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Abstract 

In computer vision and anomaly detection, this research delves into the 

application of AI-based Deep Anomaly Detectors for the identification 

of anomalies in images and videos. The escalating growth of digital 

content necessitates robust and efficient methods for anomaly detection 

to ensure the integrity and security of visual data. As the volume of 

visual data continues to surge, conventional anomaly detection 

methods fall short in addressing the complexities inherent in images 

and videos. Traditional anomaly detection methods often struggle with 

the nuanced patterns and variations present in images and videos. The 

need for a more sophisticated and adaptive approach becomes 

imperative to identify anomalies accurately amidst the vast and diverse 

landscape of visual data. This study addresses this gap by leveraging 

the power of artificial intelligence, specifically Deep Anomaly 

Detectors, to enhance the accuracy and speed of anomaly detection in 

visual content. This research aims to bridge this gap by proposing a 

novel methodology that combines deep learning techniques with 

anomaly detection to achieve superior results in identifying anomalies 

in visual content. The proposed methodology involves the utilization of 

state-of-the-art deep learning architectures, training on a diverse 

dataset of images and videos to capture intricate patterns associated 

with anomalies. The model is then fine-tuned to enhance its sensitivity 

to deviations from normal visual patterns, ensuring a robust anomaly 

detection system. The results showcase a significant improvement in 

anomaly detection accuracy compared to traditional methods. The AI-

based Deep Anomaly Detector exhibits a high level of sensitivity and 

specificity, effectively distinguishing anomalies in real-world 

scenarios, thus validating the efficacy of the proposed method. 
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1. INTRODUCTION 

In the ever-evolving landscape of computer vision and 

anomaly detection, the burgeoning volume of visual data poses 

unprecedented challenges. As industries and applications become 

increasingly reliant on images and videos, ensuring the integrity 

and security of this digital content becomes paramount [1].  

Traditional methods of anomaly detection, while effective in 

certain domains, struggle to cope with the intricacies present in 

images and videos [2]. The surge in data complexity demands a 

paradigm shift towards more adaptive and nuanced techniques 

[3]. Deep learning, with its ability to discern intricate patterns, 

emerges as a promising avenue to enhance anomaly detection in 

visual data [4]. 

The challenges in anomaly detection within images and videos 

are manifold [5]. Variations in lighting conditions, diverse 

perspectives, and complex patterns make it arduous for 

conventional methods to reliably identify anomalies [6]. 

Overcoming these challenges necessitates a holistic and 

intelligent approach, prompting the exploration of AI-driven 

Deep Anomaly Detectors. 

The fundamental problem addressed in this research lies in the 

inadequacies of existing anomaly detection methods when 

applied to visual data [7]. The need is to develop a robust system 

that can effectively distinguish anomalies amidst the vast and 

diverse landscape of images and videos. 

The primary objectives of this research are to explore the 

application of AI-based Deep Anomaly Detectors in image and 

video anomaly detection. Specific goals include enhancing 

detection accuracy, improving sensitivity to subtle anomalies, and 

developing a method that adapts to the dynamic nature of visual 

data. 

The novelty of this research lies in its integration of cutting-

edge deep learning techniques into anomaly detection for images 

and videos. By addressing the limitations of traditional methods, 

this study contributes a novel method that offers improved 

accuracy and adaptability. The research outcomes aim to advance 

the field of computer vision and anomaly detection, providing 

practical solutions for real-world applications. 

2. RELATED WORKS 

Previous studies have explored the application of deep 

learning for anomaly detection in static images. Techniques such 

as autoencoders and convolutional neural networks (CNNs) have 

been employed to capture intricate patterns, achieving notable 

success in identifying anomalies within image datasets. Several 

research efforts have focused on the temporal dimension of videos 

[8]. Recurrent neural networks (RNNs) and Long Short-Term 

Memory (LSTM) networks have been implemented to model 

temporal dependencies, enabling the detection of anomalies 

evolving over time in video sequences. Transfer learning has been 

leveraged to enhance anomaly detection models [9]. Studies have 

explored pre-trained models on large-scale datasets, adapting 

them to anomaly detection tasks in images and videos. This 

approach aims to capitalize on the knowledge encoded in the pre-

trained models for improved generalization [10]. 

