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Abstract 

The world has witnessed the deadly impact of the Novel Corona Virus 

(COVID-19), claiming millions of lives since its outbreak in early 

December 2019. Early virus detection plays a crucial role in controlling 

this highly contagious disease. Though Reverse Transcription 

Polymerase Chain Reaction (RT-PCR) is the current standard for 

confirmation of COVID-19, it is time-consuming. Computed 

Tomography (CT) imaging of the lungs can preferably be used for fast 

diagnosis of the disease as it is more sensitive and can detect 

complications. Due to the unavailability of adequate expertise, a deep 

learning-based model on CT images is a potential solution for fast 

detecting SARS Cov2 virus. In this study, we developed a simple but 

robust Convolution Neural Network model with multiclass detection 

ability between normal lungs, COVID-19 infected lungs and any other 

Community-Acquired Pneumonia (CAP) infection using Chest CT 

images. It is tested on a publicly available dataset, COVID-CT-MD and 

it achieved slice level accuracy of 99% on test dataset. We also 

attempted slice-level prediction of the unlabelled slices available in the 

dataset of COVID-19 and CAP cases. 
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1. INTRODUCTION 

The world has been going through a painful pandemic since 

late 2019 with the manifold impact of the novel Corona virus 

(COVID-19) on socio, economic and human lives. According to 

World Health Organization (WHO), as of January 2023, there are 

about 75.2 million confirmed cases of COVID-19, of which 6 

million deaths caused by the virus alone. In India, 4.4 million 

confirmed cases and half million deaths are recorded [1] 

officially. This record is sufficient to recognize the overwhelming 

effect of this contagious virus. Moreover, several variants of this 

virus come in different times and regions. Reverse Transcription 

Polymerase Chain Reaction (RT-PCR) is currently the gold 

standard for COVID-19 confirmation [2]. This method requires 

physical sample for testing. It comes at the expense of time. The 

test centres providing the RT-PCR testing facility are also limited, 

Also, RT-PCR testing lacks in identifying severity/stage of the 

disease [3]. 

The application of image processing on medical imaging has 

played important role in diagnosing different symptoms. Chest 

Radiography (CR) and Computed Tomography (CT) may be used 

for the early detection of COVID-19 as the images are highly 

correlated with disease severity [4] [5]. Although CR can assess 

the extent of COVID-19 involvement, higher sensitivity of CT 

imaging provides more accuracy in detecting complications [6]. 

Inadequate expertise and unavailability of knowledgeable 

workforce in a pandemic situation, a machine-learning model may 

be a preferable solution. An imaging-based AI model is not only 

limited to provide the diagnosis of COVID-19 but also a potential 

solution for any future pandemics when there may not be any 

rapid tests like RT-PCR. 

The most visible primary image patterns in COVID-19 

affected lungs are Ground Glass Opacities (GGO) and 

consolidation [7] [8] [9] [10] [11]. The peripheral location of 

opacities with rounded morphology is very common in COVID-

19 affected lung images [5] [7]. Deep Learning (DL) is an 

effective method in computer vision tasks- i.e. detecting these 

imaging patterns [3] [12] [13] [14]. In recent years, application of 

DL has shown very good results in radiology images for 

classification, segmentation, detection, and other tasks [3] [15]. 

DL utilizes target lesions and can be applied to CT scan images, 

enhancing feature detection and improving diagnosis efficiency 

[3] [15]. Medical images come with a variety of noises like 

background clutter, motion artifact, noises due to device 

calibration, etc. [16]. In such cases, DL is a suitable tool for 

identification, extraction, classification, etc, of features of interest 

[3] [13]. 

In the literature, a few machine-learning models are reported 

for detecting the COVID-19 based on CT volume imaging. In 

2020, Yang, Shuyi, et al. [17] reported that DenseNet works on 

high-resolution CT images to classify COVID-19 affected cases 

and normal cases. They used a dataset having 300 to 500 axial 

image slices per person. The dataset contained 149 normal cases 

and 146 COVID-19 infected cases. CT scans with visible Ground 

Glass Opacities (GGO) and GGO with consolidation are used for 

the COVID-19 class in the training set. For healthy cases, lungs 

with pulmonary parenchyma are used. Taking the threshold value 

0.8, the study reported 95% and 92% accuracy on the validation 

set and test set respectively. The study did not consider other 

pathogen pneumonia like CAP cases. 

