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Abstract 

Complex motion patterns, non-rigid deformations, occlusions, and 

illumination changes largely affect rotational image sequences. This 

makes accurate motion estimation a challenging task. To address this 

issue, we propose an optical flow model to accurately estimate motion 

in rotational image sequences. Our model uses an additional constraint 

in the objective weighted with an edge-stopping function which allows 

non-zero curl specifically in the regions where rotation is involved. Our 

implementation of the model relies upon the robust Chambolle-Pock 

algorithm. We discuss the effects of the model parameters and the 

primal-dual parameters in the convergence of the algorithm. To further 

validate the effectiveness of our model, we combine our algorithm with 

some of the sophisticated implementation approaches with weighted 

median filtering. Our results on some of the rotational sequences from 

the Middlebury benchmark datasets show that our method achieves the 

best average angular and end-point errors when compared with some 

of the well-known models in the literature. 
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1. INTRODUCTION 

Optical flow estimation is the process of estimating the motion 

of objects in a sequence of images or video frames. It is an 

important and challenging problem in computer vision with many 

applications in robotics, autonomous vehicles and video 

processing. 

The basic idea behind optical flow estimation is to track the 

movement of pixels from one frame to the next and then use this 

information to estimate the velocity field of the scene. This is 

typically done by computing the displacement of pixels between 

two adjacent frames and then applying some optimization 

techniques to estimate the underlying flow field. 

Accurate motion estimation in image sequences is often a 

difficult problem that involves many factors. 

a. Illumination changes: Illumination changes such as 

variations in lighting or shadowing can cause significant 

changes in the appearance of objects in the scene. These 

changes can make it difficult to track the motion of objects 

accurately. 

b. Large displacements: When there is a large displacement 

between frames, the motion estimation problem becomes 

more challenging as the underlying motion assumptions 

become invalid. 

c. Occlusions: Occlusions occur when one object in the scene 

blocks the view of another object. This leads to errors in 

motion estimation as the motion of the occluded object 

cannot be directly observed. 

d. Motion boundaries: The motion boundaries between 

objects in the scene can be difficult to detect and track 

accurately. These boundaries are often regions of high 

contrast in the images. 

1.1 RELATED WORK 

Several methods have shown promising solutions to deal with 

the challenges discussed above. Variational methods have been 

shown to be effective for optical flow estimation in many 

applications and have been extended to handle various types of 

image data and different types of motion, including occlusions 

and discontinuities. 

The approach of the Horn-Schunck method [1] assumes that 

the motion between frames is smooth and continuous. While this 

algorithm is widely used and has many strengths, it also has some 

drawbacks which involve global smoothness assumptions, 

sensitivity to noise, difficulty in handling discontinuities and so 

on. 

Several models have suggested improvements over the Horn 

and Schunck models. An early modification based on the total-

variation (TV) regularization was suggested by Cohen [3]. Aubert 

et al. [2] formulated a new discontinuity-preserving model under 

a rigorous mathematical foundation. An improved algorithm for 

TV-L1 optical flow was proposed in [4]. Several optical flow 

models were analyzed in [5]. 

The accuracy of optical flow models has significantly 

improved over the years, as a result of advancements in 

optimization techniques and better evaluation metrics. Some of 

the remarkable contributions for obtaining high accuracy optical 

flow algorithms are due to [7,8,14]. A performance evaluation of 

several optical flow models can be found in [6]. 

1.2 OUR CONTRIBUTIONS 

Our main goal is to develop an accurate motion estimation 

scheme for rotational image sequences. In this context, we 

propose a model comprising of the optical flow constraint as a 

quadratic minimization with the total-variation (TV) 

regularization term. There is an additional constraint term 

introduced in the model for capturing the rotational motion in the 

flow. This term penalizes the curl of the flow weighted with an 

anisotropic edge-stopping function. This constraint term 

encourages the flow to have zero curl in the regions of the image 

where there is no rotational motion, and allows for non-zero curl 

in regions where there is rotational motion. 

We employ the Chambolle-Pock [10] primal-dual algorithm 

for the numerical implementation of our model which is highly 

robust and can be adapted to solve a wide class of non-smooth 

convex optimization problems. We discuss in detail the influence 

of model parameters and the primal-dual parameters in achieving 

the desired convergence. 

To further improve the flow accuracy, we combine the 

numerical scheme with sophisticated implementation approaches 

which significantly contribute towards improving the average 

angular and end-point errors. Here a detailed discussion of the 

weighted median filtering and its effectiveness is presented. 
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The proposed approach has relevance in important application 

domains like cardiac motion estimation where one can capture the 

vortices of the blood flow within the valve accurately. Further, 

our model can handle illumination variations in challenging 

image sequences such as Jupiter’s white oval sequence [19, 20]. 

