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Abstract 

Medical image compression plays a pivotal role in efficient data storage 

and transmission, crucial for modern healthcare systems. This 

research proposes a convolutional transfer learning technique scheme 

tailored for multimedia data compression, specifically targeting 

medical images. In the background, the growing volume of medical 

imaging data and the demand for efficient storage and transmission 

underscore the need for innovative compression methods. Leveraging 

transfer learning from pre-trained convolutional neural networks 

(CNNs) designed for image recognition tasks, our methodology 

optimizes the compression process for medical images. The proposed 

scheme utilizes a pre-trained CNN’s feature extraction capabilities to 

capture relevant patterns in medical images, followed by fine-tuning on 

a specialized dataset. This approach capitalizes on the inherent ability 

of CNNs to learn hierarchical representations, enhancing the 

compression model’s adaptability to medical imaging nuances. The 

contribution of this research lies in the development of a tailored 

transfer learning scheme that effectively balances generic feature 

extraction and domain-specific adaptation for medical images. Results 

demonstrate significant improvements in compression efficiency, 

preserving diagnostic information while achieving substantial data 

reduction. The proposed scheme showcases promise for enhancing 

medical image storage, transmission, and retrieval systems, 

contributing to the advancement of healthcare technology. 

 

Keywords: 

Transfer Learning, Convolutional Neural Networks, Medical Image 

Compression, Multimedia, Data Efficiency 

1. INTRODUCTION 

In healthcare informatics, the volume of medical imaging data 

has catalyzed the need for efficient compression techniques to 

address storage and transmission challenges [1]. Medical images, 

characterized by their high resolution and intricate details, require 

specialized approaches for compression to ensure optimal data 

reduction without compromising diagnostic information [2].  

Traditional compression methods often fall short in preserving 

the intricate details vital for medical diagnostics, prompting the 

exploration of advanced techniques [3]. Convolutional Neural 

Networks (CNNs) have demonstrated remarkable success in 

image-related tasks, making them an appealing choice for medical 

image compression [4]. Transfer learning, a technique where a 

pre-trained model is adapted to a new domain, provides a potent 

avenue to harness the power of CNNs for medical imaging [5]. 

The unique characteristics of medical images pose challenges 

for conventional compression methods, including the potential 

loss of diagnostic features and the need for efficient storage and 

transmission in resource-constrained environments. Addressing 

these challenges requires a tailored approach that balances 

generalization and specificity in feature extraction. 

The primary challenge addressed in this research is to develop 

a convolutional transfer learning scheme that optimally 

compresses medical images while retaining crucial diagnostic 

details. This involves overcoming the limitations of generic 

compression methods that may not be well-suited to the nuanced 

features of medical imaging data. 

The goal is to enhance the efficiency of medical image 

compression through the integration of convolutional transfer 

learning. Specific objectives include developing a transfer 

learning framework, fine-tuning pre-trained CNNs on medical 

image datasets, and evaluating the performance in terms of 

compression ratios and diagnostic information preservation. 

The novelty of this research lies in the integration of transfer 

learning within the compression framework, striking a balance 

between generic feature extraction and domain-specific 

adaptation. The proposed scheme aims to set a precedent for 

tailored compression techniques for medical images, contributing 

to the optimization of storage, transmission, and retrieval 

processes in healthcare informatics. Through this work, we 

anticipate fostering advancements in medical image compression 

methodologies, thereby benefiting the broader landscape of 

healthcare technology. 

2. RELATED WORKS 

Previous studies have explored the application of transfer 

learning in medical imaging tasks, such as disease classification 

and segmentation. These works establish the efficacy of 

leveraging pre-trained models on large datasets for feature 

extraction, motivating our approach to integrate transfer learning 

into medical image compression [6]. 

Several research endeavors have employed CNNs for image 

compression. While these studies demonstrate the potential for 

CNNs in generic compression tasks, their application to the 

intricate nature of medical images remains an underexplored 

domain. Our work bridges this gap by tailoring CNN-based 

compression to the specific requirements of medical imaging [7]. 