In 2020, Wang et al. [18] reported a CNN model, introduced 

as Covid-Net, to classify between Normal case, COVID-19 case 

and Non-COVID Pneumonia case based on CR images. They 

used publicly available dataset known as COVIDx. It is collection 

of images from five different data repositories with 13975 images 

across 13870 subjects. The model uses a projection-expansion-

projection design pattern. The model is pre-trained using the 

ImageNet dataset and then trained on the COVIDx dataset. They 

used batch size of 64 and patience of 10 for early stopping. They 

reported 91% sensitivity in detecting COVID-19 cases. The 

COVIDx dataset has a very few COVID-19 CR images. 

In 2020, Shaoping Hu et al. [19] proposed a weakly supervised 

model with five convolution layers inspired by VGG model for 

multiclass COVID-19 infection detection. They used CT images 

using TCIA (Cancer Imaging Archive) dataset. Fixed-size sliding 
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window is used for image enhancement that overcomes data bias 

from scanners of different centres. For lung segmentation, UNET 

is used. To detect lesions of varying size and different location, 

the intermediate feature maps are used from 3rd, 4th and 5th 

convolution layers. These intermediate feature maps are fed into 

weakly supervised convolution layer. It uses 1x1 convolution and 

Global Max Pooling. The prediction score generated from each 

weakly supervised layer is aggregated to make the final decision. 

The study reported accuracy of 84.3% in classifying COVID-19, 

CAP, and Non-Pneumonia (NP) cases. But the model is not 

discriminative enough for separating CAP and COVID-19. 

In the same year 2020, Mahmud et al. [20] proposed CovXNet 

to detect COVID-19 using CR image. CovXNet comprises four 

networks trained and optimized using four different input size of 

256x256, 128x128, 64x64 and 32x32. It captures the consolidated 

and diffusely distributed infected regions. The dilated convolution 

operation with varying dilation rates is applied in each network. 

Then these four optimized networks are stacked to form a meta-

learner to predict final output. They tested the model on a 

combined dataset comprising images from a) Mendeley dataset 

from China- it is publicly available and consists of normal, non-

covid viral pneumonia, non-covid bacterial pneumonia class, b) 

another dataset from Bangladesh with COVID-19 cases only. 

They used the combined dataset for experimentation with 305 CR 

images from each class. Initially the model trained with CR 

images of normal cases, then viral/bacterial pneumonia cases and 

lastly with COVID-19 infected images. It has some additional 

fine-tuning layers. They reported 90.2% accuracy but the model 

used very few COVID-19 infected CR images. 

In 2021, a new Feature Pyramid Network (FPN) is proposed 

by Rahimzadeh et al. [21] that uses ResNet50V2 as backbone 

model. FPN is primarily build to detect small objects, the authors 

use this as a feature extractor in five depth levels of ResNet50V2. 

To preserve location information in top-down pathway of FPN, 

lateral connections between reconstructed layers and the 

corresponding feature maps are used. The five level features fed 

into dense layer with two output neurons in each level. The 

outputs layer consists of ten neurons. Finally, Soft-Max activation 

is used for classification. They used the COVID-CT dataset. It 

contains 48260 and 15589 CT slices from 282 normal and 95 

COVID-19 patients respectively. They reported binary 

classification accuracy 98.49% for slice level, and 95.5% (234 out 

of 245) for patient level. The study did not consider other viral 

pneumonia cases. The binary classification between normal class 

and infected class is simpler than the multiclass classification 

between normal class, COVID-19 infected class and other CAP 

class. 

In 2021, Shahin Heidarian et al. [22] reported a two-stage 

capsule network named COVID-FACT for COVID-19 detection 

at the patient level. It used the COV-CT-MD dataset [23] of CT 

images of multiple classes. In the first stage, it classifies between 

infected and non-infected slices, and in the second stage, it 

classifies patient between COVID and non-COVID categories. 

The network consists of four convolutional layers and three 

capsule layers in both stages. The image features are extracted 

using convolution layers and fed into capsule layers. Each capsule 

in capsule layers forward the object existence probability and 

passes from one layer to next higher layers. A patient-level 

classification is done based on average voting with varying 

threshold degrees. They reported 91.83% accuracy at the patient-

level classification at stage 2. Therefore, there is need of 

computation model that gives better accuracy than the state-of-

the-art methods reported in the literature. 

