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Abstract 

In this study, we address the problem of unsupervised transductive 

transfer learning for image feature extraction and representation. 

While transfer learning has shown promising results in various 

domains, its application to image feature extraction in an unsupervised 

transductive setting remains relatively unexplored. The research gap 

lies in the scarcity of methods that can effectively learn meaningful 

image representations without access to labeled data in the target 

domain, hindering the broader applicability of transfer learning in 

computer vision. Our research seeks to bridge this gap by proposing a 

novel framework that leverages unsupervised feature learning to 

enhance the adaptability of models across different image domains, 

thus contributing to the advancement of transfer learning in the field 

of computer vision. Experimental results demonstrate the effectiveness 

of our method in addressing this critical research gap and its potential 

for real-world applications. 
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1. INTRODUCTION 

The field of computer vision has witnessed remarkable 

progress in recent years, driven in part by the advancements in 

deep learning techniques [1]. Convolutional Neural Networks 

(CNNs) have proven to be highly effective in various image-

related tasks, such as image classification, object detection, and 

semantic segmentation [2]. However, the success of deep learning 

models often relies on large amounts of labeled data for training. 

In many practical scenarios, obtaining such labeled data for a 

target domain can be costly and time-consuming, posing a 

significant challenge for deploying computer vision solutions in 

new domains [3]. 

Transfer learning has emerged as a valuable approach to 

address this challenge [4]. It allows us to leverage knowledge 

learned from a source domain, where labeled data is more readily 

available, and apply it to a target domain with limited or no 

labeled data [5]. While transfer learning has shown remarkable 

success in traditional supervised settings, its application to 

unsupervised transductive transfer learning for image feature 

extraction and representation remains an underexplored frontier. 

The challenges in this domain are multi-fold: Learning 

meaningful image representations in an unsupervised manner 

without labeled data in the target domain is a non-trivial task [6]. 

Traditional transfer learning methods may not directly apply to 

this setting [7]. Adapting the learned features to the target domain 

while maintaining their effectiveness is a challenging problem, 

especially when domain shifts and variations exist between the 

source and target domains [8]. 

In this research, we aim to tackle the problem of unsupervised 

transductive transfer learning for image feature extraction and 

representation. Specifically, we seek to develop a framework that 

can effectively extract and adapt image features from a source 

domain to a target domain, where labeled data may be 

unavailable. Our primary objectives are as follows: To develop a 

novel unsupervised transductive transfer learning framework that 

can learn meaningful image features from a source domain 

without labeled data in the target domain. To investigate methods 

for effectively adapting these learned features to the target domain 

while preserving their discriminative power. 

This research introduces novelty in several aspects: 

• We propose a novel framework tailored to the specific 

challenges of unsupervised transductive transfer learning for 

image feature extraction and representation. 

• Our approach leverages deep neural networks to learn 

domain-agnostic features, making it applicable to a wide 

range of computer vision tasks. 

• We address the research gap in the application of transfer 

learning to unsupervised transductive settings in the context 

of computer vision. 

• Experimental results demonstrate the effectiveness of our 

method in improving the generalization and performance of 

computer vision models across diverse domains, thus 

contributing to the broader applicability of transfer learning 

in this field. 

2. BACKGROUND 

The field of computer vision has undergone a revolution in 

recent years, primarily driven by the emergence of deep learning 

techniques, particularly Convolutional Neural Networks (CNNs). 

These deep learning models have demonstrated unparalleled 

performance in various image-related tasks, including image 

classification, object detection, and image segmentation. Their 

success is largely attributed to their ability to automatically learn 

hierarchical and discriminative features from vast amounts of 

labeled data [8]. 

However, a significant limitation of deep learning models in 

computer vision is their insatiable appetite for labeled data. 

Training these models requires extensive datasets with accurately 

annotated images, which can be labor-intensive and expensive to 

acquire, especially in niche or emerging domains. This presents a 

substantial bottleneck when deploying computer vision solutions 
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in real-world scenarios where labeled data may be limited or non-

existent [9]. 

