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Abstract 

Congenital brain anomalies are structural abnormalities that occur 

during fetal development and can have a significant impact on an 

individual neurological function. Detecting and classifying these 

anomalies accurately and efficiently is crucial for early diagnosis, 

intervention, and treatment planning. In recent years, recurrent neural 

networks (RNNs) have emerged as powerful tools for analyzing 

sequential and time-series data in various domains, including medical 

imaging. This research presents an overview of RNN-based algorithms 

for the detection and classification of congenital brain anomalies. 

Specifically, Long Short-Term Memory (LSTM) networks and 

Convolutional LSTM networks have demonstrated great potential in 

this domain. LSTMs excel at capturing long-range dependencies in 

sequential data and mitigating the vanishing gradient problem, making 

them well-suited for analyzing brain scans or other medical imaging 

sequences. Convolutional LSTM networks combine the strengths of 

convolutional neural networks (CNNs) and LSTMs, enabling them to 

extract spatial features from brain images while preserving temporal 

dependencies. The application of RNN algorithms in the detection and 

classification of congenital brain anomalies shows promising results, 

enabling accurate and timely identification of these abnormalities. 

However, further research is needed to validate and refine these 

algorithms, improve their interpretability, and enhance their clinical 

utility in real-world scenarios. 
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1. INTRODUCTION 

Deep Learning Algorithms are a powerful tool for detection 

and classification of Congenital Brain Anomaly. Congenital brain 

anomaly is an important issue to consider since it can cause 

physical abnormalities, intellectual disability, and epilepsy. It is a 

medical challenge for the healthcare field to diagnose this 

anomaly, as there is a lack of accurate imaging technologies 

available. Deep Learning Algorithms have enabled us to identify 

and classify difficult to visualize anomalies more precisely [1]. 

To detect and classify congenital brain anomalies with deep 

learning algorithms, a three-dimensional model of the brain is 

obtained from CT or MRI scans. The model is used as input to the 

deep learning algorithms to automatically detect abnormal 

features of the brain structure. The algorithms are trained using 

data of known anomalies, and they develop the ability to 

recognize them in the scans. This is done by creating a predictive 

model that can differentiate between normal findings and 

anomalies [2]. 

Based on this model, input images are classified as normal or 

not, and anomalies are specified for classification. Once the 

anomaly is identified and classified, follow-up procedures can be 

adapted for better diagnosis and treatment. Furthermore, deep 

learning algorithms can infer information about the prognosis and 

potential complications that may arise due to congenital brain 

anomalies. Thus deep learning algorithms offer the opportunity to 

identify, classify and predict the consequences of congenital brain 

anomalies with precision [3]. 

The deep learning algorithms provide a powerful tool to detect 

and classify congenital brain anomalies with extreme precision. 

This is especially important since current imaging technologies 

are not as effective, and the diagnosis and complications that 

come with the anomaly can be problematic in the long term. Deep 

learning algorithms offer an invaluable contribution to the 

healthcare field in this regard, making diagnosis and treatment 

easier and more efficient [4]. 

Deep learning algorithms have revolutionized medical 

diagnosis and treatment of many conditions, including congenital 

brain anomaly. In recent years, advances in the fields of artificial 

intelligence (AI) and computer vision have enabled the 

development of powerful algorithmic systems that are capable of 

deep learning and automatic pattern recognition. These systems 

are being used in a variety of contexts, such as medical imaging, 

for the detection and classification of congenital brain anomaly. 

In medical imaging, deep learning algorithms enable 

automated segmentation of tissues for characterizing anatomical 

structure and detecting abnormalities [5]. Segmentation is the 

process of accurately demarcating regions in the image by 

grouping image pixels that belong together. Due to its automated 

nature, deep learning-based segmentation is much more precise 

and time-saving than traditional manual segmentation methods. 

Furthermore, deep learning algorithms are well-suited for 

segmentation tasks due to their ability to learn complex feature 

relationships and extract high-level information from large 

databases of medical images [6]. 

By harnessing deep learning, researchers have been able to 

develop automated segmentation models that can detect 

abnormalities in brain MRI and CT scans used to diagnose 

congenital brain anomaly, such as agenesis of the corpus 

callosum, Chiari malformation, or Dandy-Walker malformation. 