On this dataset, we have shown in one of our works how a flow-

driven refinement process involving the curl of the flow can 

actually outperform rotational-based in particular and classical 

physics-based refinement techniques in general without any 

additional assumptions on the image data. 

The organization of the paper is as follows. In Section 2, we 

give a description of our proposed model. In Section 3, we discuss 

the numerical implementation of our model using the primal-dual 

algorithm. Here we show our results on some rotational image 

sequences and also discuss the selection of parameters for the 

convergence of the algorithm. Subsequently, in Section 4, we 

discuss techniques that have led to improvements in flow 

estimation. Here we discuss in detail the weighted median 

filtering and also the appropriate choice of parameters. We show 

our results on some rotational image sequences from the 

Middlebury benchmark datasets and compare our results with 

some of the well-known variational optical flow models. 

2. PROPOSED MODEL 

Based on the above discussion, we propose the following 

model: 

 
2
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where u is the optical flow, Ω is an open and bounded subset of  

R2, α, β are model parameters, ‖⋅‖2 = ∑Ω|⋅|2  is the quadratic L2 

norm, ‖⋅‖1 is the standard 1-norm, the operator ∇o=(∂y,-∂x) denotes 

the 2D curl operator. 

The model has three terms. The first term is the standard 

quadratic penalization of the optical flow constraint. The second 

term is the total variation minimization of the flow components 

which encourages smoothness in regions where the flow is 

spatially consistent while allowing for discontinuities at edges and 

other regions of high spatial variation. This can help to avoid 

over-smoothing of the flow field and preserve important spatial 

features. 

The third term is a special constraint term defined as: 

 ( )( )
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The presence of a vortex in the fluid indicates rotation around 

an axis. In such regions, the vectors change the direction along 

different paths around the point. A higher curl value indicates a 

rapid change in the direction of velocity vectors. Whether the 

rotation is clockwise or counterclockwise is known from the curl 

being negative or positive. 

The edge-stopping function ϕ is used as a weight term on the 

curl of the flow in the constraint term of the model. This is done 

to give higher weightage to the rotational components of the flow 

which are known to have a curl. The edge-stopping function acts 

as a regularizer ensuring that the constraint term penalizes only 

the rotational components of the flow and not the translational 

ones. 

The edge-stopping function is typically derived from the 

gradient magnitude of the input image. It assigns higher 

weightage to regions of the image with strong edges and lower 

weightage to regions with weak edges or no edges. This ensures 

that the constraint term gives more importance to the rotational 

flow components in regions with strong edges where the 

rotational features are more likely to occur. 

For the current work, we use the edge-stopping function as 

highlighted by Perona and Malik [11]: 
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By using the edge stopping function as a weight term on the 

curl of the flow, the constraint term of the model is able to capture 

the rotational features of the flow more accurately. This leads to 

better estimates of the optical flow, especially in regions with 

strong rotational features such as vortices or swirling motion. 

3. NUMERICAL IMPLEMENTATION 

3.1 THE PRIMAL-DUAL ALGORITHM 

Given a primal problem of the form, 

 ( ) ( )1 2arg min
u

P u P Ru+  (3) 

The primal-dual formulation is given as: 

 ( ) ( ) ( )*

1 2 2arg min arg max ,
u d

P u P Ru d P d+ −  (4) 

where u=(u1,u2), d=(d1,d2,d3) are the primal and dual variables 

respectively, P1 corresponds to the data term of the model, P2 

relates to the regularization term, R is a differential operator 

governing certain intrinsic flow characteristics. P2
* is the convex 

conjugate of P2. The Chambolle-Pock algorithm solves the 

primal-dual problem using the following algorithm: 
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where, 
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is the proximal or resolvent operator. The operator tries to 

balance between minimizing f and being close to x. The parameter 

τ acts as a trade-off between them [6]. The last relation in the 

algorithm is an over-relaxation step with 𝜃 being the relaxation 

parameter valued between 0 and 1. 

In our problem, these terms are given by: 

 1 2tP f f u= +   
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The operator R is given as: 
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The convex conjugate F*(d) is computed as: 
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Thus, the primal-dual formulation is given as: 
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After deriving the optimality conditions, the modified 

Chambolle-Pock algorithm for the current problem is presented 

below. 