For such multiclass classification the challenge is- it is more 

challenging to differentiate between COVID-19 and CAP 

infection slices even for radiologist because COVID-19 infected 

slices and CAP infected slices both have infected regions with 

similar image features [19]. We aim to employ CNN network to 

do this task to differentiate between COVID-19 and CAP 

infection slices that may help radiologist for better diagnosis. 

Motivation: A very few methods discussed in literature 

considered Covid-19 and CAP cases together. Even these studies 

considered small number of images from each class. The reported 

accuracy is up to 91.83% in patient level. There is a scope to 

improve the accuracy further. Our objective is to develop a 

multiclass classifier that is capable to identify Normal, Covid-19 

and CAP cases considering large number of images. 

Contribution of this study are- a) we developed an optimized 

multi-class CNN model, Cov-CT-Net to classify Normal, 

COVID-19, and other Community-Acquired Pneumonia from CT 

slices. Our optimized network requires as less as 1/69th number of 

trainable parameters compared to COVID-FACT network 

reported by Heidarian et al. [22] in 2021. b) This deep learning-

based model is tested extensively on the publicly available dataset 

COV-CT-MD. It can predict with more than 98% accuracy for 

slice level. The model gave us a patient-level accuracy of 83.47% 

in the COVID-19 class. The accuracy is better than the one 

reported by Heidarian et al. [22] on the same dataset using CNN. 

We also extend the slice label predictions to the patient level by 

majority voting on the average probability of detected infected CT 

slices of a patient. c) The CT dataset contains many unlabelled 

slices. It consists of COVID infected as well as non-infected 

slices. The model labels all these unlabelled slices (in the COVID-

19 class of patient level) and verified by radiologist. These slices 

may be used as pseudo labelled slices in semi-supervised learning. 

The article is organized as follows. Section 2, Materials and 

Method section explains the model, Cov-CT-Net. Section 3, 

Experimental results are shown, and section 4 concludes the 

article. 

2. MATERIALS AND METHOD 

This section describes the model design, dataset, and 

performance analysis. 

2.1 DATASET 

In this paper, we use the COV-CT-MD [23] dataset, which is 

publicly available. The dataset consists of slice-level, lobe-level 

and patient-level data and includes slice-level CT images of 169 

COVID-19 patients, 76 Normal, and 60 CAP cases in DICOM 

(Digital Imaging and Communications in Medicine) format. Each 

image size is 512x512, and the bit depth is 8. It has slice and lobe 

labels for 54 COVID-19 and 25 CAP patients. In this study, we 

consider slice-level data only. Fig. 1 illustrates a CT slice image 

of normal, COVID-19 infected, and CAP-infected chest 

radiography. 
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(a) (b) (c) 

Fig.1. The CT images of lung- a) CAP infected, b) COVID-19 

infected, c) Normal 

A few datasets are publicly available on CT images of 

COVID-19 subjects. Most of them contain images about Covid 

and Non-covid cases. Besides, the datasets contain only infected 

slices in Covid cases rather than the whole volume. The COV-

CT-MD dataset in our study contains three class data and provides 

adequate labelling suitable to train the deep learning-based 

models. Moreover, Afsar et al. [13] reported this is the first dataset 

with slice, lobe, and patient-level labelling. We have used this 

dataset to carry out experiment. 

2.2 DATA SELECTION 

In the dataset, there are 3779 infected slices of 54 patients 

infected with COVID-19, 1178 infected slices of 25 patients 

infected with Community-Acquired Pneumonia, and 18392 non-

infected slices of normal cases of 76 persons. The slice level and 

patient level data is presented in Table.1 and Table.2. For the 

present study, non-infected slices have been taken only from 

normal cases. 

Table.1. Slice level data available in the COV-CT-MD dataset 

 COVID-19 cases CAP cases Normal cases 

Labelled data 3779 1178 18392 

Unlabelled data 16891 5231 - 

Table.2. Patient level data in the COV-CT-MD dataset 

 
Labelled data Unlabelled data 

Patient ID Total Patient ID total 

COVID-19 

cases 
P001 to P054 54 P055 to P169 115 

CAP cases CAP001 to CAP025 25 
CAP026 to 

CAP060 
35 

Normal 

cases 

NORMAL001 to 

NORMAL076 
76 - - 

The involvement of each positional CT slices on 54 COVID-

19 cases, considering the slices took from positional index 1 to 

200, depicted in Fig.2 as slice histogram. It is observed from the 

slice histogram that infected slices range from index 11 to 118. 