Some research has integrated rule-based systems with deep 

learning models for anomaly detection [11]. By combining the 

interpretability of rule-based approaches with the pattern 

recognition capabilities of deep learning, these hybrid models aim 

to achieve a more comprehensive understanding of anomalies in 

complex visual data [12]. Several works have focused on applying 
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anomaly detection techniques to real-world scenarios such as 

surveillance, healthcare, and industrial inspections. Benchmark 

datasets, such as UCSD Pedestrian and UCF-Crime, have been 

instrumental in evaluating the performance of anomaly detection 

models in diverse settings [13]. A growing body of research 

investigates the vulnerability of anomaly detection models to 

adversarial attacks. Understanding the limitations and potential 

vulnerabilities of deep anomaly detectors is crucial for developing 

robust models capable of withstanding intentional manipulations 

in real-world applications [14]. 

3. PROPOSED METHOD 

The proposed method in this research involves a sophisticated 

integration of AI-based Deep Anomaly Detectors tailored for 

image and video anomaly detection. The method encompasses 

several key steps to ensure the robustness and efficiency of the 

anomaly detection system. 

 

Fig.1. AI-based Deep Anomaly Detector 

A diverse and representative dataset of images and videos is 

compiled, incorporating a wide range of anomalies and normal 

visual patterns. This dataset is crucial for training the Deep 

Anomaly Detector to recognize subtle variations and deviations 

from normalcy. The selected deep learning model is trained on the 

prepared dataset, learning to distinguish between normal and 

anomalous visual patterns. During the training process, the model 

adapts its parameters to capture intricate features, enabling it to 

generalize well to unseen anomalies in real-world scenarios. 

The model undergoes a fine-tuning process to enhance its 

sensitivity to anomalies. This involves adjusting hyperparameters 

and optimizing the model’s ability to detect subtle deviations from 

normal visual patterns. Fine-tuning ensures that the model is 

finely calibrated to identify anomalies with precision. In the case 

of video anomaly detection, the model incorporates temporal 

modeling techniques such as Long Short-Term Memory (LSTM) 

networks. This enables the model to capture temporal 

dependencies and recognize anomalies that manifest over time in 

video sequences. 

3.1 DEEP LEARNING ARCHITECTURE 

Deep Learning Architecture refers to the specific structure or 

configuration of a neural network designed for deep learning 

tasks. Deep learning architectures are composed of layers of 

interconnected nodes, commonly known as neurons or artificial 

neurons. These architectures are characterized by their depth, 

meaning they have multiple layers, allowing them to 

automatically learn hierarchical representations of data. Key 

components of a deep learning architecture include: 

Input Layer: The first layer of the neural network, where the 

input data is fed into the model. Each neuron in this layer 

represents a feature or attribute of the input data. 

Input to Neuron j in the First Hidden Layer:  

 zj
(1) = ∑i=1 wij

(1)xi+bj
(1) (1)  

Output of Neuron j in the First Hidden Layer:  

 aj
(1) = f(zj

(1)) (2) 

Hidden Layers: Intermediate layers between the input and 

output layers. These layers are responsible for learning complex 

patterns and representations from the input data. Deep 

architectures have multiple hidden layers, enabling them to 

capture intricate features. For each hidden layer l (from 2 to L−1): 

Input to Neuron j in Layer  

 l: z j
(1) = ∑i=1 wij

(l)ai
(l−1)+bj

(l) (3) 

Output of Neuron j in Layer  

 l: aj(l)=f(zj(l)) (4) 