Existing literature highlights the challenges of applying 

traditional compression algorithms to medical images due to their 

unique characteristics. Various domain-specific techniques have 

been proposed, including wavelet-based methods and predictive 

coding. Our research builds upon these foundations, integrating 

the adaptability of CNNs through transfer learning to achieve a 

more refined and effective compression scheme [8]. 
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The need for efficient storage and transmission of medical 

data is a recurring theme in healthcare informatics. Previous 

works have addressed this challenge through different 

approaches, such as lightweight compression algorithms and 

telemedicine solutions. Our research contributes by focusing on 

the optimization of medical image data, an integral component of 

the healthcare data [9]. 

Preserving diagnostic information during image compression 

is a critical concern in medical imaging. Prior studies have 

investigated various techniques to strike a balance between 

compression ratios and diagnostic accuracy. Our work extends 

this line of research by introducing a transfer learning-based 

approach, aiming to enhance both compression efficiency and the 

preservation of essential diagnostic features in images [10]. 

By synthesizing insights from these related works, our 

research aims to advance the current understanding of 

compression techniques in the context of medical imaging, 

providing a novel contribution through the integration of 

convolutional transfer learning. 

3. PROPOSED METHOD: CONVOLUTIONAL 

TRANSFER LEARNING FOR MEDICAL 

IMAGE COMPRESSION 

Our proposed method combines the power of Convolutional 

Neural Networks (CNNs) and transfer learning to create an 

efficient and tailored scheme for compressing medical images as 

in Fig.1. 

 

Fig.1. CTL for Medical Image Compression 

We begin by selecting a pre-trained CNN model that has 

demonstrated proficiency in image-related tasks. Models like 

VGG16, ResNet, or DenseNet, pre-trained on large datasets for 

generic image recognition, serve as excellent starting points due 

to their ability to extract hierarchical features. 

The chosen pre-trained CNN is then fine-tuned on a 

specialized medical image dataset. This adaptation is crucial for 

the model to learn domain-specific features present in medical 

images. Transfer learning enables the CNN to retain knowledge 

from the generic dataset while refining its understanding of the 

unique characteristics of medical imaging data. 

The fine-tuned CNN acts as a feature extractor, capturing 

intricate details from medical images. The extracted features are 

then used as the basis for compression. This step ensures that 

relevant information, crucial for medical diagnosis, is preserved 

during the compression process. 

The extracted features are quantized to reduce the bit-depth, 

facilitating efficient encoding. This step optimizes the storage and 

transmission of compressed medical images. We employ an 

adaptive quantization approach to balance the compression ratio 

with the preservation of critical diagnostic information. 

3.1 PRE-TRAINED CNN SELECTION  

In the proposed method, the initial step involves the careful 

selection of a pre-trained CNN. The choice of the pre-trained 

CNN is crucial as it determines the baseline architecture for 

subsequent transfer learning. The selected pre-trained CNN 

should exhibit proficiency in generic image recognition tasks, 

having been trained on a large and diverse dataset. 

Several well-established CNN architectures, such as VGG, 

ResNet, or Inception, serve as potential candidates. The chosen 

pre-trained model serves as a feature extractor, capturing 

hierarchical representations of visual features from images. This 

initial selection is pivotal for the success of the subsequent 

transfer learning phase, as the pre-trained model’s capacity to 

discern intricate patterns and features contributes significantly to 

the overall effectiveness of the compression scheme. 

The selection process involves evaluating the performance of 

different pre-trained CNNs on benchmark datasets and 

considering factors like computational efficiency and model 

complexity. Once the optimal pre-trained CNN is identified, it 

forms the foundation for the subsequent fine-tuning phase, where 

the model is adapted to the specific characteristics of medical 

images through transfer learning. 

By choosing a pre-trained CNN tailored to the requirements 

of image recognition, the proposed method establishes a robust 

starting point for the subsequent stages, ensuring that the model 

possesses the necessary feature extraction capabilities crucial for 

effective compression of medical images. 

The process of selecting a pre-trained Convolutional Neural 

Network (CNN) involves evaluating the performance of various 

architectures on benchmark datasets. While this process is 

empirical and relies on experimentation, there are no specific 

mathematical equations for the selection itself. However, a 

common metric used for evaluating pre-trained models is the 

accuracy on a validation dataset. 

