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Abstract 

Geometric transformations of the training data as well as the test data 

present challenges to the use of deep neural networks to vision-based 

learning tasks. To address this issue, we present a deep neural network 

model that exhibits the desirable property of transformation-

robustness. Our model, termed RobustCaps, uses group-equivariant 

convolutions in an improved capsule network model. RobustCaps uses 

a global context-normalised procedure in its routing algorithm to learn 

transformation-invariant part-whole relationships within image data. 

This learning of such relationships allows our model to outperform 

both capsule and convolutional neural network baselines on 

transformation-robust classification tasks. Specifically, RobustCaps 

achieves state-of-the-art accuracies on CIFAR-10, FashionMNIST, 

and CIFAR-100 when the images in these datasets are subjected to 

train and test-time rotations and translations. 
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1. INTRODUCTION 

1.1 EQUIVARIANCE AND GEOMETRIC 

TRANSFORMATIONS 

Convolutional neural networks (CNNs) have, for a decade 

now, remained as one of the best performing models for computer 

vision. Their successes in computer vision can be attributed to 

both advances in computing hardware which allow for deeper 

models, and to the weight sharing scheme that the correlations in 

CNNs use. 

Under this weight-sharing scheme, pattern detectors are 

shared translationally so that an object detected at a location may 

be detected at others even after translations. The Fig.1 presents a 

visual representation of the weight-sharing, and Fig.2 presents a 

depiction of this property of detection across translations. This 

property is related directly to the fact that translations of objects 

in a scene do not affect their categories. Seen more generally, this 

translational symmetry can be generalised to other 

transformations of the data such as rotations and reflections, or in 

general, any symmetry transform which usually leaves the 

category of the data unchanged. 

While the detector-sharing of CNNs does not reflect such 

general symmetries, the simple correlation on grid-locations has 

been generalised to general groups of symmetry transforms. This 

generalisation allows for the preservation of transformation 

symmetries, and results in a greater sharing of detectors in layers. 

These models, termed group-equivariant CNNs (GCNNs), were 

first introduced in [1]. The authors extended the correlation in 

CNNs to groups of more general transformations, such as that 

formed from the composition of orthogonal rotations, 

translations, and reflections. The Fig.3 shows a visual explanation 

of equivariance to rotations and translations. 

 

Fig.1. The above image depicts the usual weight-sharing scheme 

in CNNs. Each blue rectangle within the image indicates a 

region where a single correlation with a filter happens. The 

weights of the CNNs are shared across these rectangles. Thus, 

for a filter of a CNN-layer, the same pattern is detected at each 

of the rectangles 

Seen in another manner, it can be said that the filters are 

translated across the regions of the image. The image is taken 

from the ImageNet dataset. 

 

Fig.2. The image on the left shows a dog on the right-bottom of 

a black background. The image on the right shows the dog on 

the top-left of a black background. It can be said that the pattern 

of the dog has been translated to different locations of the image. 

A CNN would give the same representation to both the images, 

only translated to the appropriate locations. The image of the 

dog is from the ImageNet dataset. 

This more general setting in GCNNs allows for greater 

transformation-robustness that is reflected both in empirical 

results and in a formal, mathematical guarantee that is termed 

group-equivariance. Informally, group-equivariance enforces 

those transformations of the input data be reflected as the same 

transformations of the output data. Thus, it may be seen as a 

guarantee of predictability under transformations of the input. 

Extensions to the original model are a subject of active research 

and generally involve extending the definition of correlations to 

various groups [2] [3]. 

 

Fig.3. The image on the left shows a dog on the right-bottom of 

a black background. The image on the right shows the dog on 
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the top-left of a black background. It can be said that the pattern 

of the dog has been translated from the top left to the bottom 

right and then rotated clockwise by 90°. An equivariant CNN 

would give the same activations to both the images, only 

translated to the appropriate locations, and rotated by the same 

angle. The image of the dog is from the ImageNet dataset. 