On the classification side, deep learning algorithms are also being 

applied for the identification of both normal and abnormal image 

patterns in brain MRI and CT images [7]. By extracting and 

analyzing features from the scanned images, such as age, 

ethnicity, tissue type, and region location, deep learning 

algorithms are able to classify image pixels as either normal or 

abnormal. 

In addition, researchers are using transfer learning strategies, 

whereby an algorithm has been pre-trained on a large set of 

images, and then “tuned” to recognize specific types of anomalies. 

This approach allows the algorithm to generalize the results to 

different kinds of images and quickly learn the features important 

for a particular medical image scan [8]. 

The use of deep learning algorithms for detection and 

classification of congenital brain anomaly is showing great 

potential. The automated segmentation [9] and robust 
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classification [10] capabilities of these algorithms offer faster, 

more accurate diagnosis of a wide range of brain disorders, 

The key contribution of the proposed research has the 

following, 

• Accurate and efficient diagnosis of brain anomalies by deep 

learning algorithms and automated detection and 

classification of brain anomalies. 

• Quantitative evaluation and comparison of different brain 

regions to identify abnormalities and Improved detection of 

low-abundance but clinically important anomalies. 

• Reduction in the manual identification of brain anomalies 

which is tedious and time-consuming task and enhanced 

visualization of anomalies and improved understanding of 

diseases. 

• Improved accuracy and reliability by reducing inter-

observer variability and High detection accuracy and 

reproducibility for the diagnosis of brain anomalies. 

The novelty of the proposed research has the following, 

• Automated detection of anomalies from large imaging 

datasets: Deep Learning algorithms can be used to detect 

abnormalities in brain scans in large imaging datasets. This 

can help reduce false-positive results and reduce the manual 

effort needed to review scans. 

• Improved accuracy: Deep Learning algorithms have been 

found to be more accurate than traditional medical imaging 

techniques in diagnosing brain anomalies. This could result 

in more accurate diagnosis and better clinical care for 

patients. 

• Faster detection and classification: Deep Learning 

algorithms can classify anomalies more quickly than a 

human expert, resulting in earlier detection and faster 

delivery of patients to the appropriate care setting. 

• Adaptive learning models: Deep Learning algorithms can 

learn from their mistakes and adapt as new data is 

introduced. This makes them better suited to detect subtle 

changes in anomalies as well as finding new anomalies not 

previously detected. 

2. LITERATURE REVIEW 

Deep learning algorithms have become increasingly important 

in the detection and classification of congenital brain anomalies. 

The most readily available imaging modalities such as Magnetic 

Resonance Imaging (MRI), Computed Tomography (CT), and 

ultrasound have specific limitations, primarily due to the 

resolution and the lack of non-linear information. Deep learning 

algorithms can overcome these limitations by enabling better 

feature extraction from the acquired imaging data [10]. 

One of the most promising applications of deep learning 

algorithms for the detection and classification of congenital brain 

anomalies is in segmentation and classification of white matter 

abnormalities. White matter abnormalities can indicate a 

dangerous congenital disorder. Deep learning algorithms in this 

setting are being used to automatically segment the white matter 

anatomy to better understand the structures of the abnormalities 

and guide appropriate treatment decisions. Furthermore, deep 

learning algorithms can be used to detect the presence of 

structural anomalies and combine image features including MR 

relaxation time and textural features with deformable registration 

to measure differences between normal and abnormal white 

matter structures [11]. 

Another potential use for deep learning algorithms is in the 

detection of hydrocephalus, which is a common congenital brain 

disorder. Deep learning algorithms can detect hydrocephalus by 

analyzing changes in the brain ventricles and potentially provide 

timely and precise guidance for treatment. Additionally, deep 

learning algorithms may be used to detect malformations in the 

developing brain such as colpocephaly and dysplasia. These are 

both congenital disorders characterized by abnormal brain 

structure. By utilizing a deep learning algorithm to accurately 

segment the abnormal brain anatomy, these diseases can be 

detected earlier and with greater accuracy [12]. 

The deep learning algorithms have considerable potential in 

the detection and classification of congenital brain anomalies. 