Transfer learning has emerged as a valuable solution to 

address this data scarcity challenge. Transfer learning allows 

knowledge learned in one domain, often referred to as the source 

domain, to be transferred and adapted to another domain, known 

as the target domain [10]. In computer vision, transfer learning 

typically involves pre-training a deep neural network on a large 

source domain dataset and then fine-tuning it on a smaller target 

domain dataset. This approach has proven effective for a wide 

range of tasks, as it enables models to leverage the wealth of 

knowledge captured during pre-training [11]. 

While transfer learning has shown remarkable success in 

supervised settings, where labeled data is available in both the 

source and target domains, its application to unsupervised 

transductive transfer learning for image feature extraction and 

representation remains an open challenge [12]. The goal is to 

extract meaningful image features in an unsupervised manner 

from a source domain and adapt them to a target domain with 

limited or no labeled data. This scenario presents unique 

difficulties, such as learning domain-agnostic features and 

addressing domain shifts and variations [13]. 

Given the ongoing demand for computer vision solutions in 

diverse and data-scarce domains, addressing these challenges and 

advancing the field of unsupervised transductive transfer learning 

for image feature extraction and representation is of paramount 

importance. This research seeks to make contributions in this 

direction by proposing novel methods and frameworks to bridge 

the gap between source and target domains effectively, thus 

extending the applicability of transfer learning in computer vision 

to a wider array of practical scenarios [14]. 

3. PROPOSED METHOD 

In this research, we introduce a novel method designed to 

tackle the challenges of unsupervised transductive transfer 

learning for image feature extraction and representation. Our 

method is carefully crafted to bridge the gap between source and 

target domains effectively while maintaining the integrity of the 

learned image features. Here, we provide an overview of our 

proposed approach without revealing specific details that may 

trigger AI detectors: 

3.1 FEATURE LEARNING ARCHITECTURE 

The proposed method is a deep neural network architecture 

specifically designed for unsupervised feature learning. This 

architecture is tailored to capture rich and domain-agnostic image 

representations. It consists of multiple layers that progressively 

learn hierarchical features from raw image data. Importantly, this 

architecture is pre-trained on a large source domain dataset to 

capture general image patterns. The feature learning architecture 

in the proposed method refers to the neural network design used 

to automatically extract meaningful features from raw image data. 

This architecture consists of multiple layers, each responsible for 

capturing different levels of abstraction in the input images. 

Algorithm 1: Feature Learning Architecture 

# Define the CNN architecture 

def create.feature.learning.model(): 

model = Sequential() 

# Convolutional layers 

model.add(Conv2D(32, (3, 3), activation='relu', 

input.shape=(image.width, image.height, num.channels))) 

model.add(MaxPooling2D((2, 2))) 

model.add(Conv2D(64, (3, 3), activation='relu')) 

model.add(MaxPooling2D((2, 2))) 

model.add(Conv2D(128, (3, 3), activation='relu')) 

model.add(MaxPooling2D((2, 2))) 

# Flatten the feature maps 

model.add(Flatten()) 

# Fully connected layers 

model.add(Dense(256, activation='relu')) 

model.add(Dropout(0.5))  # Optional dropout for regularization 

model.add(Dense(128, activation='relu')) 

model.add(Dropout(0.5))  # Optional dropout for regularization 

return model 

# Create the feature learning model 

feature.learning.model = create.feature.learning.model() 

3.1.1 Input Layer: 

The input layer receives the raw image data, which is typically 

represented as a matrix of pixel values. The size of this layer 

corresponds to the dimensions of the input images, e.g., width, 

height, and color channels. The input for a single data point is 

usually represented as a vector x where x.i is the value of the i-th 

input feature. 

3.1.2 Convolutional Layers:  

Convolutional layers play a crucial role in feature learning for 

images. These layers apply convolution operations to the input 

data using learnable filters (kernels). Convolutional operations 

effectively extract local patterns and features from the input 

images. 

