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Abstract 

Automatic diagnosis of Covid-19 lung complications from 

Computerized Tomography (CT) scans is an increasingly important 

research topic. In this rapidly developing area of Covid detection from 

medical image sequences, it is noted that most prior literature has 

focused on binary classification to detect diseased versus healthy cases 

from single X-ray or CT image. In this paper, we advance a step further 

by presenting a comprehensive framework for automated classification 

of the severity of lung infection (mild, moderate and severe) from CT 

sequences of confirmed Covid cases. We consider the sequence 

information for automation because in practice, the medical experts 

look at the CT sequence to score the severity of infection. We have 

collected a new lung CT sequence dataset at various stages of Covid 

infection from Indian patients. This dataset has been scored in terms 

of the severity of each lung lobe by experts in the field. We present a 

novel application of space-time transformers for CT sequences and 

achieve 93.3% accuracy for sequence level and 99% accuracy for 

patient-level, for multi- class classification of severity classes. 
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1. INTRODUCTION 

Computerized Tomography (CT) is an advanced and 

expensive imaging modality that consists of a sequence of X-ray 

radiology images captured at different angles around the body. 

Covid-19 infection is characterized by respiratory issues affecting 

the lungs. Covid testing using images is becoming increasingly 

vital for lung infection symptoms. It is also used as a follow-up to 

Reverse transcription polymerase chain reaction (RT-PCR) 

testing. The CT scan images of lungs represent slices or different 

views of the lung tissues. Although there has been progress in 

detection of Covid versus normal from CT scans [1] [2], there is 

lack of research and labeled dataset for classification of different 

stages of Covid severity from CT sequences. 

Lung scans of Covid patients exhibit white lesions of varying 

density, named as ground glass opacities (GGO) which appear 

hazy and less opaque in the initial stages. GGO’s in lung tissues 

of infected patients appear white in the CT images whereas the 

lung tissue for a healthy person with free air flow in lungs appear 

black. These lesions are called consolidations if they appear more 

solid as opaque white patches and occlude the bronchial structures 

in the image. Even in early stages of severity, ground glass 

opacities (GGO) appear in the lung [3], therefore the presence of 

GGO is an important evidence of lung infection. As the severity 

increases, so does the GGO appearance in the air- filled portions 

of lung regions. Patients can exhibit: (i) only GGO, (ii) only 

consolidations, or (iii) combination of GGO as well as 

consolidations. Depending on the stage of the infection, the type 

of treatment also varies, so it is vital to correctly assess severity 

in an automatic manner. 

A lung is composed of five lobes, two on the left and three on 

the right side: (i) Left Upper (LU), (ii) Left Lower (LL), (iii) Right 

Upper (RU), (iv) Right Middle (RM), (v) Right Lower (RL) lobes. 

The severity of the lung disease is typically labeled via visual 

inspection by experts. The infection is labeled on every lobe in a 

range from 0 to 5 (where 0 is healthy and 5 is most severe) and 

then take the sum to get the total score. Therefore, the total 

severity score (TSS) ranges from 0 to 25 overall for the five lobes 

of the lung. From our discussions with medical experts on the best 

approach to do multi-class classification, we have grouped the 

scores into three categories: mild (0<TSS<2), moderate 

(2<=TSS<8), and severe (8<=TSS<=25) [19]. The TSS scores 

for every lobe are determined from a sequence of CT images 

where that lobe is visible. 

Among the classification methods for image sequences, most 

of the networks are based on convolutional neural networks 

(CNN), but the focus has shifted to transformers very recently [4]. 

State-of-the-Art (SOTA) performance was achieved in the field 

of natural language processing (NLP) using Transformer 

architecture for handling sequential text data [5]. There was a 

perceived gap in research to efficiently apply transformer 

architecture to handle image sequences. A comprehensive 

framework for applying transformers to images, viz. Vision 

Transformer (ViT) proposed in [4] was a breakthrough. 

Thereafter, there has been a plethora of applications for 

transformer architectures for both image and video data. The 

TimeSformer family of architectures introduced in [6], is an 

adaptation of visual transformers to video applications, by 

harnessing spatio-temporal feature learning from the sequence. 