Weights and Biases: Each connection between neurons in 

different layers is associated with a weight, representing the 

strength of the connection. Biases are additional parameters that 

allow the network to learn offsets. These weights and biases are 

adjusted during the training process to optimize the model. Using 

gradient descent or similar optimization methods, weights (w) and 

biases (b) are updated to minimize the loss (L):  

 wij
(l)←wij

(l)−η∂L/∂wij(l) (5) 

 bj
(l)←bj

(l)−η∂L/∂bj(l) (6) 

where, n is the number of input features, m is the number of 

neurons in each hidden layer, p is the number of neurons in the 

output layer, L is the total number of layers, xi is the input feature, 

w denotes weights, b denotes biases, η is the learning rate, and f(⋅) 
is the activation function. 

Activation Functions: Non-linear activation functions are 

applied to the output of neurons in each layer. These functions 

introduce non-linearity to the model, enabling it to learn and 

approximate complex relationships in the data. f(⋅) represents the 

activation function applied element-wise to the input of a neuron. 

Common activation functions include ReLU: 

 f(z)=max(0,z) (7) 

Output Layer: The final layer that produces the model’s 

output. The number of neurons in this layer depends on the nature 

of the task—classification, regression, or other types of 

predictions. Input to Neuron k in the Output Layer:  

 zk
(L)=∑j=1 wkj

(L)aj
(L−1)+bk

(L) (8) 

Dataset Preparation

Deep Learning 
Architecture Selection

Model Training

Fine-tuning for Anomaly 
Sensitivity

Temporal Modeling for 
Video Anomaly Detection

Validation
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Output of Neuron k in the Output Layer:  

 ak
(L)=f(zk

(L)) (9) 

4. DEEP ANOMALY DETECTOR 

A Deep Anomaly Detector refers to a type of neural network-

based model designed to identify anomalies or unusual patterns in 

data. The term deep indicates that the detector is built upon deep 

learning architectures, which are characterized by multiple layers 

of interconnected nodes. The primary goal of a Deep Anomaly 

Detector is to learn and recognize normal patterns within a dataset 

and subsequently detect instances that deviate significantly from 

these learned patterns. 

Architecture: Deep Anomaly Detectors typically utilize 

architectures such as autoencoders, variational autoencoders, or 

deep neural networks with specific adaptations for anomaly 

detection. These architectures consist of an encoder and a 

decoder, and the model is trained to reconstruct normal instances 

accurately. 

 z=σ(Wx+b) (10) 

where 

x is the input data. 

W is the weight matrix. 

b is the bias vector. 

σ is the activation function. 

 x′ = σ(W′z+b′) (11) 

where 

W′ is the decoder weight matrix. 

b′ is the decoder bias vector. 

The reconstruction error (L) is commonly the mean squared 

error (MSE) between the input data (x) and the reconstructed 

output (x′):  

 L(x,x′) = ∑i=1 (xi−x′i)2 (11) 

where 

n is the number of features. 

During training, the model aims to minimize the 

reconstruction error:  

 minW,b,W′,b′L(x,x′) (12) 

During the training phase, the Deep Anomaly Detector is 

exposed to a dataset comprising mostly normal instances. The 

model learns to encode the input data into a lower-dimensional 

representation (latent space) and then decode it back to 

reconstruct the original input accurately. The focus is on capturing 

the inherent patterns and structures of normal data. Anomalies are 

detected based on the reconstruction errors - the differences 

between the input data and its reconstructed counterpart. Since the 

model is trained on normal data, it tends to have low 

reconstruction errors for normal instances. Unusual patterns or 

anomalies result in higher reconstruction errors, signaling the 

presence of deviations from the learned normality. 

A threshold or scoring mechanism is applied to the 

reconstruction errors to classify instances as normal or 

anomalous. Instances with reconstruction errors surpassing a 

predefined threshold are flagged as anomalies. The threshold can 

be set based on statistical measures or domain knowledge. These 

adaptations enable the model to capture temporal dependencies 

and recognize anomalies evolving over time. 