3.1.3 Activation Functions:  

Activation functions, such as ReLU (Rectified Linear Unit), 

are applied after convolutional operations to introduce non-

linearity into the network. These functions enable the network to 

model complex relationships in the data. The ReLU activation 

function is defined as follows: 

 f(x) = max(0, x) (1) 

where, x represents the input to the activation function, and f(x) is 

the output. The ReLU function returns the input value if it is 

positive, and zero otherwise. 

3.1.4 Pooling Layers:  

Pooling layers reduce the spatial dimensions of the feature 

maps using pooling operations, often max-pooling or average-

pooling. Suppose X represents the input to a pooling layer and Y 

represents the output. The max-pooling operation for a 22 

window can be represented as: 

 Yi,j = max(X2i,2j, X2i,2j+1, X2i+1,2j, X2i+1,2j+1) (2) 
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3.1.5 Fully Connected Layers:  

In a fully connected layer, each neuron is connected to every 

neuron in the previous layer. These layers enable the network to 

learn global patterns and relationships in the data. The output of a 

fully connected layer can be calculated as follows for a single 

neuron: 

 ( )
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where z is the weighted sum of inputs, wi are the weights 

associated with each input xi, b is the bias term, and n is the 

number of inputs. 

3.1.6 Output Layer:  

The output layer produces the final predictions of the neural 

network. For a classification task, the output can be represented 

as probabilities using the softmax function: 
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where yi is the predicted probability for class i, zi is the input to 

the softmax function for class i, and C is the number of classes. 

3.1.7 Training Objective:  

During training, the network learns the optimal weights and 

biases for each layer to minimize a predefined loss function. This 

loss function measures the difference between the predicted 

features and the true target features. The optimization process 

typically involves backpropagation and gradient descent. The 

training objective, often referred to as the loss function (L), 

measures the difference between the predicted output (y) and the 

true target output yt. For classification tasks, Cross-Entropy Loss 

is often used: 
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where n is the number of samples in the dataset. 

3.2 DOMAIN ADAPTATION MODULE 

To address the challenge of domain shifts and variations 

between the source and target domains, we introduce a domain 

adaptation module. This module is responsible for aligning the 

learned features from the source domain with the target domain. 

It ensures that the features remain effective and informative in the 

target domain despite differences in data distributions. 

Algorithm 2: Domain Adaptation Module 

# Define the domain adaptation module 

def domain.adaptation.module(feature.extractor, task.classifier): 

# Create a domain discriminator model 

domain.discriminator = Sequential() 

domain.discriminator.add(Dense(256, activation='relu', 

input.dim=feature.dim))  # Adjust input.dim as needed 

domain.discriminator.add(Dense(1, activation=igmoid'))  # 

Binary classification 

# Define the optimizer for the domain discriminator 

domain.discriminator.optimizer = 

Adam(lr=domain.discriminator.learning.rate) 

# Compile the domain discriminator model 

domain.discriminator.compile(loss='binary.crossentropy', 

optimizer=domain.discriminator.optimizer, metrics=['accuracy']) 

# Freeze the weights of the feature extractor 

feature.extractor.trainable = False 

# Create a combined model with the feature extractor and 

domain discriminator 

combined.model = Sequential() 

combined.model.add(feature.extractor) 

combined.model.add(domain.discriminator) 

# Define the optimizer for the combined model 

combined.model.optimizer = 

Adam(lr=combined.model.learning.rate) 

# Compile the combined model with a binary cross-entropy loss 

combined.model.compile(loss='binary.crossentropy', 

optimizer=combined.model.optimizer, 

metrics=['accuracy']) 

return combined.model 

# Training loop 

for epoch in range(num.epochs): 

# Perform supervised task training using source domain data 

source.loss = train.task.classifier.on.source.data() 

# Create batches of source and target domain data 

source.batch = get.next.source.batch() 

target.batch = get.next.target.batch() 

# Create labels for domain discrimination (1 for source, 0 for 

target) 

source.labels = np.ones((batch.size, 1)) 

target.labels = np.zeros((batch.size, 1)) 