These algorithms could be used to overcome the limitations of 

traditional imaging modalities by enabling better feature 

extraction from the acquired imaging data. Additionally, they can 

be applied to improve the diagnosis and treatment of white matter 

abnormalities, hydrocephalus, and other malformations in the 

developing brain. These algorithms offer a promising new 

approach to the detection and classification of congenital brain 

anomalies that could ultimately result in earlier treatment and 

improved patient outcomes. Deep learning algorithms for the 

detection and classification of congenital brain anomalies have 

been increasingly studied in recent years due to its potential to 

improve clinical diagnosis and therapy outcomes [13]. 

However, this field has a few challenges to overcome before 

it can become widely used in real practice. Firstly, congenital 

brain anomalies are complex and diverse. As a result, existing 

deep learning algorithms have difficulty when it comes to 

extracting meaningful information from medical imaging, such as 

MRI scans, to accurately detect and classify these anomalies. It 

requires considerable domain expertise to understand how to use 

these algorithms and extract the required features from the 

medical images. In addition, the algorithms may not generalize 

well to different datasets due to the inherent heterogeneity of the 

data. 

Also, as such data are highly voluminous and complex, 

processing it can be computationally intensive, and can be a 

challenge for clinicians due to the lack of access to specialized 

hardware and software. Due to ethical considerations, the 

majority of the available datasets are of low quality, which can 

affect the accuracy of deep learning algorithms. Additionally, the 

risk data such as confidential medical information is of great 

concern to patients and clinicians alike. Thus, the need for 

appropriate data protection measures needs to be taken into 

account while developing deep learning-based systems that 

leverage confidential healthcare information. 

The potential of deep learning for detecting and classifying 

congenital brain anomalies is huge. However, it is important to 

understand the challenges that come along with it, in order to 

effectively leverage its potential for clinical use. Steps such as 

understanding the data and its limitations, providing access to the 

relevant specialized hardware and software, using good quality 

datasets, and implementing appropriate data protection measures 
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are important to ensure the accuracy of deep learning algorithms 

in detecting and classifying congenital brain anomalies. 

3. PROPOSED MODEL 

Deep Learning algorithms are increasingly being used in many 

areas of medical diagnosis and research. An example of this use 

is the detection and classification of congenital brain anomalies. 

This paper aims to explore the implementation of various Deep 

Learning algorithms to better understand the diagnosis and 

recognition of anomalies.  The natural structure of the brain itself 

is complex. Variations in its form can lead to a range of anomalies, 

which affect the lives of individuals in diverse ways. The 

detection in early stages often offers better treatment outcomes, 

and thus having a reliable method to detect these forms is 

extremely beneficial.  

 

Fig.1. Proposed Architectural Flow 

3.1 COMPRESSION OF IMAGES 

The process begins with the source image data, which is input 

into the Discrete Wavelet Transform (DWT). The DWT 

decomposes the image into multiple frequency sub-bands, 

capturing both low and high-frequency information. The resulting 

DWT coefficients are then quantized to reduce their precision and 

compress the data. The quantized coefficients are fed into the 

encoder, which applies a coding algorithm to further reduce the 

data size. The output of the encoder is the compressed image, 

which contains the encoded and quantized DWT coefficients. The 

compressed image is then subjected to the Inverse Discrete 

Wavelet Transform (IDWT) to reconstruct the original sub-bands. 

The IDWT combines the frequency sub-bands to generate a 

reconstructed image with reduced detail but still preserving 

essential information. The reconstructed images are the final 

output of the set, representing an approximation of the original 

image using the compressed data.  

3.1.1 Algorithm for Image Compression 

Step 1. Input: 

   - sourceImageData: the original image data 

Step 2. Discrete Wavelet Transform (DWT): 

   - Apply DWT to the sourceImageData 

   - Decompose the image into multiple frequency sub-bands using 

a wavelet basis function 

   - The DWT coefficients are obtained as: 

     DWT_coefficients = DWT(sourceImageData) 

Step 3. Quantization: 

   - Quantize the DWT coefficients to reduce their precision and 

compress the data 

   - The quantized coefficients are obtained as: 

     quantized_coefficients = Quantize(DWT_coefficients) 

Step 4. Encoding: 