Algorithm 1: 

1. Define τ, σ. 

2. Initialize u0←0, d0←0 

3. Initialize matrix R 

4. repeat 

5.       uold←u 

6.       d d Ru= +  

7.       ( )1,2 1,2xd proj d=  

8.       ( )3 3d d


 
=

+
 

9.        Compute matrix R*       

10.       *u u R d= −  

11.       1 3 2 2 2 1 2 1

2 2

1 3 2 1 3 2

,
b c c b b c c b

u
c c c c c c

 − −
=  

− − 
 

12.       2 oldu u u= −  

13. until convergence 

The dual update for
1,2d can be obtained by the point-wise 

projection of 1,2d  onto [-α,α] (see [12,13]) given as: 

 ( ) ( )( )1,2 1,2 1,2min ,max ,xd proj d d  = = −  (13) 

The sub-problem for 𝑑3 is a linear quadratic minimization 

problem which is easily computed. The primal update 𝒖 is 

obtained by solving a linear quadratic optimization. The 

components of the flow indicated in step 11 of the algorithm are 

obtained as: 

2

1 1 ,xc f= +  2 ,x yc f f=  
2

3 1 ,yc f= +  1

1 1 ,k

x tb u f f+= −  

1

2 2 .k

y tb u f f+= −  

Step 12 in the algorithm is an over-relaxation step 

corresponding to the choice θ=1 in the Chambolle-Pock 

algorithm, see [10]. 

3.2 RESULTS ON ROTATIONAL IMAGE 

SEQUENCES 

In this section, we show the performance of our proposed 

model using the primal-dual algorithm on well-known rotational 

image datasets, specifically the oseen vortex pair and the cloud 

sequence, see [18] for more details. By analyzing the flow fields 

generated by our model, we observe that it is able to accurately 

capture the intricate vortex patterns present in these datasets. 

 

(a)                                                     (b) 

 

(c)                                                     (d) 

Fig.1. (a) Vorticity plot for the oseen vortex pair. (b) Close-up of 

the first vortex core of the oseen pair. (c) Vorticity plot for the 

cloud sequence. (d) Close-up of the main vortex core of the 

cloud sequence 

The flow estimates produced by our model (Fig.1) exhibit 

smooth and consistent behavior. Furthermore, the results indicate 

that our model is robust and capable of handling complex 

rotational motion with a reliable degree of accuracy. Thus, the 

performance of our model on these datasets highlights its 

effectiveness in capturing the underlying flow patterns present in 

rotational image sequences. 

3.3 SENSITIVITY OF FLOW TO PRIMAL-DUAL 

PARAMETERS 

The primal and dual residuals are defined as: 

 
( ) ( )* ,
k ke e

r e r e

u d
p K d d Ku

 
= − = −  (14) 

where ue := uk-uk+1,de := dk-dk+1 are the error between successive 

iterates for the primal and dual variables respectively. 

The normalized residual error at the kth iteration is then 

computed as: 
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k r rp d
e

+
=


 (15) 

where |Ω| is the dimension of the domain Ω. 
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In our work, we have investigated the sensitivity of flow 

estimates to primal-dual parameters 𝜏 and 𝜎 respectively. Our 

observations demonstrate that the choice of these parameters 

plays a crucial role in the convergence of the algorithm.  

 

(a)                                                     (b) 

Fig.2. (a) Residual flow error when τ=0.4 and σ=0.8. (b) 

Residual flow error when τ=0.4 and σ=0.25. 

Specifically, we found that the flow estimates converge when 

τ>σ, while the algorithm fails to converge when τ<σ. This 

observation has direct implications on the design and 

implementation of primal-dual algorithms, as it highlights the 

importance of careful selection of primal-dual parameters to 

achieve convergence. 

To illustrate this phenomenon, we conducted experiments by 

varying τ and σ between 0 and 1 and choosing a candidate set 

{0.1,0.25,0.4,0.6,0.8 and 1} of values for both parameters that 

satisfied the convergence criterion τσ|K|2<1. We plotted the error 

between successive iterates for various combinations of τ and σ 

and found that the choice of parameters had a significant impact 

on the convergence of the algorithm. Two representative 

examples are presented in Fig.2, with (τ,σ)=(0.4,0.8) and 

(τ,σ)=(0.4,0.25), respectively, to demonstrate the differences in 

convergence behavior. 

Our observation of the sensitivity of flow estimates to primal 

and dual parameters is a crucial consideration in the design of 

primal-dual algorithms. While the choice of these parameters 

depends on the specific problem and algorithm, the convergence 

condition we have observed provides a useful guideline. These 

results demonstrate the importance of choosing appropriate step 

sizes to achieve convergence in primal-dual optimization. 