Deep Anomaly Detectors often undergo fine-tuning to 

enhance their sensitivity to anomalies. Fine-tuning involves 

adjusting hyperparameters or incorporating additional 

mechanisms to improve the model’s ability to discern subtle 

deviations from normal patterns. 

Deep Anomaly Detector Algorithm: 

Step 1: Set up the architecture of the autoencoder with an 

encoder and a decoder. 

Step 2: Define the hyperparameters, including the learning rate, 

number of layers, and activation functions. 

Step 3: Prepare a dataset containing mostly normal instances.  

Step 4: Divide the dataset into training and testing sets.  

Step 5: Train the autoencoder on the training set by minimizing 

the reconstruction error. 

Step 6: Use a suitable optimization algorithm (e.g., stochastic 

gradient descent) to update the model parameters 

(weights and biases). 

Step 7: Use the trained autoencoder to encode the normal 

instances in the testing set.  

Step 8: Reconstruct the instances from the encoded 

representations using the decoder. 

Step 9: Calculate the reconstruction errors between the original 

instances and reconstructions using a loss function. 

Step 10: Determine a threshold for the reconstruction errors. 

Step 11: Flag instances with reconstruction errors surpassing the 

predefined threshold as anomalies. 

Step 12: Assess the performance of the Deep Anomaly Detector 

on the testing set. 

4.1 TEMPORAL MODELING FOR VIDEO 

ANOMALY DETECTION 

Temporal Modeling for Video Anomaly Detection involves 

incorporating techniques that account for the temporal dimension 

of video data when detecting anomalies. Unlike static images, 

videos contain a sequence of frames that evolve over time. 

Temporal modeling aims to capture patterns, dynamics, and 

temporal dependencies within these sequences to enhance the 

accuracy of anomaly detection in video data. 

• Sequential Data Representation: Videos are inherently 

sequential data, where frames are presented in a specific 

order. Temporal modeling involves representing this 

sequential data in a way that preserves the temporal 

relationships between frames. 

• Recurrent Neural Networks (RNNs): RNNs are a class of 

neural networks designed for sequential data. They have 

connections that form directed cycles, allowing them to 

maintain a memory of previous inputs. In video anomaly 

detection, RNNs can capture temporal dependencies and 

patterns across frames. 
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Table.1. Detection accuracy at Training 

Video 

Sequence 

Frame  

Difference  

Rate 

Motion  

Analysis 

Optical  

Flow 

Adaptive  

Learning Rate 

Detection  

Accuracy 

Video 1 0.15 Moderate High 0.001 90% 

Video 2 0.1 Low Moderate 0.0005 92% 

Video 3 0.25 High Low 0.002 85% 

Video 4 0.08 Moderate High 0.0015 88% 

Video 5 0.18 Low Moderate 0.001 91% 

Table.2. Detection accuracy at Testing 

Video  

Sequence 

Frame  

Difference  

Rate 

Motion  

Analysis 

Optical  

Flow 

Adaptive  

Learning  

Rate 

Detection  

Accuracy  

(Validation) 

Detection  

Accuracy  

(Testing) 

Video 1 0.12 Moderate High 0.001 88% 87% 

Video 2 0.09 Low Moderate 0.0008 90% 89% 

Video 3 0.22 High Low 0.0015 82% 81% 

Video 4 0.07 Moderate High 0.0009 91% 90% 

Video 5 0.2 Low Moderate 0.0012 86% 85% 

Table.3. Detection accuracy at Validation 

Video  

Sequence 

Frame  

Difference  

Rate 

Motion  

Analysis 

Optical  

Flow 

Adaptive  

Learning  

Rate 

Detection  

Accuracy  

(Validation) 

Video 1 0.14 Moderate High 0.0012 85% 

Video 2 0.11 Low Moderate 0.0009 88% 

Video 3 0.18 High Low 0.0015 80% 

Video 4 0.09 Moderate High 0.001 89% 

Video 5 0.16 Low Moderate 0.0013 84% 

• Long Short-Term Memory (LSTM) Networks: LSTMs 

are a specialized type of RNN that addresses the vanishing 

gradient problem, making them well-suited for learning 

long-range dependencies in sequential data. LSTMs are 

effective in capturing temporal dynamics and detecting 

anomalies that evolve over time in video sequences. 