1.2 PRELIMINARIES: A FORMAL DEFINITION 

OF EQUIVARIANCE 

Based on the informal description of equivariance that we 

have provided, we see that equivariance simply means the 

preservation of a transformation applied on to the input by a 

neural network. More formally, and generally, equivariance of 

function is described by the preservation of a group-action on the 

input space. We present these definitions that were introduced 

earlier in works such as [1]. 

Group: To formally describe the effect of transformations on 

inputs, it is first necessary to use a structure that can describe the 

transformations. The concept of a group offers one means of 

doing so, Groups allow for a conceptual categorisation of 

geometric transformations such as translations, rotations, 

shearing, scaling etc. The formal definition is given below. 

A set G with a binary operator defined over G is said to be a 

group if the following are true. 

(Closure) For all g, h in G, g.h is also in G. 

(Associativity) For g, h, k in G, (g.h).k = g.(h.k). 

(Identity) There exists e in G such that for all g in G, g.e = e.g=g. 

(Inverse) For all g in G, there exists g-1, such that g.g-1 = g-1.g=e. 

A common way to represent geometric transforms is to write 

them as matrices and use matrix multiplication as the operator. 

Thus, compositions of transformations can be written as the 

multiplication of matrices. Examples of these are given in [1]. 

Vector space: With groups serving as a formal structure for 

transformations, it is also necessary to describe the representation 

space of neural networks. One choice for this is to use vector 

spaces to model their activations. Informally, vector spaces are 

sets that are closed under compositions of addition and scalar 

multiplication. Examples of vector spaces are Rn using 

component-wise addition with the set of scalars being real 

numbers, using multiplication of all components by the same 

number as scalar multiplication, and matrices that use matrix-

addition with real numbers as the set of scalars. Since most neural 

networks have representations in Rn, vector spaces are a natural 

choice for representing them.  

Group action: Group actions serve as a connection between 

groups and vector spaces, allowing for the description of 

transformations of representations. Formally, they are defined in 

the following. Consider a group (G, .) and a vector space X. A 

function f : G × X → X is termed a group action if the following 

are true. 

1. f(e, x) = x, for all x in X, and where e is the identity element 

of G. 

2. f(g, f(h, x)) = f(g.h), for all g, h in G and for all x in X. 

In this work, as in [1], we shall consider a specific group action 

denoted by L. First, consider a group (G,.). Further consider a 

vector space X. Let f : G → X. Then for all g in G, let the following 

group action be defined. 

 [Lgf](x) = f(g-1x). (1) 

where, f is representative of neural networks. For most CNNs, G 

is any group that contains the translation group. L describes the 

remapping of elements from their original locations after a 

geometric transformation such as translation or rotation. 

Group equivariance: Given this definition of how 

transformations affect inputs by remapping the inputs to new 

locations, equivariance is defined by the preservation of the action 

of the group on the input space to the output space. Formally, this 

is defined by the following.  

Consider a group (G, .), a vector X, and a function f:G→X. Let 

T and T’ be two group actions defined over G. f is said to be 

equivariant with respect to T and T’ if the following is true for all 

g in G and x in X. 

 f(T(g, x)) = T’(g,f(x)).  (2) 

Equivariant convolutions: CNNs use correlations in their 

layers that are equivariant to translations. This, generally non-

equivariant, operation is described below. We shall see that the 

equivariant convolution is a generalisation of this operation. 

Consider the translation group Gt. Consider also a CNN whose 

lth layer is a function f:Gt→Rdl, where dl is a positive integer, and 

represents the number of channels input to the filters of the l-th 

layer. For example, for colour images, dl is 3, where l is the input 

layer. For deeper layers of a neural network, dl depends on the 

neural network model. Let us consider the set of dl+1 filters and 

denote it by F, where each filter is represented by Fi:Gt→Rdl. 

Moreover, let fk(x) denote the scalar at the kth dimension of the dl 

dimensional vector that f(x) gives. Similarly, let Fk
i(x) denote the 

scalar at the kth dimension of the dl dimensional vector that Fi(x) 

is. The correlation operation between f and Fi is given by: 

 ( ) ( ) ( )( )
11t l

i i

k k

y G k d

f F x f y F y x
+  

  = −     (3) 

Given any translation t in Gt, translation-equivariance is 

satisfied and expressed in the following expression. The proof is 

in [1]. 