The performance of TimeSformers has been compared to 3D 

convolutional neural networks in [6] and the former proved to be 

more efficient. 

The aim of this research is to quantify the severity of Covid-

19 infection from Lung CT Sequences. This will help identify 

more serious patients and prioritize treatment based on severity 

scores. Rather than taking a segmentation approach which is more 

computationally expensive, we prefer solving the severity 

problem as a classification task. Our approach mimics the medical 

expert’s procedure of severity scoring, by observing the 

sequences of lung lobes rather than relying only on stand-alone 

images. We explore the effectiveness of Transformer networks 

when applied to CT sequential image data. Transformer 

architecture has been proven effective for text sequences and for 

videos. This paper presents a novel application of TimeSformer 

for structure-varying medical sequences, which has not been 

previously addressed. We have collected a new CT dataset from 

an Indian hospital, taken from 102 patients. This dataset contains 
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7797 CT images from 102 patients. 7090 overlapping image 

sequences were constructed from these images with a sequence 

length of eight. Each lobe of the lungs in the CT sequences has 

been labeled for severity score by experts in the field.  

2. RELATED WORKS 

For computer vision tasks, attention has been applied in con- 

junction with convolutional neural networks (CNN) or used to 

replace some layers while keeping their overall structure in place. 

Wholly replacing CNNs with purely attention-based transformer 

architecture and applying it directly to image patches for 

classification was presented recently in [4]. 

Following the successful performance of transformers first in 

natural language processing (NLP) and then for image 

classification tasks, researchers applied transformers as a building 

block for video processing in [6]. Intuitively, this extension seems 

straightforward as a video is a sequence of images. However, 

Vision Transformers from [4] cannot be directly applied since we 

need to consider not only space but also time. Rather than 

processing the frames as isolated images, we need to incorporate 

attention that accounts for the variation between consecutive 

frames. 

A convolution-free approach to video classification, viz. 

TimeSformer, built exclusively on self-attention over space and 

time, was presented in [6]. It adapts the standard Transformer 

architecture to video by enabling spatio-temporal feature learning 

directly from a sequence of frame-level patches. The experimental 

study in [6] compares five different self-attention schemes and 

concludes that divided attention, where temporal attention and 

spatial attention are separately applied within each block, leads to 

the best video classification accuracy. 

Typical effects of Covid-19 in lung images include visible 

lesions with ground-glass opacities (GGO). Imaging 

interpretations are vital for diagnosis and monitoring of disease 

progression and the evaluation of treatment [1]. The clinical 

guidelines for radiologists to interpret CT scans for manually 

diagnosing Covid-19 were detailed in [3].  

Image datasets in [13] are small sets of CT scans and X-rays, 

collected primarily from China, USA, Italy, and Japan. There is a 

lack of labeled CT scan data particularly for severity level of 

Covid-19 patients from India. A recent survey in [15] states that 

radiologists can diagnose Covid-19 more accurately with CT 

scans, rather than other medical imaging modalities such as X-ray 

and Ultrasound scans.  

An approach for detection and severity scoring for disease 

monitoring using X-ray images for Covid-19 patients was 

presented in [7]. A simple CNN architecture with stochastic 

pooling was used for chest CT-based Covid-19 diagnosis in [17]. 

A weakly-supervised deep learning method for detecting Covid-

19 infection from CT images was proposed in [8]. Localization of 

ground-glass opacities (GGO) using class-activation maps 

(CAM) was presented in [9]. A deep 3D-CNN architecture 

consisting of 121-layers, named De-COVID19-Net was presented 

in [10], which uses 3D convolution to synthesize spatial 

information of the CT image. An overview of artificial 

intelligence methods, particularly deep learning for the detection 

of Covid-19 from medical imaging data was provided in [11] and 

[13]. These image-based methods used deep learning algorithms, 

specifically CNNs for Covid-19 detection and most of them 

operated at an image-level. 

Severity quantification of COVID- 19 on X-Ray images (not 

CT scans) using Vision Transformer’s attention as the backbone 

for a segmentation pipeline was introduced in [16]. These 

attention-based mechanisms were also at image level. 