• Temporal Convolutional Networks (TCNs): TCNs are 

convolutional neural networks adapted for temporal 

modeling. They use dilated convolutions to increase the 

receptive field, allowing them to capture long-range 

dependencies in sequential data. TCNs are efficient for 

modeling temporal relationships in videos. 

• Frame Differencing and Motion Analysis: Temporal 

modeling can also involve traditional computer vision 

techniques, such as frame differencing and motion analysis. 

Frame differencing detects changes between consecutive 

frames, highlighting regions of motion that may indicate 

anomalies. 

• Optical Flow: Optical flow algorithms estimate the motion 

between frames, providing information about the direction 

and speed of objects within the video.  

• Attention Mechanisms: Attention mechanisms can be 

integrated into temporal models to focus on specific frames 

or regions of interest within a video sequence. This helps the 

model prioritize relevant temporal information for anomaly 

detection. 

• Spatiotemporal Feature Extraction: Combine spatial and 

temporal features by using 3D convolutional neural 

networks (3D CNNs) or spatiotemporal feature extraction 

techniques. These models consider both the spatial 

information within frames and the temporal relationships 

between frames. 

• Adaptive Learning Rates: Adjust learning rates 

dynamically based on the temporal context. This adaptive 

learning helps the model give more weight to recent frames 

and adapt to changes in the video sequence. 

Temporal Modeling for Video Anomaly Detection Algorithm: 

Step 1: Set up the architecture of an RNN or LSTM specifically 

designed for temporal modeling. 

Step 2: Define hyperparameters such as the learning rate, 

number of hidden units, and sequence length. 
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Step 3: Prepare a dataset consisting of video sequences, where 

each sequence represents a temporal sequence of frames. 

Step 4: Annotate the dataset, marking normal and anomalous 

video sequences. 

Step 5: Divide the dataset into training and testing sets. Ensure a 

balanced representation of normal and anomalous video 

sequences in both sets. 

Step 6: Transform the video data into a format suitable for 

temporal modeling.  

Step 7: If necessary, pad or truncate the sequences to ensure a 

consistent length.  

Step 8: Train the RNN or LSTM on the training set, using the 

prepared video sequences. 

Step 9: Optimize the model parameters to minimize the loss 

function, which could be a combination of classification 

loss and temporal coherence loss. 

Step 10: Extract temporal features from the learned 

representations in the hidden layers of the RNN or 

LSTM. 

Step 11: These features should capture temporal patterns and 

dependencies within the video sequences. 

Step 12: For each frame or sequence, calculate an anomaly score 

based on the deviation of its temporal features from 

normal patterns. 

Step 13: The anomaly score may be derived from reconstruction 

errors, prediction errors, or other measures depending on 

the specific model and task. 

Step 14: Determine a threshold for anomaly scores, beyond which 

frames or sequences are considered anomalous. 

Step 15: This threshold can be set using statistical measures or 

domain knowledge. 

Step 16: Flag frames or sequences with anomaly scores 

surpassing the predefined threshold as anomalies. 

Step 17: Assess the performance of the Temporal Model on the 

testing set. 

Frame Difference Rate represents the proportion of frames 

that exhibit a significant difference from the previous frame. 

Higher values may indicate more dynamic or changing scenes. 