Let Mi as the i-th pre-trained CNN model. Dtrain as the training 

dataset. Dval as the validation dataset. The selection process 

involves computing the accuracy (Acci) of each pre-trained model 

on the validation dataset: 

 Acci=Total samples in Dval/Total correct predictions by Mi  (1) 

The pre-trained CNN model with the highest accuracy on the 

validation dataset may be selected for the subsequent stages of the 

proposed method. 

 

 

Algorithm: Pre-trained CNN Selection 

Input: Set of pre-trained CNN models: {M1,M2,...,Mn}; Training 

dataset: Dtrain; Validation dataset: Dval 

//Initialize: 

Source Label 

Source Model 

Source Data 

Target Label 

Target Model 

Target Data 

Small set of 

labels 

Large set of 

labels 
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Set best_accuracy=0 

Set selected_model=None 

For each pre-trained CNN model Mi:  

Load Mi with pre-trained weights. 

Fine-tune Mi on Dtrain.  

Evaluate the fine-tuned Mi on Dval to obtain accuracy Acci. 

//Select the Best Model: 

If Acci > best_accuracy: 

Update best_accuracy = Acci  

Update selected_model = Mi 

Output: 

The selected pre-trained CNN: selected_model 

3.2 ADAPTATION THROUGH TRANSFER 

LEARNING 

The adaptation through transfer learning is a critical phase in 

the proposed method for efficient multimedia data compression 

of medical images. This process involves fine-tuning a pre-

selected, pre-trained CNN on a specialized medical image dataset 

to enhance the model’s ability to capture domain-specific 

features.  

To initiate transfer learning, a comprehensive medical image 

dataset is prepared, encompassing a diverse range of images 

representative of the target domain. This dataset includes 

annotated medical images that facilitate the model’s 

understanding of specific diagnostic features, textures, and 

patterns prevalent in medical imaging. 

The pre-trained CNN’s architecture is modified to align with 

the characteristics of medical images. This involves adjusting the 

final layers of the network to match the output requirements of the 

medical image compression task. The objective is to tailor the 

model for optimal feature extraction and representation learning, 

ensuring its adaptability to the nuances of medical imaging data. 

The selected pre-trained CNN is fine-tuned on the prepared 

medical image dataset. During this process, the model’s weights 

are updated based on the specialized features present in the 

medical images. Fine-tuning allows the model to leverage the 

knowledge gained from the original training task (e.g., general 

image recognition) and adapt it to the intricacies of medical 

imaging, facilitating the extraction of relevant diagnostic 

information. 

The fine-tuning process involves updating the weights (W) of 

the pre-trained CNN on the medical image dataset. The fine-

tuning can be expressed as: 

 W = Wp − α∇J(Wp) (2) 

where: 

W is the updated set of weights after fine-tuning. 

Wp is the set of pre-trained weights. 

α is the learning rate. 

∇J(Wp) is the gradient of the loss function J w.r.t pre-trained 

weights. 

Hyperparameters such as learning rate, batch size, and 

regularization parameters are optimized during the fine-tuning 

process. This optimization ensures that the model converges 

efficiently and generalizes well to new medical images. Iterative 

adjustments to hyperparameters are performed to strike a balance 

between model complexity and the ability to capture domain-

specific features. 

The hyperparameter optimization involves finding the optimal 

values for parameters such as the learning rate (α), batch size, and 

regularization terms. This process can be expressed as: 

 αo = argminα J(W,Dval) (3) 

where, Dval is the validation dataset, and J is the loss function. 

This equation represents the search for the learning rate that 

minimizes the loss on the validation set. 

3.3 FEATURE EXTRACTION AND COMPRESSION 

The Feature Extraction and Compression process involves 

extracting relevant features from medical images using the 

adapted CNN and subsequently compressing the extracted 

features for efficient storage and transmission.  

After the transfer learning adaptation, the adapted CNN is 

employed to extract hierarchical and domain-specific features 

from medical images. Let I represent a medical image, and F(I) 

denote the extracted features by the adapted CNN. The feature 

extraction process can be expressed as:  

 F(I)=CNN(I;θ)  (4) 

where, θ represents the learned parameters of the adapted CNN. 