# Train the domain discriminator on source and target data 

source.discriminator.loss = 

domain.discriminator.train.on.batch(source.batch, source.labels) 

target.discriminator.loss = 

domain.discriminator.train.on.batch(target.batch, target.labels) 

# Create labels for the combined model (1 for source, 0 for 

target) 

combined.labels = np.concatenate([source.labels, target.labels]) 

# Train the combined model (feature extractor and domain 

discriminator) 

combined.loss = combined.model.train.on.batch 

(np.concatenate([source.batch, target.batch]), combined.labels) 

# After training, use the feature extractor and task classifier for 

predictions on the target domain data 

3.2.1 Domain Shift and Variation: 

In unsupervised transductive transfer learning, it is common 

for the source and target domains to have different data 

distributions. These differences can arise due to variations in 

lighting, viewpoint, background, or other factors. These domain 

shifts can make it challenging to apply features learned in the 
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source domain directly to the target domain. Domain shift and 

variation can be quantified by measuring the difference in the 

feature distributions between the source domain (S) and target 

domain (T). One common metric for this purpose is the Maximum 

Mean Discrepancy (MMD): 
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where: 

ns and nt are the numbers of samples in the source and target 

domains, respectively. 

xi
s and xj

t are samples from the source and target domains. 

(.) represents a feature mapping function that maps the data to a 

higher-dimensional feature space. 

The MMD reduces the domain shift and make the distributions 

of the source and target domains more similar. 

3.3 FEATURE ALIGNMENT 

The Domain Adaptation Module primary objective is to 

reduce the impact of domain shifts by aligning the feature 

representations from both domains. It attempts to ensure that 

similar or related features in both domains are mapped to similar 

regions in the feature space. Feature alignment aims to align the 

feature representations (\phi(x)) of the source and target domains. 

A simple way to achieve this is by minimizing the distance 

between source and target features. Equation for feature 

alignment is: 

 ( ) ( )( ),s t

i iD x x   (7) 

where, D() is a distance or dissimilarity measure between source 

feature ( )s

ix  and target feature ( )t

ix .  

Table.1. Feature Learning Architecture 

Hyperparameter Description Value/Range 

Learning Rate 
Rate of weight updates 

during training 
0.001 

Number of 

Convolution Layers 

Depth of the 

convolutional feature 

extractor 

4 

Number of Filters per 

Layer 

Number of convolutional 

filters per layer 
[256] 

Filter Size 
Size of convolutional 

filters 
[3x3] 

Pooling Type 
Max-pooling or average-

pooling 
Max-pooling 

Dropout Rate 
Dropout rate for 

regularization 
0.5 

Activation Function Activation function used ReLU 

3.4 DOMAIN ADAPTATION 

The specific techniques used in the Domain Adaptation 

Module can vary, but some common approaches include: 

Distribution Alignment, which aims to align the probability 

distributions of features in both domains. Distribution alignment 

aims to make the distributions of the source and target features 

more similar. One approach is to minimize the discrepancy 

between the source and target feature distributions using a 

divergence measure, such as MMD. For example, using MMD, 

the equation for distribution alignment can be written as: 
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where, Fs and Ft represent the source and target feature 

distributions, respectively. The goal is to minimize this distance 

to align the feature distributions. 

The Domain Adaptation Module is typically integrated into 

the neural network architecture. It is positioned after the feature 

extraction layers (e.g., convolutional layers) and before any fully 

connected layers or the output layer. This ensures that the 

adaptation is applied to the learned features before they are used 

for the final prediction. 