Automatic segmentation of infected regions of lung infection 

from CT scan was proposed in [2] and [14] using InfNet 

architecture and a multi encoder-decoder network called 

ConvSegNet respectively. A pipeline of commonly used 

convolutional neural network (CNN) architectures for 

classification and segmentation, namely, ResNet-50 and U-net, 

were used in [12]. These approaches require pixel-wise 

segmentation data which involves a lot of labeling effort. There is 

a need for multi-class classification-based detection and 

localization of the disease which can lead to faster diagnosis as it 

involves less computational complexity and data labeling efforts. 

Our work takes a classification approach and uses clinically 

relevant Total Severity Score (TSS) as the basis for evaluation. 

We present a novel approach of determining the severity class 

from CT sequences of the lung lobes instead of single images as 

in previous works in concurrence with the approach taken by 

medical experts. Space-Time attention-based classification of CT 

sequences has also not been addressed in any of the earlier works. 

3. PROPOSED METHOD 

We first present the detailed description of the dataset and 

present sample CT scan slices and tables of severity scores of 

patients in each mild, moderate, and severe category.  

3.1 DATASET DESCRIPTION 

We have collected a new CT dataset from 102 patients, 

consisting of 7090 sequences, constructed from 7797 images, and 

labeled for lobe-level severity scores by medical experts. Note 

that all the CT Sequences are from Covid-19 positive patients 

only with varying levels of severity and kindly provided for 

research purposes by Navodaya Medical Institute, Raichur, India. 

Table.1. Multi-class classification of Total Severity Score (TSS). 

Severity category Total Severity Score 

Mild 0<TSS<2 

Moderate 2<=TSS<8 

Severe 8<=TSS<=25 

Table.2. Sample Patients with severe Covid-19 infection  

RUL RML RLL LUL LLL TSS 

5 5 4 4 4 22 

4 4 5 4 5 22 

4 4 5 4 5 22 

3 5 5 5 5 23 

5 5 5 4 5 24 

The severity category is based on the total severity score (TSS) 

which is computed from the five lobes, the severity of each lobe 
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ranging from 1 to 5 as shown in Table.1. To give a split of TSS 

scores of samples, we have presented the data of five patients in 

the category of Severe and Moderate classes in Table.2 and 

Table.3, respectively. The TSS scores are the sum of lobe-level 

scores and categorized into three classes as in Table.1 by 

consulting with doctors and in reference to [19]. 

Table.3. Sample Patients with moderate Covid-19 infection  

RUL RML RLL LUL LLL TSS 

1 1 3 1 1 7 

2 1 2 1 1 7 

1 1 3 1 1 7 

1 1 2 1 2 7 

1 1 2 1 2 7 

The number of images in a CT lung sequence depends on the 

height of the patient and typically varies in the order of 120 to 180 

images per sequence. The order of appearance of the lung lobes 

in the sequence is not consistent across all patients as some are 

top-bottom and others are in bottom-top direction. Therefore, the 

slices in which a particular lobe is visible for a patient (e.g., the 

left upper lobe) will not match with the slices for which the same 

lobe appears for another patient. To combat the varying sequence 

length problem and to provide coverage for the whole CT 

sequence for a patient, the input dataset was prepared by creating 

overlapping sequences with a sequence length of 8. Considering 

a lung sequence of length 120, the first 8 slices form one sequence, 

slices 2 to 9 forms the next, 3 to 10 the next, etc. This pre-

processing handles the problem of varying CT lengths for 

different patients and ensures that the model learns from all the 

lung regions. Shorter sequence length was also chosen to 

accommodate the changes in the biological structure of lungs 

which occur every few slices. This will avoid the unnecessary 

attention computations across slices from different lobes. As the 

model learns from the sequences of all the lung lobes with 

overlapping sequences, it gains the ability to score for each lobe 

separately as well. It is not strictly restrictive towards the starting 

and ending positions of the sequence. This method also efficiently 

keeps the sequence length under check to deal with the time and 

space complexities of the space-time attention computations in 

transformers. 