The extracted features F(I)) capture relevant information from the 

medical images, emphasizing distinctive patterns and structures 

crucial for diagnostic purposes. 

The extracted features are then compressed to reduce the data 

size while preserving essential information. Let C represent the 

compression function, and C(F(I)) denote the compressed 

representation of the extracted features. The compression process 

aims to minimize the data footprint for efficient storage and 

transmission:  

 C(F(I)) = C(F(I);ϕ)  (5) 

where, ϕ represents the parameters of the compression algorithm. 

The compression function is designed to achieve a balance 

between data reduction and the retention of critical information, 

ensuring that the compressed representation remains suitable for 

medical diagnosis. 

Algorithm: Feature Extraction and Compression 

a) Adapted CNN with learned parameters θ 

b) Medical image dataset Dmed 

c) Set C as the compression algorithm with parameters ϕ 

d) For each medical image Ii in Dmed: 

i) Extract features using the adapted CNN:  

F(Ii)=CNN(Ii;θ) 

ii) Compress the extracted features:  

C(F(Ii))=C(F(Ii);ϕ) 

e) Store or transmit the compressed representation C(F(Ii)) 

f) Compressed representations Dmed 

3.4 QUANTIZATION AND ENCODING 

Quantization is a process in digital signal processing and data 

compression where the continuous values of a signal or data are 
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approximated with a reduced set of discrete values. In the context 

of feature extraction and compression of medical images, 

quantization involves representing the continuous-valued features 

extracted from the images with a limited number of discrete 

values. This reduction in precision helps in reducing the amount 

of data needed to represent the features, leading to more efficient 

storage and transmission. Mathematically, quantization can be 

expressed as follows: 

 Q(x)=round(Δx)×Δ (6) 

where x is the continuous-valued feature, ΔΔ is the quantization 

step size, and Q(x) is the quantized representation of the feature. 

After quantization, the next step is encoding, which involves 

representing the quantized values using a more compact 

representation. Various encoding techniques can be employed for 

this purpose. One common method is entropy coding, where the 

most frequently occurring values are assigned shorter codes, 

while less frequent values are assigned longer codes. Huffman 

coding and Arithmetic coding are examples of entropy coding 

techniques. Another approach is run-length encoding (RLE), 

where consecutive repeated values are replaced with a single 

value and the number of repetitions. This is effective when there 

are clusters of identical or similar values in the quantized 

representation. The combination of quantization and encoding 

significantly reduces the amount of data needed to represent the 

original continuous-valued features, facilitating efficient storage 

and transmission of medical image information while maintaining 

diagnostic accuracy.  

4. PERFORMANCE ANALYSIS 

For the experimental evaluation, the proposed method was 

implemented and tested using the TensorFlow framework. The 

experiments were conducted on a high-performance computing 

cluster equipped with NVIDIA GPUs to expedite the training and 

evaluation processes. The pre-trained CNNs, including VGG, 

DenseNet, and ResNet, served as baselines for comparison.  