Also, it is observed that slices ranging from 68 to 88 are mostly 

infected.  

The average number of CT slices per patient is 149, and the 

average number of COVID-19 infected slices per patient is 70, 

with a minimum of 9 (≈7%) and a maximum of 137 (≈86%). 

Using this observation, we considered a patient as normal or not 

infected if less than 5% of slices of the patient are infected for 

patient-level prediction. 

 

Fig.2. CT Slice Histogram of involved COVID-19 Cases 

The infected slices are randomly selected from COVID-19 and 

CAP cases to train the model. The number of CT slices in CAP 

cases is 1178. But we need at least 3500 slices (the required 

number of slices 2500 for training, 500 for validation and 500 for 

testing) so we used data augmentation to generate more samples 

from these 1178 samples of the CAP class for data balancing. The 

CAP slices are augmented with rotation (-30, +30), shearing (-20, 

+20) and scaling (0.8, 1.2). A total of 3534 images are generated 

using the augmentation techniques. From these augmented slices 

only 1322 slices are randomly chosen along with original 1178 

slices (total 2500) for training of the model. We considered 3705 

slices of normal cases, 3779 slices of COVID-19 infected cases, 

and 4712 slices of CAP cases for the study. For the training 

dataset total 7500 slices are considered- 2500 slices from each 

class of normal, COVID-19 and CAP cases.  For validation and 

test dataset, 500 number of samples from each class total 1500 

samples are considered. The details is given in Table.3. 

Table.3. Slice level data used in experimentation 

 COVID-19 CAP Normal Total 

Training dataset 2500 2500 2500 7500 

Validation dataset 500 500 500 1500 

Test dataset 500 500 500 1500 

For slice-level labeling of unlabeled data in the dataset using 

the model, we ignored the slices where the lung is invisible, or 

visibility is very narrow. As the number of CT slices of each 

patient differs, we ignored 10% slices from the start and end index 

for prediction of class label and labelled those ignored slices as 

non-infected. 

2.3 PREPROCESSING 

Each DICOM image is resized into 256x256 to fit the model 

and saved in a NumPy array for fast training. As CNN is robust 

against noise or missing data, we used this resized image into the 

model without further pre-processing. 

2.4 MODEL DESIGN 

This study uses a five-layer Convolutional Neural Network to 

predict Normal Covid and other Community-Acquired 
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Pneumonia (CAP) cases on CT slices. The model architecture is 

shown in Fig.3. 

 

Fig.3. Cov-CT-Net architecture 

2.5 OPTIMIZER 

We use an Adaptive Moment Estimation (Adam) [24] 

optimizer in this study. It works by estimating the first and second 

moments of the gradient to adapt the learning rate for each weight 

of the neural network using Eq.(1) and Eq.(2).  

 
1 1 1(1 )t t tm m g −= + −  (1) 

 
2

212 )1( ttt gvv  −+= −  (2) 

where β1 and β2 are the decay rate of the average of the gradient 

of first and second moments respectively and g is the gradient on 

the current mini batch. Finally, weights, W are updated at tth epoch 

using Eq.(3).  
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where ˆ
tm and ˆ

tv are bias corrected first and second moments. Bias 

correction is done by Eq.(4) and Eq.(5). 
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where, η is the step size and ε is a very small number. We have 

set 
1 0.9 = , 

2 0.999 =  and 
81e −= . The Adam optimizer has 

faster computation and low memory requirements than other 

optimizers. It is suitable for high volume image dataset [14]. 

2.6 LOSS FUNCTION 

The loss function used to train the Cov-CT-Net model is 

sparse categorical cross-entropy based on mean squared error. 

Sparse categorical cross-entropy has the same loss function as 

categorical cross-entropy. The only difference is in representing 

output labels. The loss for M number of classes is computed by 

Eq.(6). 

 
1

ˆlog( )
M

j j

j

L y y
=

= −  (6) 

where y is the actual target and y hat is the predicted target. 

Considering N training samples, the cost function is given by 

Eq.(7). 
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2.7 MODEL ARCHITECTURE 

In this study, an eight-layer Convolutional Neural Network 

(CNN) named Cov-CT-Net is designed to detect COVID-19 using 

CT images. There are four types of layers present in the CNN- 

Convolution layer, Pooling layer, Flatten layer, and Fully 

Connected layer (FCN) [15]. The model extracts features 

hierarchically. At first, low-level features are extracted, then mid-

level and high-level features are extracted. 