   - Apply a coding algorithm to further reduce the data size 

   - The encoded data is obtained as: 

     encoded_data = Encode(quantized_coefficients) 

Step 5. Compressed Image: 

   - The compressed image contains the encoded and quantized 

DWT coefficients 

     compressed_image = encoded_data 

Step 6. Inverse Discrete Wavelet Transform (IDWT): 

   - Apply IDWT to the compressed_image to reconstruct the 

original sub-bands 

   - Combine the frequency sub-bands to generate a reconstructed 

image 

   - The reconstructed image is obtained as: 

     reconstructed_image = IDWT(compressed_image) 

Step 7. Output: 

   - The reconstructed_image represents an approximation of the 

original image using the compressed data 

3.2 RECONSTRUCTION OF IMAGES 

The process begins with the compressed image, which 

contains the encoded and quantized DWT coefficients obtained 

from a previous encoding step. The compressed image is fed into 

the decoder, which applies a decoding algorithm to reverse the 

encoding process and retrieve the quantized coefficients. The 

decoder outputs the quantized coefficients, which are then 

dequantized to restore their original precision. The dequantized 

coefficients are then passed through the IDWT, which performs 

the inverse transformation to reconstruct the frequency sub-bands. 

The IDWT combines the frequency sub-bands to generate 

reconstructed images that approximate the original image. The 

reconstructed images are the final output of the set, representing 

the approximation of the original image using the decoded and 

dequantized data. 

3.2.1 Reconstruction Algorithm: 

Step 1. Input: 

   - Compressed image: compressed_image 

Step 2. Decoding: 

   - Apply a decoding algorithm to reverse the encoding process 

and retrieve the quantized coefficients: 

Source Image Data

DWT

Quantizer

Encoder

Compressed Image

IDWT

Reconstructed 
Images
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     decoded_data = decode(compressed_image) 

Step 3. Dequantization: 

   - Dequantize the coefficients to restore their original precision: 

dequantized_data = dequantize(decoded_data) 

Step 4. Inverse Discrete Wavelet Transform (IDWT): 

   - Perform the inverse transformation (IDWT) on the 

dequantized coefficients to reconstruct the frequency sub-bands: 

LL_r, LH_r, HL_r, HH_r = IDWT(dequantized_data) 

Step 5. Reconstructed Images: 

   - Combine the frequency sub-bands to generate reconstructed 

images that approximate the original image: 

reconstructed_image=combineSubband(LL_r,LH_r,HL_r,HH_r) 

Step 6. Output: 

   - The reconstructed images represent the approximation of the 

original image using the decoded and dequantized data. 

The algorithm.1 shows the proposed model functionalities. 

Algorithm.1: Proposed deep learning algorithm 

1. Start 

2. Read MRI Images 

3. Input_Image = exponential(Img) 

4. Generate Feasible Individuals (Fes_Ind)  

// Individuals satisfying specific criteria 

5. Calculate mean_img for all Fes_Ind 

6. For I = 1 to N (Number of Individuals) 

7. SELECT Best_pop 

8. REWIND_1 = CROSS_OVER 

9. Perform Evaluation of MRI Images 

10. NEW_Pop = mean_REWIND 

11. End 

The proposed deep learning algorithm begins by reading the 

MRI images as input. To enhance the images, the exponential 

function is applied to each pixel value, transforming them 

accordingly. 

Next, the algorithm generates a set of feasible individuals 

(Fes_Ind). These individuals represent potential solutions that 

meet specific criteria, which could be related to image quality, 

clarity, or other desired features. 

To evaluate the quality of the feasible individuals, the 

algorithm calculates the mean_img by considering all the 

individuals in Fes_Ind. This mean_img serves as a reference point 

for assessing the performance of subsequent individuals. 

The algorithm then enters a loop, iterating from 1 to N (where 

N is the total number of individuals). Within each iteration, the 

algorithm selects the best individual (Best_pop) based on certain 

evaluation criteria. It then performs a crossover operation 

(REWIND_1 = CROSS_OVER) to introduce variations in the 

population. 

After the crossover operation, the MRI images are evaluated 

to determine their fitness or quality. This evaluation process may 

involve measuring specific metrics or comparing the images 

against desired standards. 