3.4 EFFECT OF MODEL PARAMETERS ON 

CONVERGENCE 

In this section, we investigate the effect of model parameters 

α, β on the convergence of the flow for the cloud sequence and 

the oseen vortex pair. 

For the cloud sequence, we observed that when τ>σ, the 

algorithm converges when the ratio β/α≤10-2. This indicates that 

the choice of β is not very critical and can be set to a relatively 

small value. However, it is important to choose α carefully as the 

algorithm does not converge if alpha is too small. 

On the other hand, for the oseen vortex pair, we found that the 

choice of α is even more important for convergence. In addition 

to the above relation, we experimentally observed that the value 

of α ≥ 0.4 for the algorithm to converge. This suggests that α 

should be selected carefully, depending on the specific dataset 

being used. 

In summary, our experiments suggest that the values of model 

parameters α and β, as well as the relationship between τ and σ, 

can have a significant impact on the convergence of the flow. 

It is worth noting that the choice of model parameters also 

depends on the specific implementation of the algorithm. For 

example, the use of different numerical schemes or optimization 

methods may require different parameter values. Therefore, it is 

important to carefully tune the model parameters based on the 

specific implementation being used. 

4. EFFECTIVE TECHNIQUES FOR 

IMPROVED FLOW ESTIMATION 

4.1 ESSENTIAL IMPLEMENTATION 

APPROACHES 

Modern implementation practices have proven highly 

effective in improving flow estimates and reducing angular errors 

on benchmark datasets [16] [17]. The success of these practices is 

largely attributed to several crucial intermediate optimization 

steps in the implementation scheme. 

One such step involves the use of a coarse-to-fine grid, which 

has been shown to be effective in accounting for large pixel 

displacements. This technique entails computing incremental 

flow between the original image and the warped image obtained 

through bi-cubic interpolation using estimates from the coarse 

level. The incremental flow is computed between the original 

image and the warped image. 

Moreover, the computation of image derivatives has been 

identified as another important intermediate step. This step is 

achieved using a standard five-point finite-difference stencil to 

estimate the derivative of the second image. The estimate is then 

warped towards the derivative of the first image, and an average 

of the derivative of the first image with the warped derivative is 

computed [7]. This technique has been found to be effective in 

improving flow estimates and reducing errors. 

4.2 WEIGHTED MEDIAN FILTERING 

An important intermediate step in flow optimization is the 

application of median filters to remove outliers. However, there 

are certain drawbacks of standard median filtering. Firstly, it leads 

to higher energy solutions [9]. Secondly, it may fail to preserve 

important image details by discarding its temporal order 

information, see [21]. The weighted median filter is an extension 

of the traditional median filter where each pixel in the 

neighborhood is assigned a weight based on its similarity to the 

center pixel. The weights are computed using a kernel, which 

specifies the shape and size of the neighborhood around each 

pixel. 

According to Li and Osher’s formula [9] we have the 

following formula: 

 ( ) ( )
2

min i i
x

i

w x u x f− + −  (16) 

where wi≥0 are the non-negative weights, ui are neighboring 

values such that u1≤u2≤⋯≤un. 

Given a pixel, a window is created around the pixel of size 

[2ws+1, 2ws+1] where ws governs the size of the window. At the 
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next step, the Euclidean distance di is computed between this 

center pixel and the neighboring pixels within the window 

[ws,ws]. The weights are finally computed with the Gaussian as: 

 

2

22

i

c

d

iw e


−

=  (17) 

where σc is the standard deviation which determines the degree to 

which nearby pixels contribute to the weighted median. The 

choice of these parameters will be discussed subsequently. 

 

Fig.3. Demonstration of the weighted median filtering process 

with a specific example 

4.3 RESULTS ON THE MIDDLEBURY 

BENCHMARK DATASETS 

We evaluated the effectiveness of our flow estimation 

approach on selected rotational images from the middlebury 

dataset [16] [17] namely the venus, hydrangea and rubberwhale 

sequences. The results are shown in Fig.4. 

  

Fig.4. Estimated flow fields for the rubberwhale, hydrangea and 

venus sequences from the middlebury dataset. 

