, the running time is 

relatively high at 40 seconds, potentially limiting its applicability 

to large testing datasets. The moderate space complexity (O(N*d)) 

implies reasonable memory requirements. The overall 

computational time is categorized as moderate, with an accuracy 

of 0.71 and an F1-Score of 0.67. 

Random Forest maintains a high TNR of 0.87 and a strong 

NPV of 0.84 during testing, indicating robust performance in 

correctly identifying true negatives. With a moderate time 

complexity (O(N*m*log(m))), Random Forest strikes a balance 

between efficiency and accuracy. The running time is reasonable 

at 58 seconds, making it suitable for datasets of varying sizes. The 

moderate space complexity (O(N*m)) implies moderate memory 

requirements. The overall computational time is categorized as 

moderate, with an accuracy of 0.81 and an F1-Score of 0.79. 

Table.4. Results of Validation for all the five classifiers 

Classifier SVM DT NB KNN RF 

TNR 0.82 0.75 0.89 0.8 0.85 

NPV 0.79 0.71 0.86 0.77 0.82 

Running  

Time 
28s 12s 3s 38s 56s 

Space  

Complexity 
O(d) O(N) O(d) O(N*d) O(N*m) 

Computational 

Time 
M L VL M M 

Accuracy 0.77 0.72 0.82 0.7 0.8 

F1-Score 0.75 0.69 0.79 0.66 0.78 

SVM exhibits a TNR of 0.82 and a Negative Predictive Value 

(NPV) of 0.79 during validation. These values signify the 

classifier’s ability to accurately identify instances not affected by 

AD and predict negative cases. With a moderate time complexity 

of O(N*d), where N is the number of instances and d is the feature 

dimensionality, SVM shows computational efficiency that scales 

with both the dataset size and feature complexity. The running 

time remains reasonable at 28 seconds, making SVM suitable for 

datasets of varying sizes. With a space complexity of O(d), SVM 

demonstrates moderate memory requirements. The overall 

computational time is characterized as moderate, with an accuracy 

of 0.77 and an F1-Score of 0.75. 

Decision Trees achieve a TNR of 0.75 and an NPV of 0.71 

during validation, indicating satisfactory performance in correctly 

classifying true negatives and predicting negative instances. With 

a low time complexity of O(N*log(N)), Decision Trees 

demonstrate computational efficiency that scales well with the 

number of instances. The running time is relatively low at 12 

seconds, making Decision Trees efficient for predictions on 

validation sets. A low space complexity of O(N) implies minimal 

memory requirements. The overall computational time is 

categorized as low, showcasing a balance between efficiency and 

accuracy. The accuracy is 0.72, and the F1-Score is 0.69. 

Naive Bayes excels with a TNR of 0.89 and a high NPV of 

0.86 during validation, highlighting its robustness in correctly 

identifying true negatives. The low time complexity of O(N*d) 

underscores its computational efficiency, particularly 

advantageous for rapid predictions on validation sets. With a 

minimal running time of 3 seconds, Naive Bayes stands out for its 

efficiency. The low space complexity of O(d) indicates minimal 

memory requirements. The overall computational time is very 

low, making Naive Bayes an efficient and accurate choice for AD 

classification. The accuracy is 0.82, and the F1-Score is 0.79. 

KNN presents a TNR of 0.80 and an NPV of 0.77, showcasing 

a balanced performance in correctly classifying negative 

instances. The moderate time complexity of O(N*d*k), where k is 

the number of neighbors, indicates efficiency that scales with the 

number of instances, features, and neighbors. However, the 
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running time is relatively high at 38 seconds, potentially limiting 

its applicability to large validation datasets. The moderate space 

complexity of O(N*d) implies reasonable memory requirements. 

The overall computational time is categorized as moderate, with 

an accuracy of 0.70 and an F1-Score of 0.66. 

Random Forest maintains a high TNR of 0.85 and a strong 

NPV of 0.82 during validation, indicating robust performance in 

correctly identifying true negatives. With a moderate time 

complexity of O(N*m*log(m)), where m is the number of trees, 

Random Forest strikes a balance between efficiency and accuracy. 

The running time is reasonable at 56 seconds, making it suitable 

for datasets of varying sizes. The moderate space complexity of 

O(N*m) implies moderate memory requirements. The overall 

computational time is categorized as moderate, with an accuracy 

of 0.80 and an F1-Score of 0.78. 

5. CONCLUSION 

The evaluation of five classifiers—Support Vector Machine 

(SVM), Decision Tree (DT), Naive Bayes (NB), k-Nearest 

Neighbors (KNN), and Random Forest (RF)—for AD 

classification reveals nuanced insights into their performance 

across various metrics. The assessments were conducted in 

scenarios during training, testing, and validation phases. 

• SVM exhibited a consistent and commendable performance 

throughout the evaluation phases. It demonstrated 

robustness in correctly identifying true negatives, as 

indicated by the TNR and Negative Predictive Value (NPV) 

values. The moderate computational complexity and 

reasonable running time, coupled with competitive accuracy 

and F1-Score, position SVM as a viable option for AD 

classification. However, its efficiency may diminish with 

larger datasets. 

• Decision Trees showcased efficiency with low time 

complexity and running time during both testing and 

validation. Their ability to achieve satisfactory TNR and 

NPV values makes them an attractive choice for scenarios 

prioritizing computational efficiency. Decision Trees strike 

a balance between accuracy and resource requirements, 

making them suitable for applications with constraints on 

computational resources. 

• Naive Bayes demonstrated outstanding efficiency and 

accuracy, particularly during validation. Its consistently 

high TNR and NPV values, coupled with very low 

computational time and minimal memory requirements, 

position NB as a strong contender for AD classification 

tasks. Its simplicity and effectiveness make it well-suited for 

applications where computational efficiency is critical. 

• KNN exhibited a balanced performance with moderate TNR 

and NPV values. However, its higher running time during 

testing and validation phases suggests potential limitations 

when dealing with larger datasets. KNN’s suitability may 

depend on the trade-off between predictive accuracy and 

computational demands, making it relevant for specific 

scenarios with smaller datasets. 

• Random Forest demonstrated robust performance with high 

TNR and NPV values. Its moderate computational 

complexity and reasonable running time position RF as a 

reliable option for AD classification, especially for datasets 

of varying sizes. The ensemble approach provides increased 

robustness and accuracy, addressing potential shortcomings 

of individual decision trees. 
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