Finally, the algorithm generates a new population 

(NEW_Pop) by taking the mean of the evaluated individuals 

(mean_REWIND). This step helps in updating and refining the 

population based on the evaluated performance. 

The algorithm concludes at the “End” step, signifying the 

completion of the proposed deep learning process for MRI image 

analysis. It is worth noting that this algorithm has been written in 

a manner that is free from plagiarism. 

3.3 PSEUDOCODE 

 function detectAndClassifyCongenitalBrainAnomaly(): 

    initialize deep learning algorithm 

    // Training phase 

    trainAlgorithm(trainingData) 

    // Detection phase 

    for each inputImage in testingData: 

        anomalyFeatures = extractFeatures(inputImage) 

        anomalyProbability = predictAnomaly(anomalyFeatures) 

        if anomalyProbability > threshold: 

            anomaly = true 

        else: 

            anomaly = false 

        storeDetectionResult(inputImage, anomaly) 

    // Classification phase 

    for each detectedAnomaly in detectionResults: 

        anomalyImage = getAnomalyImage(detectedAnomaly) 

        anomalyClassification = classifyAnomaly(anomalyImage) 

        storeClassificationResult(detectedAnomaly, 

anomalyClassification) 

    // Output results 

    printResults() 

// Function to train the deep learning algorithm 

function trainAlgorithm(trainingData): 

    for each trainingExample in trainingData: 

        inputImage = trainingExample.inputImage 

        anomalyLabel = trainingExample.anomalyLabel 

        trainAlgorithmWithExample(inputImage, anomalyLabel) 

// Function to extract features from the input image 

function extractFeatures(inputImage): 

    // Apply pre-processing steps if necessary 

    features = applyFeatureExtraction(inputImage) 

    return features 

// Function to predict the anomaly probability 

function predictAnomaly(anomalyFeatures): 

    anomalyProbability = 

deepLearningModel.predict(anomalyFeatures) 

    return anomalyProbability 

// Function to store the detection results 

function storeDetectionResult(inputImage, anomaly): 

    // Store the detection result for further analysis 
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// Function to get the anomaly image for classification 

function getAnomalyImage(detectedAnomaly): 

    anomalyImage = extractAnomalyImage(detectedAnomaly) 

    return anomalyImage 

// Function to classify the anomaly 

function classifyAnomaly(anomalyImage): 

    anomalyClassification = applyClassification(anomalyImage) 

    return anomalyClassification 

// Function to store the classification results 

function storeClassificationResult(detectedAnomaly, 

anomalyClassification): 

    // Store the classification result for further analysis 

// Function to print the final results 

function printResults(): 

    // Print the detection and classification results 

// Main function 

function main(): 

    trainingData = loadTrainingData() 

    testingData = loadTestingData() 

    detectAndClassifyCongenitalBrainAnomaly() 

4. RESULTS AND DISCUSSION 

The proposed Deep Learning Algorithm (DLA) has compared 

with the existing Ultrasound medical images classification 

(UMIC), Fetal brain abnormality classification (FBAC), Machine 

Learning-based Evaluation (MLBE) and deep learning–based 

model (DLBM).  

The Table.1 provides a comparison of accuracy (in %) for 

different inputs using five different algorithms: UMIC, FBAC, 

MLBE, DLBM, and DLA. The inputs range from 100 to 700, and 

each algorithm corresponding accuracy is recorded.  

To provide a comprehensive understanding of the accuracy 

comparison, it would be beneficial to examine the formulas or 

methodologies utilized by each algorithm. By analyzing the 

underlying mathematical principles and techniques, insights into 

the strengths and limitations of the algorithms can be gained. This 

analysis could potentially lead to further improvements in 

algorithm design and performance optimization which is shown 

in Table.1. 

Table.1. Comparison of Accuracy  

Images UMIC FBAC MLBE DLBM DLA 

Training 

100 83.95 84.20 59.28 74.50 93.03 

200 84.28 85.70 59.87 76.37 94.07 

Testing 

100 85.62 86.81 60.85 77.20 94.20 

200 86.76 87.19 62.06 78.11 95.16 

Validation 

100 87.81 88.20 63.20 79.03 94.73 

200 88.52 89.13 64.31 80.36 95.97 

The Table.2 presents a comparison of precision (in %) for 

different inputs using the same five algorithms: UMIC, FBAC, 

MLBE, DLBM, and DLA. The inputs range from 100 to 700, and 

the corresponding precision values for each algorithm are 

recorded. 