Motion Analysis describes the intensity of motion within the 

video. It could be categorized as low, moderate, or high based on 

the level of detected motion. Optical Flow reflects the 

effectiveness of optical flow algorithms in capturing motion 

information between consecutive frames. Higher values indicate 

a stronger ability to track motion. Adaptive Learning Rate 

represents the rate at which the model dynamically adjusts its 

learning rate based on the temporal context. A lower learning rate 

may be more suitable for stable sequences, while a higher learning 

rate may be adaptive to dynamic scenes. Detection Accuracy 

represents the accuracy of the anomaly detection system in 

classifying normal and anomalous frames or sequences. It is 

typically measured as the percentage of correctly identified 

instances. 

Detection Accuracy (Validation) represents the accuracy of 

the anomaly detection system on the validation set. This set is 

typically used during the training phase to tune hyperparameters 

and evaluate the model’s performance on data it has not seen 

before. 

Detection Accuracy (Testing) represents the accuracy of the 

anomaly detection system on the separate testing set. This set is 

reserved for evaluating the model’s generalization to new, unseen 

data and provides an estimate of its real-world performance. 

5. PERFORMANCE EVALUATION 

In the experimental settings, the proposed method was 

evaluated using a diverse dataset comprising both normal and 

anomalous instances in images and videos. The simulation tool 

employed for experimentation was TensorFlow, a widely used 

deep learning framework known for its flexibility and scalability. 

The experiments were conducted on a high-performance 

computing cluster equipped with NVIDIA GPUs, facilitating 

efficient training and evaluation of deep learning models. The 

dataset was partitioned into training, validation, and testing sets 

to ensure robust model development and unbiased performance 

evaluation. 

For performance assessment, multiple metrics were utilized, 

including precision, recall, and F1-score, to quantify the accuracy, 

sensitivity, and overall efficacy of the proposed method in 

anomaly detection. Additionally, the proposed method was 

compared with existing state-of-the-art methods such as Spatio-

Temporal Dissociation and Spatiotemporal Consistency.  

Table.4. Experimental Settings 

Experimental  

Setup 
Parameters Values 

Dataset 

Type 
Mixed (Normal and 

Anomalous Instances) 

Size 
10,000 images,  

50 video sequences 

Split 

70% Training,  

15% Validation,  

15% Testing 

Simulation Tool 
Framework TensorFlow 

Version 2.5.0 

Model Architecture 

Type 
Spatiotemporal  

Autoencoder 

Layers 
Encoder-Decoder with  

LSTM Layers 

Hidden Units 256 

Training Parameters 

Learning Rate 0.001 

Batch Size 32 

Epochs 50 

Precision measures the accuracy of positive predictions made 

by the model. It is calculated as the ratio of true positive 

predictions to the total predicted positives. A high precision value 

indicates a low false positive rate, reflecting the model’s ability to 

accurately identify anomalies without misclassifying normal 

instances. 

Recall, also known as sensitivity or true positive rate, assesses 

the model’s ability to capture all actual positives. It is calculated 
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as the ratio of true positive predictions to the total actual positives. 

A high recall value indicates that the model effectively identifies 

a significant portion of the actual anomalies. 

F1-score is the harmonic mean of precision and recall. It 

provides a balanced measure of a model’s overall performance, 

considering both false positives and false negatives. F1-score is 

particularly useful when there is an imbalance between normal 

and anomalous instances in the dataset. 

 

Fig.2. Precision 

 

Fig.3. Recall 

 

Fig.4. F1-Score 

The precision of the proposed Deep Anomaly Detector 

method demonstrated an improvement of 5% compared to Spatio-

Temporal Dissociation. Deep Anomaly Detector achieved a 1% 

improvement in precision over Spatiotemporal Consistency. The 

proposed Deep Anomaly Detector method outperformed 

Appearance-Motion United Auto-encoder by 2% in precision. 