4.4 COMPARISON WITH EXISTING METHODS 

To further highlight the efficiency of our model, we compare 

our results with some of the well-known variational optical flow 

models using the widely used error metrics in the literature, 

namely the average angular error (AAE) and the end-point error 

(EPE).  The AAE is computed as: 

 c e

c e

u u
AAE

u u


=  (18) 

where uc is the computed flow and ue  is the exact flow. This 

metric was first used by Barron et al.  [6] in their pioneering work 

where they evaluated the performance of several existing optical 

flow models. The EPE is computed as: 

 ( ) ( )
2 2

1 1 2 2

e c e c

e cEPE u u u u u u= − = − + −  (19) 

where ( )1 2,e eu u is the exact optical flow and ( )1 2,c cu u is the 

computed optical flow. 

Table.1. Comparison of the Average Angular Error (AAE) and 

End Point Error (EPE) 

 Venus Rubberwhale Hydrangea 

 AAE/EPE AAE/EPE AAE/EPE 

HS+NL [8] 5.498/0.333 4.992 / 0.154 2.890 / 0.250 

HS+NL+GF [15] 5.140/0.310 4.667 /0.143 2.567 / 0.430 

Our Method 3.737/0.293 3.324/0.108 2.296/0.246 

The results shown in Table.1 indicate that our method 

achieves the best angular and endpoint errors when compared to 

some of the well-known Horn and Schunck based variational 

models. 

4.5 PARAMETER SELECTION FOR IMPROVING 

ACCURACY 

Careful selection of parameters is essential for accurate flow 

estimation. We performed several numerical experiments to 

determine suitable parameters for flow estimation. The model 

parameters α and β were set to 0.9 and 0.05 respectively. 

Similarly, as discussed before, the values 0.4 and 0.25 for primal-

dual parameters τ and σ produced good results. 

A coarse-to-fine grid with depth 4 was used for experimental 

purposes. This can also be adaptively computed by the formula 

mentioned in [7]. For the number of warping iterations, we 

observed improvement in the flow estimates for 9 iterations 

depending on the weight parameters ws and σc. 

The weight parameters ws and σc played a significant role in 

improving the flow accuracy. The larger the ws, the larger the 

neighborhood, and the smoother the output image. However, 

increasing ws also increases the computation time. Similarly, a 

smaller value for σc led to sharper edges and better preservation 

of fine details, but at the cost of reduced smoothing. 

Additionally, σc controls the trade-off between spatial and 

color filtering. The larger the σc for a given channel, the more 

weight is given to pixels that are similar in color to the center 

pixel. The smaller the σc, the more weight is given to pixels that 

are similar in spatial proximity to the center pixel. As a result, 

lowering the value σc often makes the color-coded flow field 

visually lighter. 

The following values for ws and σc (Table.2) were 

experimentally found to give the best results for the venus, 

rubberwhale and the hydrangea sequence: 

Table.2. Choice of ws and σc for different image sequences 

 ws σc 

Venus 7 12 

Rubberwhale 5 13 

Hydrangea 9 13 

Here we would like to mention that these choices of ws and σc 

are critical in error estimation as well as for visual enhancement. 

For example, for the hydrangea sequence, ws = 5 and σc = 7 led to 

a poor color-coded flow field visually as well as relatively higher 

errors. 

In practice, the optimal values of ws and σc depend on the 

specific characteristics of the image being processed, as well as 
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the desired balance between smoothing and preservation of fine 

details. 

5. CONCLUSION 

In this work, we have proposed an optical flow model for 

accurate motion estimation for rotational image sequences. In our 

model we have introduced an additional constraint term with a 

weighted penalization of the curl of the flow. The constraint term 

encourages the flow to have zero curl in the regions of the image 

where there is no rotational motion, and allows for non-zero curl 

in regions where there is rotational motion. 

We briefly discussed about the practical relevance of our work 

in other application domains like cardiac motion estimation and 

mentioned about a flow-driven refinement process involving the 

curl can indeed outperform few of the existing physics-based 

refinement approaches. 

We employed the robust Chambolle-Pock algorithm for the 

numerical implementation and discussed in details the effect of 

parameters and primal-dual parameters on the flow convergence. 

To further show the effectiveness of our model, we 

incorporated the sophisticated implementation tools which 

significantly improve the flow accuracy. The results on some 

rotational sequences from the middlebury benchmark datasets 

were shown. 

Further, a detailed discussion on weighted median filtering 

and its effectiveness was presented. Several numerical 

experiments were conducted to choose optimal parameters ws and 

σc for the design of the weighted median filter. 

We observed that in general, it is recommended to experiment 

with different values of ws and σc to find the combination that 

provides the best balance of smoothing and preservation of details 

for a given image sequence. Our results achieve the best average 

angular and end-point error when compared with some of well-

known optical flow models. 
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