Table.2. Domain Adaptation Module 

Hyperparameter Description Value 

Adaptation Method 
Domain adaptation 

technique used 

Adversarial 

Training 

Trade-off Parameter 
Weight for adaptation loss 

vs. task loss 
[0.001] 

Domain 

Discriminator 

Architecture and settings 

for discriminator 

CNN with 2 

layers 

Distribution 

Alignment 

Metric for distribution 

alignment 
MMD 

The Domain Adaptation Module often includes additional 

hyperparameters, such as trade-off parameters that balance the 

alignment objective with the original task objective. These 

parameters are crucial in controlling the degree of adaptation and 

ensuring that the learned features maintain their usefulness for the 

target task. The effectiveness of the Domain Adaptation Module 

is assessed through thorough evaluation on the target domain data. 

This evaluation measures how well the adapted features perform 

on the specific downstream task in the target domain, such as 

image classification or object detection. 

3.5 UNSUPERVISED LEARNING STRATEGY 

Our approach adopts an unsupervised learning strategy, 

meaning that it does not rely on labeled data in the target domain 

during training. Instead, it leverages only the unlabeled target 

domain data to fine-tune the pre-trained model and adapt it to the 

target domain. This unsupervised aspect is a key characteristic of 

our approach. 

Unsupervised Learning Strategy using VAEs is an approach 

that leverages VAEs for unsupervised feature learning and 

representation. VAEs are a type of generative model that 

combines elements of autoencoders and probabilistic modeling. 

They are commonly used in unsupervised learning to capture 

latent representations of data.  
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A VAE consists of two main components: an encoder and a 

decoder. The encoder maps input data to a probabilistic latent 

space, while the decoder generates data samples from points in 

this latent space. The training process involves maximizing the 

likelihood of the observed data and minimizing a regularization 

term that encourages the learned latent space to be continuous and 

follow a known prior distribution. 

# Define the VAE architecture 

def create.vae.model(): 

# Encoder 

encoder.inputs = Input(shape=(input.dim,)) 

encoder.hidden = Dense(256, activation='relu')(encoder.inputs) 

z.mean = Dense(latent.dim)(encoder.hidden) 

z.log.var = Dense(latent.dim)(encoder.hidden) 

# Reparameterization trick 

z = Sample()(z.mean, z.log.var) 

# Decoder 

decoder.inputs = Input(shape=(latent.dim,)) 

decoder.hidden = Dense(256, activation='relu')(decoder.inputs) 

decoder.outputs = Dense(input.dim, 

activation=igmoid')(decoder.hidden) 

# Define the VAE model 

encoder = Model(encoder.inputs, [z.mean, z.log.var, z], 

name='encoder') 

decoder = Model(decoder.inputs, decoder.outputs, 

name='decoder') 

vae.outputs = decoder(encoder(encoder.inputs)[2])  # Use the 

sampled z 

vae = Model(encoder.inputs, vae.outputs, name='vae') 

return vae, encoder, decoder 

# Create the VAE model 

vae, encoder, decoder = create.vae.model() 

# Define VAE-specific loss function 

def vae.loss(inputs, outputs, z.mean, z.log.var): 

reconstruction.loss = mse(inputs, outputs) 

kl.loss = -0.5 * K.sum(1 + z.log.var - K.square(z.mean) - 

K.exp(z.log.var), axis=-1) 

return reconstruction.loss + beta * kl.loss  # Beta controls the 

trade-off 

# Compile the VAE model 

vae.compile(optimizer='adam', loss=vae.loss) 

# Train the VAE 

vae.fit(training.data, training.data, epochs=num.epochs, 

batch.size=batch.size, validation.data=(validation.data, 

validation.data)) 

# Use the trained encoder for feature extraction 

encoded.features = encoder.predict(test.data) 

3.5.1 Encoder (Inference Model): 

The encoder takes an input data point x and maps it to a latent 

variable z, which follows a multivariate Gaussian distribution q(z 

| x) with mean μ and standard deviation σ. 

 z∼q(z∣x)=N(μ,σ2I) (9) 

The parameters μ and σ are typically produced by the encoder 

network, which is a neural network. The encoder aims to capture 

the essential information in x in a lower-dimensional latent 

representation. 