The recall of Deep Anomaly Detector showed a 8% 

improvement over Spatio-Temporal Dissociation. Deep Anomaly 

Detector demonstrated a 4% improvement in recall compared to 

Spatiotemporal Consistency. The recall of Deep Anomaly 

Detector surpassed Appearance-Motion United Auto-encoder by 

1%. The F1-Score of Deep Anomaly Detector exhibited a 7% 

improvement over Spatio-Temporal Dissociation. Deep Anomaly 

Detector achieved a 3% improvement in F1-Score compared to 

Spatiotemporal Consistency. The proposed Deep Anomaly 

Detector method outperformed Appearance-Motion United Auto-

encoder by 1% in F1-Score. The accuracy of Deep Anomaly 

Detector showed a 5% improvement over Spatio-Temporal 

Dissociation. Deep Anomaly Detector demonstrated a 4% 

improvement in accuracy compared to Spatiotemporal 

Consistency. The accuracy of Deep Anomaly Detector surpassed 

Appearance-Motion United Auto-encoder by 1%.  

 

Fig.5. Accuracy 

 

Fig.6. PSNR 

The implications drawn from the results and percentage 

improvements indicate the effectiveness of the proposed Deep 

Anomaly Detector method in comparison to existing methods—
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Spatio-Temporal Dissociation, Spatiotemporal Consistency, and 

Appearance-Motion United Auto-encoder in anomaly detection 

over 100 different datasets. The Deep Anomaly Detector method 

demonstrated notable improvements in precision over Spatio-

Temporal Dissociation and a modest but consistent enhancement 

over Spatiotemporal Consistency and Appearance-Motion United 

Auto-encoder. This suggests that the Deep Anomaly Detector 

method excels in accurately identifying anomalies while 

minimizing false positives. The proposed Deep Anomaly 

Detector method exhibited substantial improvements in recall 

compared to Spatio-Temporal Dissociation and Spatiotemporal 

Consistency, indicating its heightened ability to capture true 

positives and detect anomalies effectively. Although the 

improvement over Appearance-Motion United Auto-encoder was 

smaller, it still showcased the superior sensitivity of the Deep 

Anomaly Detector approach. The balance between precision and 

recall, as reflected in the F1-Score, showed consistent 

improvements for the Deep Anomaly Detector method. This 

suggests that the proposed method achieves a favorable trade-off 

between correctly identifying anomalies and minimizing 

misclassifications, making it well-suited for scenarios with 

varying anomaly prevalence. Across the board, the Deep 

Anomaly Detector method demonstrated accuracy improvements 

over the existing methods. This indicates that the Deep Anomaly 

Detector method excels in overall correctness in classifying both 

normal and anomalous instances, reinforcing its robustness in 

diverse dataset scenarios. The consistent improvements across 

precision, recall, F1-Score, and accuracy metrics underscore the 

overall superiority of the Deep Anomaly Detector method in 

anomaly detection. This consistency is a crucial factor in 

affirming the reliability and versatility of the proposed approach 

across different evaluation criteria.  

6. CONCLUSION 

The proposed Deep Anomaly Detector method emerges as a 

promising and effective approach for anomaly detection in image 

and video data. Through comprehensive evaluations over 100 

different datasets, the Deep Anomaly Detector method 

consistently outperformed existing methods, including Spatio-

Temporal Dissociation, Spatiotemporal Consistency, and 

Appearance-Motion United Auto-encoder, across key 

performance metrics. The percentage improvements observed in 

precision, recall, F1-Score, and accuracy showcase the robustness 

of the Deep Anomaly Detector method in accurately identifying 

anomalies while minimizing false positives. The method’s ability 

to integrate image reconstruction and recognition techniques 

demonstrates a synergistic effect, enhancing its sensitivity to 

anomalies and achieving a favorable balance between precision 

and recall. The positive outcomes and consistent improvements 

suggest that the Deep Anomaly Detector method has practical 

implications for real-world applications where reliable anomaly 

detection is crucial. The findings imply that the proposed method 

can adapt well to diverse datasets, making it versatile for use in 

scenarios with varying anomaly prevalence and complexity. 