The CT scans of patients belonging to each of the categories 

are presented next, showing various views of the lung portions. 

Fig. 1 presents a cross-section of CT scans pertaining to Severe 

cases, while Fig. 2 and Fig. 3 show samples of Moderate and Mild 

cases, respectively. It can be observed that Severe cases in Fig. 1 

have more solid consolidations when compared to Figures 2 and 

3, which exhibit GGOs. 

Each slice of the CT sequence captures a different cross- 

section of the lung and the GGOs and consolidations appear more 

prominent in the lower portions of the lungs which is typically 

found to be most infected across patients. For arriving at a severity 

score diagnosis, the doctor manually does a visual examination of 

all the slices of the CT scans to assess the severity at every lobe 

of the lung. This is a time-consuming process as the doctor must 

examine sequence of 120 to 180 images per patient and will surely 

benefit from automation. 

 

Fig.1. Clinical Type – Severe (8<=TSS<=25) 

 

Fig.2. Clinical Type – Moderate (2<=TSS<8) 

 

Fig.3. Clinical Type – Mild (0<TSS<2) 

3.2 SPACE-TIME TRANSFORMER 

The TimeSformers algorithm, which is based on space-time 

transformer architecture, is adapted from [6] for our application 

and described in detail. But we shall first give a brief overview of 

the working of transformer architecture. Self-attention is the 

fundamental operation of transformer, and it is a sequence-to-

sequence weighted average operation. The mathematical 

operation is the dot product of vectors to which we apply softmax 

to map the values to [0,1] to compute the self-attention weights. 

To apply self-attention, we first compute Query, Key, and Value 

vectors represent the following operations on the input vector: 

Query: Input is compared to every other vector to establish the 

weights for its own output. ii) Key: Input is compared to every 

other vector to establish the weights for the output of the jth  

vector. iii) Value: Input is used as part of the weighted sum to 

compute each output vector once the weights have been 

established. 

Multi-head self-attention is a small number of copies of the 

self-attention mechanism applied in parallel, each with their own 

key, value, and query transformation. The transformer building 

block applies, in sequence: a self-attention layer, layer 

normalization, a feed forward layer and another layer 

normalization. Residual connections are also added after 

normalization. ViT (Vision Transformer) architecture divides the 

image into patches and then computes self-attention between the 

patches of the same image.  

TimeSformers captures the attention for spatial context within 

the same image as well as across slices. Among the five variants 

of TimeSformers proposed in [6], the architecture that has 

achieved the best results is Divided Space-Time Attention. Given 

a slice and one of its patches as a query (q), it first computes the 

spatial attention over the rest of patches, termed as keys, (k). 

Later, the temporal attention is computed in the same patch of the 
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query, in all the corresponding patches across slices. This process 

fetches the most attentive value (v) patch for the query patch q 

across patches in the same location across slices and across all 

patches in the same slice. 

The Divided Space-Time Attention architecture (shown in 

Fig. 4) independently applies temporal attention and spatial 

attention for each slice one after the other. Fig. 5 shows the space 

neighborhood and the time neighborhood for the query patch 

wherein blue patch is query, orange patches are space neighbors 

and green patches are time neighbors. White patches are ignored 

for self-attention computations. 

 

Fig.4. Space Time Transformers 

 

Fig.5. Patch neighborhood for space-time model 

Each CT sequence has 8 slices, and each slice is divided into 

flat patches p(s,t) of size P2C where P is the patch-size and C is 

the channel size, which is 16 and 3, respectively. This results in 

an input dimension of 768 per patch. The number of patches S in 

a slice is given by (H ∗ W)/P2 where P is the patch size and H, and 

W are the height and width of the slice. The experiments used an 

input resolution of (224,224) resulting in 196 patches per slice.  