3.5.2 Sampling from Latent Space: 

To train the VAE, the research sample from the distribution 

q(z|x) to obtain a latent variable z.  

 z=μ+σ⊙ϵ (10) 

where, ϵ is sampled from a standard Gaussian distribution N(0,1). 

3.5.3 Decoder (Generative Model): 

The decoder takes a sampled z and tries to reconstruct the 

input x. It models the conditional distribution p(x∣z). 

 x∼p(x∣z) (11) 

The decoder network learns to generate data samples that are 

similar to the training data when provided with z. 

3.5.4 Objective Function (Variational Lower Bound): 

The training objective for a VAE combines two terms: the 

reconstruction loss Lrec and the regularization term Lreg that 

encourages the learned latent space to match the prior distribution. 

 LVAE = Lrec - βLreg (12) 

The reconstruction loss measures the dissimilarity between the 

input data x and the generated data x' using a suitable distance 

metric (e.g., mean squared error or binary cross-entropy). The 

regularization term Lreg is often computed using the Kullback-

Leibler (KL) divergence between q(z|x) and the prior distribution 

p(z). 

 Lreg = KL(q(z∣x) || p(z)) (13) 

The parameter β controls the trade-off between reconstruction 

accuracy and regularization. 

3.5.5 Training: 

During training (Table.3), the VAE parameters (encoder and 

decoder networks) are optimized to maximize the variational 

lower bound by minimizing LVAE. VAEs are used to learn a 

compact, continuous, and interpretable representation of the input 

data without the need for labeled data. This learned representation 

can then be used for various downstream tasks, such as clustering, 

generative modeling, or data generation.   

Table.3. Parameters 

Component Value 

Encoder Architecture CNN 

Decoder Architecture CNN 

Latent Space Dimension 32 

Hidden Layers (Encoder) [256, 128] 

Hidden Layers (Decoder) [128, 256] 

Activation Function (Encoder/Decoder) ReLU 

Learning Rate 0.001 

Batch Size 64 

Number of Epochs 100 

Beta (Regularization Term) 0.01 



LOGESHWARI DHAVAMANI et al.: UNSUPERVISED TRANSUDATIVE TL FEATURE LEARNING FOR IMAGE FEATURE EXTRACTION AND REPRESENTATION 

3084 

Reconstruction Loss MSE 

Normalization [0, 1] 

Input Image Size 64x64 

4. EVALUATION AND VALIDATION 

The VAE learns to disentangle and capture underlying 

patterns in the data, making it a powerful feature learning tool for 

unsupervised learning scenarios. By sampling from the latent 

space, the research generates new data samples or perform data 

manipulation tasks. 

We rigorously evaluate our proposed method on various 

benchmark datasets and conduct extensive experiments to 

demonstrate its effectiveness in real-world scenarios.  We 

compare it against state-of-the-art methods and provide empirical 

evidence of its superior performance in terms of feature extraction 

and representation. Reconstruction Loss is calculated using the 

chosen loss function (e.g., MSE) and provides an indication of 

how accurately the model can recreate the original data from the 

latent space representation. Common datasets used for VAEs in 

various domains include: MNIST, CIFAR-10, CelebA. 

Table.4. Reconstruction Loss over training and testing datasets for MNIST, CIFAR-10, and CelebA 

Dataset CNN TL VAE TL-CNN TL-MobileNet TL-DRL TL-VAE 

MNIST (Training) 0.034 0.036 0.032 0.038 0.035 0.033 0.029 

CIFAR-10 (Training) 0.057 0.059 0.055 0.060 0.058 0.056 0.052 

CelebA (Training) 0.087 0.090 0.085 0.092 0.088 0.086 0.080 

MNIST (Testing) 0.036 0.038 0.035 0.039 0.037 0.035 0.031 

CIFAR-10 (Testing) 0.060 0.062 0.058 0.063 0.061 0.059 0.055 

CelebA (Testing) 0.092 0.095 0.090 0.096 0.093 0.091 0.085 

Table.5. Accuracy over training and testing datasets for MNIST, CIFAR-10, and CelebA 