Convolution layer is the main building block of CNN to 

extract input features. Features are extracted using several filters, 

known as kernels. Kernel performs convolution operation, which 

is the summation of the element by the element dot product 

between inputs and the kernels. Four convolution layers are used 

in the Cov-CT-Net model, followed by ReLU activation after 

each convolution operation to introduce non-linearity. Rectified 

Linear Unit (ReLU) is an activation function in the model.  A 

rectified linear equation is given by Eq.(8). 

 ( ) max(0, )f u u=  (8) 

Pooling layers perform dimensionality reduction of feature 

maps generated from convolution layers using kernels. 

MaxPooling selects the maximum value within the receptive field 

between the kernel and inputs.  

  Flatten layer transforms the feature maps to single 

dimensional array of size 4704. The one-dimensional vector is 

used as input in fully connected layers for classification. 

Table.4. Hyper-parameters of Convolution and Pooling layers and Input-Output volume 

 Convolution 
Max 

Pooling 
Volume 

Layer 
No. of  

Filter 

Kernel  

size 
Padding Stride 

Kernel  

size 
Stride 

Input  

Volume 

Output  

Volume 

1 32 3 0 1 3 2 256x256x1 126x126x32 

2 80 5 0 2 3 2 126x126x32 30x30x80 

3 96 3 1 2 2 1 30x30x80 14x14x96 

4 96 3 1 1 2 2 14x14x96 7x7x96 
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The three Fully Connected layers (FCN) in order are used in 

dimensions 1024, 256 and 3 to classify inputs into COVID-19, 

CAP, and Normal classes. A softmax [15] activation function is 

used in the last layer to get predictions with probability 0 to 1 in 

each class by the Eq.(9). 

 

1

exp( )
( )

exp( )

i

i M

j

j

y
S y

y
=

=


 (9) 

The Cov-CT-Net CNN model architecture is illustrated in 

Fig.3. The different hyper-parameters and feature dimensions are 

presented in Table.4. The number of filters affects the depth of 

output. The stride is the distance or the number of pixel that the 

kernel moves over the input matrix. 

3. EXPERIMENTAL RESULTS 

A dataset of 10500 samples (3500 random samples from each 

class) is used for experimentation. For model training, testing, and 

validation 7500, 1500 and 1500 number of slices are used. Class-

wise distribution of slices is shown in Table 3. The performance 

of the model is evaluated in terms of accuracy with different batch 

size. The Fig.4 shows that the model gives the best result with 

batch size of 8. 

 

Fig.4. Validation accuracy and test accuracy with different batch 

size 

The model is trained with batch size of eight. The accuracy 

and loss graph are shown in Fig.5 and Fig.6, respectively. In Fig.5 

it can be observed that the model converges after 12 to 13 epochs 

with high training and validation accuracy.  

 

Fig.5. Accuracy vs no. of epoch graph of Cov-CT-Net 

 

Fig.6. Loss vs no of epoch graph of Cov-CT-Net 

The Receiver Operating Characteristic (ROC) [27] curve is 

widely used in medicine field to find the presence or absence of 

patient disease based on test result. The curve is constructed by 

connecting the coordinate points using “false positive rate (FP)” 

as x-axis and “true positive rate (TP)” in y-axis. FP refers the 

proportion of CT slices that are not infected but are incorrectly 

classified as infected. TP refers those proportions of CT-slices 

that are infected and correctly classified. The 45 degree diagonal 

line corresponds to random classification. The Area Under the 

Curve (AUC) gives the accuracy measurement of test result. On 

45 degree diagonal AUC=0.5 Therefore, AUC must be greater 

than 0.5. The ROC curve of the Cov-CT-Net model presented in 

Fig.7 where (a) represents the classification performance of the 

model considering Normal class vs Rest (Covid-19 and CAP 

cases), (b) represents Covid-19 class vs Rest (Normal and CAP 

cases) and (c) represents CAP class vs Rest (Normal and Covid-

19).  

 

(a) 

 

(b) 
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(c) 

Fig.7. Receiver Operating Characteristic Curve (a) Normal Class 

vs Rest (b) COVID-19 vs Rest (c) CAP vs Rest 

From the ROC curves the model has the ability to distinguish 

between different classes with 0.99 probability which is supported 

by the AUC. 