Each patch p(s,t) is mapped to an embedding vector z0(s,t), which 

is then given as input to the transformer. This is computed using 

a learnable embedding matrix E of dimension (P2C, D) which for 

our experiment was (768, 128). A trainable positional embedding 

e is added to the concatenated sequence of projections to add a 

spatial representation of each patch within the sequence. The 

computation of the transformer input is as given below: 

 z0(s,t) = E.p(s, t) + e(s, t)         (1) 

where p(s,t) with s = 1, 2...S represents the flattened patches in a 

slice (S=196 for our experiment). The CT slices are represented 

by t=1, 2...T, where T=8. e represents the position embedding that 

encodes the position of each patch. The positional embedding e is 

of dimension (S + 1, D) where unity corresponds to the 

classification token which is added along with the patches. The 

input to the transformer is of dimension (T, S + 1, D) = (8, 196 + 

1, 128).  

The input z0(s, t) is projected to query, key and value matrices 

using the below formula to help calculate the self-attention values. 

LN stands for layer normalization, l is the index over the attention 

blocks L=1, a is the index over the attention heads A=4, q is the 

query matrix, k represents the key matrix and v represents the 

value matrix. 
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The attention weights over the slices 1…T are calculated using 

the below formula: 
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Dh=32 represents the latent dimension which is D/A (128/4) 

for our experiment. The self-attention values for the slice-based 

attention weights from Eq.(5) and value vector v are calculated as 

below: 
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Then, the concatenation of these vectors from all attention 

heads is projected as in Eq.(7), the residual connection from the 

encoding of previous layer is also added. 
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The encoding based on slice attentions from Eq.(7) is then fed 

back for spatial attention weight computation using a new set of 

query, key, and value matrices as below: 
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The spatial attention values are calculated using the attention 

weights from Eq.(8) and the value matrices projected using 

( )
( )
,

l slices

s t
z from Eq.(7) as below: 
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The concatenation of the space attention values from Eq.(9) is 

projected using the below equation and passed through a feed 

forward network with residual connections from slice encodings. 
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The encoding
( ),

l

s t
z from the last layer corresponding to the 

classification token is passed through a linear layer with three 

output nodes to determine the severity of covid-19 infection. 

4. EXPERIMENTS AND RESULTS 

4.1 EXPERIMENTAL SETUP 

We have used TimeSformer for sequence-wise classification 

with ViT backbone. We performed three-fold cross-validation 

which are split patient-wise during training using stratified split 

on the classes. Note that there are several sequences per patient, 

and while taking three-fold cross validation, we have done 

stratified split such that patients are not duplicated across training 

and testing. As the number of patients are limited, too large value 

of K will result in iterations that are not different, we selected K=3 

given it provided representative coverage of the distribution in all 

three folds. The former can harness the sequence information to 

provide lobe-level severity if sequences from a lobe are presented 

to the model thereby allowing for lobe-wise scoring. We also 

present the patient-level accuracy from the sequence-wise for 

TimeSformer by using the maximum predictions for each patient. 

The experiments were performed using Standard_NC6s_v3 

version of Azure GPU virtual machines with v100 GPU. 

The dataset configuration details are presented in Table 4. The 

images were normalized and resized before giving it as the input 

to the network. Each input slice is resized to 256*256, center-

cropped to standard input size of 224*224 and then divided into 

uniformly spaced 16 ∗ 16 non-overlapping patches. The slices 

were normalized using the mean and standard deviation of all the 

training sequence image channel-wise. Since the CT scans of each 

patient are irregular in the length of sequences (number of slices 

varying), we have split it into smaller, overlapping sequences of 

uniform sequence length. This also allows us to score on any set 

of sequences from the patient. 

Table.4. Dataset Configuration 

Configuration Value 

Images 7797 

CT Sequences 7090 

Image Size 224 * 224 

Normalization 
mean= [0.485, 0.456, 0.406] 

std= [0.229, 0.224, 0.225] 

The details about the TimeSformer sequence configuration 

and training settings are presented in Table 5. Since the CT 

sequences were not uniform in length, and to avoid truncating 

thereby wasting data slices, we took overlapping sub-sequences 

of 8 slices. Patch size of 16x16 pixels for ViT was used in 

accordance with [4]. We have used the Cosine learning rate 

scheduler with a learning rate of 1e-4, and Gamma parameter of 

0.6 and trained for 10 epochs with the batch size of 16. 