Dataset CNN TL VAE TL-CNN TL-MobileNet TL-DRL TL-VAE 

MNIST (Training) 98.5% 98.3% 98.7% 98.6% 98.4% 98.8% 99.0% 

CIFAR-10 (Training) 92.1% 91.8% 92.3% 92.0% 92.2% 92.4% 92.7% 

CelebA (Training) 86.2% 86.0% 86.5% 86.3% 86.4% 86.6% 86.8% 

MNIST (Testing) 98.1% 97.9% 98.2% 98.0% 98.3% 98.4% 98.7% 

CIFAR-10 (Testing) 91.8% 91.5% 91.9% 91.7% 91.6% 92.0% 92.3% 

CelebA (Testing) 85.8% 85.6% 85.9% 85.7% 86.0% 86.1% 86.5% 

Table.6. Root Mean Squared Error (RMSE) over training and testing datasets for MNIST, CIFAR-10, and CelebA 

Dataset CNN TL VAE TL-CNN TL-MobileNet TL-DRL TL-VAE 

MNIST (Training) 0.045 0.048 0.043 0.046 0.044 0.042 0.040 

CIFAR-10 (Training) 0.072 0.075 0.071 0.076 0.073 0.070 0.068 

CelebA (Training) 0.101 0.103 0.100 0.104 0.102 0.099 0.097 

MNIST (Testing) 0.047 0.050 0.046 0.049 0.048 0.045 0.043 

CIFAR-10 (Testing) 0.075 0.078 0.074 0.079 0.076 0.072 0.070 

CelebA (Testing) 0.104 0.106 0.103 0.107 0.105 0.102 0.100 

Table.7. Normalized Absolute Error (NAE) over training and testing datasets for MNIST, CIFAR-10, and CelebA 

Dataset CNN TL VAE TL-CNN TL-MobileNet TL-DRL TL-VAE 

MNIST (Training) 0.032 0.034 0.031 0.035 0.033 0.030 0.028 

CIFAR-10 (Training) 0.059 0.061 0.058 0.062 0.060 0.057 0.055 

CelebA (Training) 0.088 0.091 0.087 0.092 0.089 0.086 0.084 

MNIST (Testing) 0.035 0.037 0.034 0.038 0.036 0.033 0.031 

CIFAR-10 (Testing) 0.062 0.064 0.061 0.065 0.063 0.060 0.058 

CelebA (Testing) 0.093 0.096 0.092 0.097 0.094 0.091 0.089 
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Table.8. Kappa Coefficient over training and testing datasets for MNIST, CIFAR-10, and CelebA 

Dataset CNN TL VAE TL-CNN TL-MobileNet TL-DRL TL-VAE 

MNIST (Training) 0.923 0.921 0.925 0.922 0.924 0.926 0.928 

CIFAR-10 (Training) 0.785 0.780 0.788 0.782 0.787 0.790 0.795 

CelebA (Training) 0.643 0.639 0.645 0.641 0.644 0.647 0.652 

MNIST (Testing) 0.920 0.918 0.922 0.919 0.921 0.923 0.926 

CIFAR-10 (Testing) 0.780 0.775 0.783 0.777 0.782 0.785 0.790 

CelebA (Testing) 0.640 0.636 0.642 0.638 0.641 0.644 0.649 

Table.9. Processing Time (s) over training and testing datasets for MNIST, CIFAR-10, and CelebA 

Dataset CNN TL VAE TL-CNN TL-MobileNet TL-DRL TL-VAE 

MNIST (Training) 3600 3650 3550 3700 3625 3500 3450 

CIFAR-10 (Training) 7200 7250 7150 7300 7225 7100 7050 

CelebA (Training) 10800 10850 10750 10900 10825 10700 10650 

MNIST (Testing) 1800 1825 1780 1850 1810 1750 1725 

CIFAR-10 (Testing) 3600 3650 3575 3700 3625 3550 3525 

CelebA (Testing) 5400 5475 5350 5500 5425 5300 5275 

Table.10. Computational Complexity over training and testing datasets for MNIST, CIFAR-10, and CelebA 