To assess the performance of Cov-CT-Net, 1500 CT slices, 

500 from each class, are used, which are not included in the 

training set. The test classification result and confusion matrix 

[25] are given in Table 5 and 6, respectively. The Cov-CT-Net 

model obtains a test accuracy of 0.99. 

Table.5. Classification performance of Cov-CT-Net 

 Precision Recall F1 score 

Class 0 (Normal) 1 1 1 

Class 1 (COVID-19 Infected) 1 0.98 0.99 

Class 2 (CAP Cases) 0.97 1 0.99 

Table.6. Confusion matrix of Cov-CT-Net 

 Class0 Class1 Class2 

Class0(Normal) 499 0 2 

Class1(COVID-19 Infected) 1 500 11 

Class2(CAP Infected) 0 0 487 

From Table.6, we can see that the model is able to identify 

Covid-19 infected slices with 100% precision. The small 3x3 

filters can capture the highly localized lesions of GGO like 

imaging features which are present mostly in lower lobes as hazy 

transparent opacities. The 5x5 filter with two stride in the second 

convolution layer designed to capture scattered lesions and 

consolidation pattern present in Covid-19 infected lungs. 

The Table.6 shows that one slice belonging to the normal class 

is misclassified to COVID-19 infected class. At the same time, all 

COVID-19 infected slices are properly classified. The 

classification result of CAP-infected slices shows 11 slices are 

miss-classified as COVID-19. This miss-classification is not a 

surprise as the pattern in CAP CT slices is similar to COVID-19 

infection. The GGO and Airspace Consolidation are present in 

CAP and COVID-19 [20].  

We extend the model prediction from the slice level to the 

patient level. The patient-level predictions are carried out by 

averaging the probabilities of slice-level class predictions of 

infected CT slices for a patient. We con-sider the patient-level 

prediction normal whenever infected slices are less than 4% of the 

total CT slices examined and considered these predicted 

infections as model errors. Fig.8 demonstrates the precisions 

achieved experimentally on different cutoff values in Covid-19 

Class. Based on our experiment and as reported by Nan Yu et al. 

[26], we choose 4% cutoff.  For other cases, we account for 

majority voting between the COVID-19 and CAP classes. 

 

Fig.8. Precision Vs Cutoff in COVID-19 Class 

We labelled the unlabelled slices at the patient level based on 

averaging the predicted class probabilities. Table 7 shows the 

result of patient-level prediction. 

Table.7. Performance of patient level prediction of Cov-CT-Net 

Patient Index COVID-19 CAP 

Patient Index P055 to P169 CAP026 to CAP060 

Correct Prediction 96/115 14/35 

The number of patient-level misclassification of COVID-19 

case as CAP case and Normal case is 18 (15.65%) and 1 (0.8%) 

respectively. 

The clinical data of the patient id P091, misclassified as 

Normal class, recorded as Myalgia, Diarrhoea, and RTPCR not 

done. Among the misclassified CAP cases, the clinical record is 

shown in Table.8. 

Table.8. Clinical record of misclassified samples 

Patient ID Clinical record RTPCR status 

P056 Cough Not done 

P061 
Fatigue, Cough,  

History of myasthenia gravis 
Positive 

P062 Flu-like symptoms Not done 

P075 Cough, Known case of scleroderma Not done 

P079 
Cough, Fever,  

History of Flu-like symptoms 
Not done 

P081 Dyspnoea Not done 

P099 
Dyspnoea, Cough,  

History of colon cancer 
Not done 

P104 Cough Not done 

P107 Headache, Myalgia, Nausea Not done 

P111 Cough Positive 

P131 Cough Not done 

P132 Cough Not done 

P136 Fever Not done 
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P148 Dyspnoea Not done 

P151 Abdominal pain Positive 

P155 Fever, Chills Not done 

P169 Dyspnoea Not done 

Two RTPCR-positive cases are misclassified as CAP cases. 

Most of the other misclassified patients have cough as one of the 

symptoms. 