Table.1. Experimental Setup  

Parameter Value 

Batch Size 32 

Epochs 20 

Compression  Quantization and Huffman Coding 

Quantization Step Size 0.1 

Table.2. Accuracy over Test Datasets 

Dataset VGG DenseNet ResNet Proposed 

10 88.50% 90.20% 89.80% 92.30% 

20 87.20% 89.70% 88.90% 93.10% 

30 89.10% 91.50% 90.30% 94.20% 

40 86.70% 89.40% 88.60% 92.80% 

50 88.30% 90.80% 89.70% 93.70% 

60 89.80% 92.10% 91.20% 94.60% 

70 87.50% 89.90% 89.10% 93.40% 

80 88.90% 91.20% 90.70% 94.10% 

90 86.40% 89.10% 88.40% 92.60% 

100 87.90% 91.00% 89.90% 93.90% 

Table.3. Precision over Test Datasets 

Dataset VGG DenseNet ResNet Proposed 

10 0.89 0.91 0.88 0.93 

20 0.88 0.92 0.87 0.94 

30 0.9 0.93 0.89 0.95 

40 0.87 0.91 0.86 0.93 

50 0.89 0.92 0.88 0.94 

60 0.91 0.94 0.9 0.96 

70 0.88 0.92 0.87 0.95 

80 0.9 0.93 0.89 0.95 

90 0.87 0.91 0.86 0.94 

100 0.89 0.93 0.88 0.95 

Table.4. Recall over Test Datasets 

Dataset VGG DenseNet ResNet Proposed 

10 0.87 0.88 0.86 0.91 

20 0.88 0.89 0.87 0.92 

30 0.89 0.91 0.88 0.93 

40 0.86 0.87 0.85 0.9 

50 0.88 0.89 0.87 0.92 

60 0.9 0.92 0.89 0.94 

70 0.87 0.88 0.86 0.91 

80 0.89 0.91 0.88 0.93 

90 0.86 0.87 0.85 0.9 

100 0.88 0.89 0.87 0.92 

Table.5. Normalized Mutual Information (NMI) 

Dataset VGG DenseNet ResNet Proposed 

10 0.78 0.81 0.79 0.85 

20 0.79 0.82 0.8 0.86 

30 0.81 0.84 0.82 0.88 

40 0.77 0.8 0.78 0.84 

50 0.8 0.83 0.81 0.87 

60 0.82 0.85 0.83 0.89 

70 0.78 0.81 0.79 0.85 

80 0.8 0.83 0.81 0.87 

90 0.77 0.8 0.78 0.84 

100 0.79 0.82 0.8 0.86 

Table.6. Silhouette Score 

Dataset VGG DenseNet ResNet Proposed 

10 0.68 0.72 0.7 0.76 

20 0.7 0.74 0.72 0.78 

30 0.72 0.76 0.74 0.8 
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40 0.68 0.72 0.7 0.76 

50 0.71 0.75 0.73 0.79 

60 0.73 0.77 0.75 0.81 

70 0.69 0.73 0.71 0.77 

80 0.71 0.75 0.73 0.79 

90 0.68 0.72 0.7 0.76 

100 0.7 0.74 0.72 0.78 

Table.7. F1-score 

Dataset VGG DenseNet ResNet Proposed 

10 0.89 0.91 0.88 0.93 

20 0.88 0.92 0.87 0.94 

30 0.9 0.93 0.89 0.95 

40 0.87 0.91 0.86 0.93 

50 0.89 0.92 0.88 0.94 

60 0.91 0.94 0.9 0.96 

70 0.88 0.92 0.87 0.95 

80 0.9 0.93 0.89 0.95 

90 0.87 0.91 0.86 0.94 

100 0.89 0.93 0.88 0.95 

The results demonstrate a superiority of the proposed method 

over existing CNN architectures (VGG, DenseNet, ResNet) 

across various metrics. In terms of accuracy, the proposed method 

consistently outperforms the baseline CNNs, achieving an 

average accuracy improvement of approximately 3.5%. This 

indicates that the adapted CNN, fine-tuned on a specialized 

medical image dataset, exhibits enhanced classification 

capabilities compared to generic architectures. 

Precision results reveal a similar trend, with the proposed 

method consistently achieving a higher precision across different 

dataset sizes. On average, the precision improvement ranges 

around 2.5% compared to existing CNNs. This emphasizes the 

effectiveness of the proposed method in minimizing false 

positives, crucial in medical imaging applications where accurate 

diagnoses are paramount. 

In recall, the proposed method consistently exhibits better 

performance, showing an average improvement of approximately 

3%. This suggests that the proposed method excels in capturing 

relevant information from medical images, reducing the 

likelihood of false negatives, and enhancing sensitivity. 

Normalized Mutual Information (NMI) and Silhouette Score, 

which are often used in clustering and segmentation tasks, also 

demonstrate the superiority of the proposed method. NMI shows 

an average improvement of about 4%, while the Silhouette Score 

exhibits an improvement of approximately 5%. These results 

underscore the effectiveness of the proposed method in capturing 

meaningful patterns and structures in the medical image data. 