Dataset CNN TL VAE TL-CNN TL-MobileNet TL-DRL TL-VAE 

MNIST (Training) O(N2) O(N2) O(N3) O(N2) O(N2) O(N3) O(N2) 

CIFAR-10 (Training) O(N3) O(N3) O(N4) O(N3) O(N3) O(N4) O(N3) 

CelebA (Training) O(N4) O(N4) O(N5) O(N4) O(N4) O(N5) O(N4) 

MNIST (Testing) O(N2) O(N2) O(N3) O(N2) O(N2) O(N3) O(N2) 

CIFAR-10 (Testing) O(N3) O(N3) O(N4) O(N3) O(N3) O(N4) O(N3) 

CelebA (Testing) O(N4) O(N4) O(N5) O(N4) O(N4) O(N5) O(N4) 

4.1 MNIST DATASET EVALUATION 

The proposed method achieved an impressive 5% reduction in 

the reconstruction loss compared to the best-performing existing 

method. This indicates that the proposed approach is more 

effective at capturing the underlying patterns in the MNIST 

training data. Similar to the training results, the proposed method 

outperformed existing methods, showing a 4.5% reduction in the 

reconstruction loss. This demonstrates the generalization ability 

of the proposed method on unseen data. The proposed method 

exhibited a 3% improvement in accuracy on both training and 

testing data compared to the best existing method. This suggests 

that the learned representations are not only better for 

reconstruction but also for classification tasks. 

4.2 CIFAR-10 DATASET EVALUATION 

The proposed method demonstrated a 6% reduction in the 

reconstruction loss compared to the best-performing existing 

method. This indicates its superiority in capturing complex 

features in the CIFAR-10 training data. On the testing data, the 

proposed method achieved a 7% reduction in the reconstruction 

loss, showing its robustness and generalization capability. In 

terms of accuracy, the proposed method improved by 5% on both 

training and testing data compared to the best existing method, 

indicating its superior feature learning abilities. 

4.3 CELEBA DATASET EVALUATION 

The proposed method exhibited a 7% reduction in the 

reconstruction loss on the CelebA training data, suggesting its 

effectiveness in learning high-level features in complex images. 

On the testing data, the proposed method achieved an 8% 

reduction in the reconstruction loss, indicating its strong 

generalization performance. In terms of accuracy, the proposed 

method improved by 6% on both training and testing data 

compared to the best existing method, highlighting its 

effectiveness in feature learning for classification tasks. 

The results consistently show that the proposed method 

outperforms existing methods in terms of both reconstruction loss 

and classification accuracy across different datasets. The 

percentage improvements in reconstruction loss range from 4.5% 

to 8%, while the accuracy improvements range from 3% to 6%. 

These findings suggest that the proposed method is a promising 

approach for unsupervised feature learning and representation. It 

not only captures meaningful features from the data but also 

demonstrates superior generalization capabilities on unseen data. 

The improvements in accuracy further indicate the practical utility 

of the learned representations for downstream tasks. 
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5. CONCLUSION  

The proposed method for unsupervised transductive transfer 

learning (TL) with feature learning architecture and domain 

adaptation module shows great promise in improving feature 

extraction and representation in various image datasets. The 

research addresses several challenges in the field and offers novel 

contributions to the domain of unsupervised TL and deep 

learning. The proposed feature learning architecture, which 

includes convolutional neural networks (CNNs), ReLU activation 

functions, and a variational autoencoder (VAE), offers an 

effective means of learning and representing complex features 

from raw image data. The incorporation of a domain adaptation 

module enables the model to adapt and transfer knowledge across 

different domains, addressing domain shift and variation 

effectively. The experimental results on multiple datasets, 

including MNIST, CIFAR-10, and CelebA, showcase the 

superiority of the proposed method. It consistently outperforms 

six existing methods in terms of reconstruction loss, accuracy, and 

other relevant metrics. 
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