Table.5. TimeSformer Configuration 

Configuration Value 

No of Attention Heads  4 

No. of Attention Blocks 1 

Dimension of encoding vectors 128 

Dimension of encoding vectors of attention heads 32 

Patch Size (ViT) 16*16 

Sequence Length 8 

Attention Dropout 0.1 

Multi-Layer Perceptron Dropout 0.1 

4.2 RESULTS  

We present detailed classification report for sequence 

transformers in Table.6. For multi-class classification, weighted 

average is a performance measure taking the number of samples 

in the three categories [18].  

Table.6. Classification Report for TimeSformer (Sequence-wise) 

 Precision Recall F1-Score Support 

Mild 0.96 0.88 0.92 1538 

Moderate 0.83 0.97 0.90 1869 

Severe 0.98 0.93 0.96 3683 

Accuracy   0.933 7090 

Macro-Avg 0.93 0.93 0.93 7090 

Weighted-Avg 0.94 0.93 0.93 7090 

Confusion matrix for sequence-level predictions of 

TimeSformer is presented in Table.7, which indicates good 

performance as the off-diagonal elements are very less. The 

misclassifications (off-diagonal elements) correspond to the CT 

scans of the upper-most lung-lobes. The expert doctors observed 

that portion of the lung to be least susceptible to Covid-19 

infection when compared to the lower lobes, which means there 

may not be much distinction between the three classes. 

Table.7. Confusion Matrix for TimeSformer (Sequence-wise) 

 Mild Moderate Severe 

Mild 1342 116 80 

Moderate 45 1814 10 

Severe 2 256 3425 

Patient-wise accuracy was computed by taking the maximum 

predictions of all sequences for each patient. The average 

accuracy, precision and recall for patient-wise classification from 

all 3 folds of cross-validation are presented in Table 8. It is 

observed that all three performance indicators are above 95% for 

sequence transformers. TimeSformer provides additional context 

using sequence information to predict patient wise severity scores, 

rather than relying on a single image for a prediction. It also offers 

advantages for cases where lobe level differences are present for 
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the same patient and we need to calculate the severity level for 

different lobes rather than a patient-level severity class.  

Table.8. Patient-level average metrics for 3-fold cross-validation 

Metric Value 

Accuracy 0.99 

Precision 0.97 

Recall 0.99 

4.3 EXPLAINABILITY OF PREDICTIONS 

Explainability analysis is useful for more comprehensive 

diagnosis and trustworthiness of the predictions. The prediction 

of severe cases of Covid-19 from the ViT backbone is explained 

using XRAI [20], a region-based saliency method. This approach 

over-segments the image and evaluates the importance of each 

segment using Integrated Gradients based attributions. It then 

coalesces smaller regions into larger segments based on the 

attribution scores.  

 

Fig.6. XRAI Attributions of a severe case of covid - CT slice 

from upper lung region 

 

Fig.7. XRAI Attributions of a severe case of covid - CT slice 

from middle lung region 

 

Fig.8. XRAI Attributions of a severe case of covid - CT slice 

from lower lung region 

The Fig.6-Fig.8 shows the XRAI-based attributions generated 

from CT slices of severe Covid predictions pertaining to the 

upper, middle, and lower lung regions of different Covid patients.  

The model has indeed observed the infected areas of the lungs 

with GGO and consolidations while predicting the severe class of 

infection. This paves the way for localization of the regions to 

pinpoint diseased tissues, without the need for explicit 

segmentation. 

5. CONCLUSION 

In this paper, we have presented space-time transformer- 

based attention mechanism for automatic severity classification of 

lung infection in Covid-19 patients from CT sequences. We have 

collected a new CT dataset from 102 patients in India, consisting 

of 7797 images, which are grouped into 7090 overlapping 

sequences of slice length 8. Each lung lobe has been visually 

examined and labeled by experts in the field. We achieved 93.3% 

accuracy for multi-class classification of severity scores at 

sequence level. Maximum predictions for sequences of each 

patient yields a patient-level accuracy of 99.0%. Lobe-level 

severity can also be inferred using this work by presenting the 

sequences from the different lung lobes to the model. This 

research can be easily extended to other medical scenarios with 

sequential image data. 
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