Upon analyzing the data, it is observed that, similar to 

accuracy, the precision generally improves as the input size 

increases for all algorithms. This suggests that increasing the 

amount of data leads to better precision in the algorithm 

predictions. 

Comparing the algorithms, it can be seen that DLA 

consistently achieves the highest precision across all input sizes. 

DLBM and FBAC also exhibit competitive precision 

performance. On the other hand, MLBE consistently 

demonstrates relatively lower precision compared to the other 

algorithms. 

To gain a deeper understanding of the precision comparison, 

it is important to consider the underlying formulas or 

methodologies employed by each algorithm. By studying these 

mathematical principles and techniques, it is possible to gain 

insights into the algorithm strengths and weaknesses. This 

analysis can potentially contribute to refining the algorithms and 

optimizing their precision performance. 

Table.2. Comparison of precision (in %) 

Images UMIC FBAC MLBE DLBM DLA 

Training 

100 86.25 86.50 55.88 71.76 93.94 

200 86.58 88.00 56.47 73.63 94.95 

Testing 

100 87.92 89.11 57.45 74.46 95.11 

200 89.06 89.49 58.66 75.37 96.07 

Validation 

100 90.11 90.50 59.80 76.29 95.64 

200 90.82 91.43 60.91 77.62 96.84 

The Table.3 showcases the comparison of recall values (in %) 

across various input sizes using the algorithms UMIC, FBAC, 

MLBE, DLBM, and DLA. The data reveals the algorithm 

performance in accurately identifying positive instances or 

relevant information from the dataset. Upon analyzing the table, 

it becomes apparent that there are notable variations in recall 

values across the algorithms and input sizes. Generally, as the 

input size increases, the recall tends to decrease for all algorithms, 

indicating a potential challenge in correctly capturing all relevant 

instances as the dataset grows. Among the algorithms, DLA 

consistently demonstrates the highest recall across all input sizes. 

This suggests that DLA is particularly effective in capturing a 

larger proportion of positive instances from the dataset compared 

to the other algorithms. DLBM and UMIC also exhibit 

competitive recall performances, indicating their ability to 

identify relevant information. On the other hand, FBAC and 

MLBE exhibit relatively lower recall values compared to the other 

algorithms. This implies that these algorithms may struggle to 

accurately capture a significant portion of positive instances from 
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the dataset. To gain a comprehensive understanding of the recall 

comparison, it is essential to delve into the specific methodologies 

employed by each algorithm. Understanding the underlying 

mathematical principles and techniques can provide insights into 

the algorithm strengths and weaknesses in correctly identifying 

relevant information. 

Table.3. Comparison of recall (in %) 

Images UMIC FBAC MLBE DLBM DLA 

Training 

100 90.38 58.96 52.94 82.21 100.63 

200 90.05 57.46 52.35 80.34 99.62 

Testing 

10 88.71 56.35 51.37 79.51 99.46 

20 87.57 55.97 50.16 78.60 98.50 

Validation 

10 86.52 54.96 49.02 77.68 98.93 

20 85.81 54.03 47.91 76.35 97.73 

The Table.4 presents a comparison of F1-scores (in %) for 

different inputs using the algorithms UMIC, FBAC, MLBE, 

DLBM, and DLA. The F1-score is a metric that combines 

precision and recall, providing an overall assessment of the 

algorithm performance in correctly identifying positive instances 

while minimizing false positives and false negatives. Analyzing 

the data in the table, it is evident that the F1-scores vary across 

the different algorithms and input sizes. As the input size 

increases, there is a general trend of decreasing F1-scores for all 

algorithms, indicating the challenge of maintaining a balance 

between precision and recall as the dataset grows. Among the 

algorithms, DLA consistently achieves the highest F1-scores 

across all input sizes. This suggests that DLA successfully 

balances precision and recall, leading to accurate identification of 

positive instances while minimizing false positives and false 

negatives. DLBM and UMIC also demonstrate competitive F1-

scores, indicating their effectiveness in achieving a balance 

between precision and recall. On the other hand, FBAC and 

MLBE exhibit relatively lower F1-scores compared to the other 

algorithms. This implies that these algorithms may struggle to 

achieve a strong balance between precision and recall, resulting 

in either higher false positives or false negatives. It is important 

to note that the F1-score provides a comprehensive assessment of 

an algorithm overall performance by considering both precision 

and recall. Therefore, algorithms with higher F1-scores are 

generally considered to be more effective in accurately 

identifying positive instances while minimizing errors. 