The performance of our model is compared with the state-of-

the-art models reported in the literature. We have tested the CNN 

model on COVID-CT-MD dataset to classify Normal, COVID-19 

and other Community Acquired Pneumonia (CAP) cases in slice 

level and patient level. The Cov-CT-Net model achieved 99% 

accuracy in slice level and 83.3% accuracy in patient level on test 

set. A comparative study with CNN-based COVID-FACT 

proposed by Shahin Heidarian et al. [22] on same dataset is given 

in Table.9. Our model gives better accuracy than the CNN-based 

COVID-FACT model [22]. Also, the Cov-CT-Net model requires 

5,297,747 number of trainable parameters whereas the CNN-

based COVID-FACT model [22] requires 365,806,660 number of 

trainable parameters (which is almost 69 times of Cov-CT-Net). 

Therefore, the Cov-CT-Net is much simple one and it requires less 

computation time for training.  

Table.9. Comparison between Covid-Fact [22] and our Cov-CT-

Net model 

Method 
Slice level 

accuracy 

Patient 

level 

precision 

 (COVID-

19 cases) 

Patient 

level 

precision  

(CAP 

cases) 

Trainable 

parameters 

CNN-

based  

Covid-

Fact 

79.74% 
82.40%  

(14/17) 

25%  

(2/8) 
365,806,660 

Cov-CT-

Net 
99.00% 

83.48% 

(96/115) 
40% (14/35) 5,297,747 

A detailed comparison is given with other state of the art 

models for COVID-19 detection using CT or CR images with our 

model. It is shown in Table 10. 

Mahmud et al. [20] reported a multiclass classification model 

for slice level. They have considered 305 images from each class. 

The size of the dataset is small compared to the size of the dataset 

used in the experiment. They reported 90.20% accuracy in slice 

level classification, but they did not report patient level accuracy. 

The slice level accuracy of our model is better than other state of 

the art model.  

Rahimzadeh et al. [21] reported the method as binary class 

classification. They did not consider Community-Acquired 

Pneumonia cases. The binary classification between normal class 

and infected class is simpler than the multiclass classification 

between normal class, COVID-19 infected class and CAP class. 

As COVID-19 infected slices and CAP infected slices have 

infection regions with similar image properties so it is challenging 

task to differentiate between COVID-19 and CAP infected slices. 

Again, the patient level accuracy reported by Rahimzadeh et al. 

[21] is between Normal case and COVID-19 infected case. In 

patient level multiclass scenario our method performs better.   

Table.10. Comparison study between our Cov-CT-Net model 

and other state-of-art models 

Title Dataset type 
Size of 

dataset 

Accuracy 

(Slice 

level) 

Accuracy 

(Patient 

level) 

Mahmud et 

al. [20] 

in 2020 

Multi-class  

(Normal, Non-

COVID viral 

pneumonia, 

non-COVID 

bacterial 

pneumonia and 

COVID-19 

class) 

305 CR 

images  

from each 

class 

90.20% 
Not 

reported 

Rahimzadeh 

et al. [21] 

in 2021 

Binary class 

(Normal and 

COVID-19) 

48160 CT 

from 

normal 

and 15589 

from 

COVID-

19 

98.49% 
95.5% 

(234/245)* 

Cov-CT-Net 

Multi-class 

(Normal, 

COVID-19, 

CAP) 

18447 CT 

slices 

from 

normal 

and 4962 

from 

infected 

99.00% 
83.47% 

(96/115) 

*Accuracy reported by Rahimzadeh et al. [21] is for binary 

classification between Normal case and COVID-19 infected case 

4. CONCLUSION 

This study designed an efficient yet simple multi-class CNN 

model, Cov-CT-Net to classify between COVID-19 cases, other 

Community-Acquired Pneumonia (CAP) infection and Normal 

cases at patient level using chest CT slices. The model is trained 

and tested on the publicly available dataset COVID-CT-MD. It 

achieves accuracy of 99% on test data at the slice level. The 

patient-level labelling is decided using average voting of all 

detected infected CT slices of a patient. The proposed model gave 

a patient-level accuracy of 83.47% in the COVID-19 class. Our 

optimized Cov-CT-Net network requires 5,297,747 number of 

trainable parameters. Whereas recently reported COVID-FACT 

network applied on the same dataset requires 365,806,660 number 

of trainable parameters which is almost 69 times that of the Cov-

CT-Net.  The patient level accuracy is better than the state-of-the-

art method reported using the same dataset. The model labels the 

unlabelled slices of the dataset. These labelled slices may be used 

as a pseudo labelled slices in semi-supervised learning. 
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