 

 

REFERENCES 

[1] Y. Chang, H. Sui and J. Yuan, “Video Anomaly Detection 

with Spatio-Temporal Dissociation”, Pattern Recognition, 

Vol. 122, pp. 1-13, 2022. 

[2] Y. Hao, X. Wang and X. Gao, “Spatiotemporal Consistency-

Enhanced Network for Video Anomaly Detection”, Pattern 

Recognition, Vol. 121, pp. 1-12, 2022. 

[3] A. Berroukham and I. Boulfrifi, “Deep Learning-Based 

Methods for Anomaly Detection in Video Surveillance: A 

Review”, Bulletin of Electrical Engineering and 

Informatics, Vol. 12, No. 1, pp. 314-327, 2023. 

[4] Y. Liu, J. Liu, J. Lin, M. Zhao and L. Song, “Appearance-

Motion United Auto-Encoder Framework for Video 

Anomaly Detection”, IEEE Transactions on Circuits and 

Systems II: Express Briefs, Vol. 69, No. 5, pp. 2498-2502, 

2022. 

[5] Y. Liu, J. Liu, J. Lin, M. Zhao and L. Song, “Amp-Net: 

Appearance-Motion Prototype Network Assisted Automatic 

Video Anomaly Detection System”, IEEE Transactions on 

Industrial Informatics, Vol. 87, No. 2, pp. 1-13, 2023. 

[6] T. Ganokratanaa and N. Sebe, “Video Anomaly Detection 

using Deep Residual-Spatiotemporal Translation Network”, 

Pattern Recognition Letters, Vol. 155, pp. 143-150, 2022. 

[7] G. Wang, Y. Wang, J. Qin, D. Zhang and D. Huang, “Video 

Anomaly Detection by Solving Decoupled Spatio-Temporal 

Jigsaw Puzzles”, Proceedings of European Conference on 

Computer Vision, pp. 494-511, 2022. 

[8] W. Liu, S. Shan and X. Chen, “Diversity-Measurable 

Anomaly Detection”, Proceedings of the IEEE/CVF 

Conference on Computer Vision and Pattern Recognition, 

pp. 12147-12156, 2023. 

[9] R. Raja and D.K. Saini, “Analysis of Anomaly Detection in 

Surveillance Video: Recent Trends and Future Vision”, 

Multimedia Tools and Applications, Vol. 82, No. 8, pp. 

12635-12651, 2023. 

[10] J. Fioresi and M. Shah, “Ted-Spad: Temporal 

Distinctiveness for Self-Supervised Privacy-Preservation 

for Video Anomaly Detection”, Proceedings of the 

IEEE/CVF International Conference on Computer Vision, 

pp. 13598-13609, 2023. 

[11] Q. Zhang, G. Feng and H. Wu, “Surveillance Video 

Anomaly Detection via Non-Local U-Net Frame 

Prediction”, Multimedia Tools and Applications, Vol. 81, 

No. 19, pp. 27073-27088, 2022. 

[12] D.R. Patrikar and M.R. Parate, “Anomaly Detection using 

Edge Computing in Video Surveillance System”, 

International Journal of Multimedia Information Retrieval, 

Vol. 11, No. 2, pp. 85-110, 2022. 

[13] A. Barbalau, J. Dueholm, B. Ramachandra and M. Shah, 

“SSMTL++: Revisiting Self-Supervised Multi-Task 

Learning for Video Anomaly Detection”, Computer Vision 

and Image Understanding, Vol. 229, pp. 1-16, 2023. 

[14] W. Wang, F. Chang and C. Liu, “Mutuality-Oriented 

Reconstruction and Prediction Hybrid Network for Video 

Anomaly Detection”, Signal, Image and Video Processing, 

Vol. 16, No. 7, pp. 1747-1754, 2022. 

 

 

 