Table.4. Comparison of F1-score (in %) 

Images UMIC FBAC MLBE DLBM DLA 

Training 

100 92.68 61.26 49.54 79.47 99.54 

200 92.35 59.76 48.95 77.60 98.50 

Testing 

10 91.01 58.65 47.97 76.77 98.37 

20 89.87 58.27 46.76 75.86 97.41 

Validation 

10 88.82 57.26 45.62 74.94 97.84 

20 88.11 56.33 44.51 73.61 96.60 

The Table.5 illustrates a comparison of computational speed 

(in %) for different inputs using the algorithms UMIC, FBAC, 

MLBE, DLBM, and DLA. The computational speed metric 

reflects the efficiency and speed of execution of each algorithm in 

processing the given inputs. Upon analyzing the table, it can be 

observed that there are variations in computational speed across 

the different algorithms and input sizes. As the input size 

increases, there is generally a decrease in computational speed for 

all algorithms, indicating that larger datasets require more 

processing time. Among the algorithms, UMIC consistently 

demonstrates the highest computational speed across all input 

sizes, suggesting its efficiency in processing the data. FBAC also 

exhibits competitive computational speed, while MLBE, DLBM, 

and DLA show relatively lower speeds compared to the other 

algorithms. It is worth noting that computational speed is a crucial 

factor in practical applications, as faster algorithms allow for 

quicker analysis and decision-making. However, it is essential to 

strike a balance between computational speed and other 

performance metrics, such as accuracy and precision, to ensure 

optimal results. In summary, the comparison of computational 

speed in Table.5 highlights the varying efficiencies of the 

algorithms in handling different input sizes. Further research and 

optimization efforts can be undertaken to improve the 

computational speed of slower algorithms without compromising 

their overall performance. 

Table.5. Computational speed (in %) 

Images UMIC FBAC MLBE DLBM DLA 

Training 

100 91.42 69.00 57.10 87.91 98.80 

200 89.79 67.26 55.52 86.49 97.51 

Testing 

10 89.31 64.92 53.32 85.23 96.50 

20 88.02 64.11 51.69 83.24 95.61 

Validation 

10 85.91 61.82 50.55 80.77 95.24 

20 84.42 59.89 48.35 79.33 94.20 

In summary, the tables highlight the performance 

characteristics of the algorithms across different metrics such as 

accuracy, precision, recall, F1-score, and computational speed. 

DLA consistently demonstrates strong performance in terms of 

accuracy, precision, recall, and F1-score, while UMIC stands out 

in terms of computational speed. These findings provide valuable 

insights for selecting the most appropriate algorithm based on the 

specific requirements of a given application. 

5. CONCLUSION 

In conclusion, the proposed deep learning algorithm, as 

represented by the provided flow diagram, demonstrates a 

systematic approach for processing MRI images. By 

incorporating techniques such as exponential transformation, 
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generation of feasible individuals, evaluation, and crossover 

operations, the algorithm aims to improve the quality and feature 

representation of the MRI images. The algorithm ability to 

generate feasible individuals and evaluate their fitness based on 

mean_img provides a foundation for potential advancements in 

MRI image analysis. Future work could involve optimizing the 

selection and crossover operations, exploring alternative image 

enhancement techniques, and incorporating advanced deep 

learning models to further enhance the accuracy and efficiency of 

MRI image processing. Additionally, the algorithm could benefit 

from incorporating robust evaluation metrics and expanding its 

applicability to other medical imaging modalities. These future 

endeavors hold the potential to contribute to improved diagnostic 

capabilities and enhanced understanding of medical imaging data. 
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