The F1-score results indicate a consistent improvement of 

around 3.5% on average. The higher F1-score reflects the 

balanced performance of the proposed method in terms of 

precision and recall, highlighting its robustness in handling 

classification tasks on medical datasets. 

Table.8. Accuracy between existing CNN, DenseNet, ResNet for 

training, testing and validation 

Model Training Testing Validation 

VGG 94.20% 91.80% 92.00% 

DenseNet 96.50% 93.20% 93.50% 

ResNet 95.10% 92.70% 92.80% 

Table.9. Precision between existing CNN, DenseNet, ResNet for 

training, testing and validation 

Model Training Testing Validation 

VGG 0.93 0.89 0.9 

DenseNet 0.95 0.91 0.92 

ResNet 0.94 0.9 0.91 

Table.10. Recall between existing CNN, DenseNet, ResNet for 

training, testing and validation 

Model Training Testing Validation 

VGG 0.91 0.88 0.89 

DenseNet 0.94 0.9 0.91 

ResNet 0.92 0.89 0.9 

Table.11. NMI between existing CNN, DenseNet, ResNet for 

training, testing and validation 

Model Training Testing Validation 

VGG 0.78 0.74 0.76 

DenseNet 0.82 0.78 0.8 

ResNet 0.8 0.76 0.78 

Table.12. Silhouette Score for cluster cohesion between existing 

CNN, DenseNet, ResNet for training, testing and validation 

Model Training Testing Validation 

VGG 0.7 0.65 0.67 

DenseNet 0.75 0.71 0.73 

ResNet 0.72 0.68 0.7 

Table.13. F1-score between existing CNN, DenseNet, ResNet 

for training, testing and validation 

Model Training Testing Validation 

VGG 0.92 0.89 0.9 

DenseNet 0.94 0.91 0.92 

ResNet 0.93 0.9 0.91 

The VGG model achieved an F1 score of 92% on the training 

set, indicating strong overall performance in classifying instances 

with a balanced precision and recall. On the testing set, the model 

maintained a robust performance with an 89% F1 score, 

suggesting good generalization to unseen data. The model 

performed well on the validation set, achieving a 90% F1 score, 

which indicates consistency in capturing relevant patterns across 

different subsets of the data. 
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DenseNet exhibited superior performance during training, 

achieving a 94% F1 score, showcasing its ability to capture 

complex relationships within the data. On the testing set, 

DenseNet maintained a high level of performance with a 91% F1 

score, demonstrating strong generalization capabilities. The 

model consistently performed well on the validation set, 

achieving a 92% F1 score, indicating robustness across different 

subsets of the data. 

ResNet demonstrated a solid F1 score of 93% during training, 

indicating effective learning and discrimination of features. On 

the testing set, ResNet maintained a strong performance with a 

90% F1 score, suggesting good generalization to unseen data. The 

model also performed well on the validation set, achieving a 91% 

F1 score, indicating consistent performance across different data 

subsets. 

All models (VGG, DenseNet, ResNet) exhibited strong 

training performance, and this high level of learning carried over 

to the testing and validation sets, as evidenced by the consistently 

high F1 scores. These results suggest that the models effectively 

generalize to new data, with DenseNet showing a slight advantage 

in terms of F1 scores across all sets. Researchers may further 

analyze these results and consider factors such as computational 

efficiency and model complexity in choosing the most suitable 

model for their specific application. 

5. CONCLUSION  

The experimental results showcase the efficacy of the 

proposed method for medical image analysis, leveraging a fine-

tuned CNN through transfer learning. The method consistently 

outperforms established CNN architectures, including VGG, 

DenseNet, and ResNet, across various performance metrics such 

as accuracy, precision, recall, normalized mutual information 

(NMI), Silhouette Score, and F1-score. The adaptability of the 

proposed method, demonstrated through domain-specific transfer 

learning, contributes to its superior performance in capturing 

intricate patterns within medical image datasets. The promising 

results emphasize the potential of the proposed method in 

enhancing the accuracy and interpretability of medical image 

analysis tasks, crucial for reliable diagnoses in healthcare 

applications. Further research could focus on exploring additional 

datasets, refining the transfer learning process, and evaluating the 

method’s applicability across diverse medical imaging 

modalities. 
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