 [[Ltf]*Fi](x) = [Lt[f*Fi]](x).  (4) 

In simple terms, this means that translating an input and 

performing correlation gives the same result as correlating and 

then translating the output. Thus, CNNs are equivariant with 

respect to translations.  

The correlation described above is extended to more general 

groups by the following definition.  

Consider a group G. Like before, also consider a CNN whose 

lth layer is a function f: Gt→Rdl, where dl is a positive integer, and 

represents the number of channels input to the filters of the lth 

layer. Let us consider the dl+1 filters F, where each filter is 

represented by Fi:Gt→Rdl. Moreover, let fk(x) denote the scalar at 

the kth dimension of the dl dimensional vector that f(x) is. 

Similarly, let Fk
i(x) denote the scalar at the kth dimension of the dl 

dimensional vector that Fi(x) is. The group-equivariant correlation 

is defined as the following. 
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Like the usual correlation, the group-equivariant correlation 

satisfies a related, but general, condition for equivariance. Given 

any transformation g in G, the following property is satisfied. The 

proof is in [1]. 

 [[Lgf]*Fi](x) = [Lg[f*Fi]](x).  (6) 

In simpler terms, this means that transforming the inputs and 

then performing correlation gives the same results as performing 

correlation and then transforming the output. Note the subtle 

difference in using Lt and in using Lg. The first of these refers to 

the action of translation, while the second is for a general group. 

Thus, the equivariance conditions are generalised from 

equivariance to translations to equivariance to more general 

transformations. 

1.3 LIMITATIONS OF GROUP-EQUIVARIANT 

CONVOLUTIONS   

GCNNs are transformation-robust by the equivariance 

guarantee that the correlation operation bestows on each layer. 

This is because the activations of transformed inputs are only 

remapped versions of the activations of untransformed inputs. 

GCNNs have shown, therefore, improved results on transformed 

data as can be seen in [1], [2], and [3]. However, certain 

limitations exist. 

One limitation that we study and aim to remedy is since 

GCNNs do not learn object-structure. The activations of GCNNs 

represent the detection of patterns in the inputs. These activations 

are based only on the activations of shallower layers and the 

weights of filters. In other words, detection of patterns is based on 

the existence of shallower patterns [4] [5]. 

Spatial objects, however, have structure that is reflected in 

relationships among objects in a visual scene. This is seen in the 

part-whole relationship among objects and their components, and 

in the relationships among components. These relationships are 

transformation-invariant, in that any symmetry transformation of 

a visual scene preserves them. Fig.4 shows an example of such 

relationships in images and their transformation-invariance. 

 

Fig.4. Consider two images of face - one of them a rotated 

version of the other. We can still see that components of the face 

are made up of the same components - just rotated. An example 

of such a hierarchy is presented in the bottom image. Note that 

after rotation, the poses of all the parts change; the relations 

between them do not. More generally, an object such as a face 

can be hierarchically understood as a combination of parts. Since 

the composition of a part does not change under transformations 

such as rotation, the part-whole structure too does not change. 

Images are from [16] 

A neural network that detects objects based on this structure 

and with the property that the relationships that this structure 

defines are preserved under transformations would be expected to 

perform better than GCNNs. This is because better features would 

be learnt. 

1.4 CAPSULE NETWORKS, PART-WHOLE 

RELATIONSHIPS, AND EQUIVARIANCE 

The above observation gave rise to the capsule network model 

[5] [6]. In capsule networks, the vector activations, termed 

capsules, denote poses of objects as opposed to existential 

information alone (as in GCNNs). Thus, at each layer of a capsule 

network, a pattern, and its pose, given by the vector capsule, are 

together detected. To do this, unlike GCNNs, capsule networks 

form deeper capsules from shallower capsules by a specialised 

procedure termed routing. Routing ensures that the deeper 

capsules reflect a notion of agreement in the poses of the objects 

the shallower capsules denote. 

The usual method for routing has shallower capsules first pass 

through prediction sub-networks to give rise to predictions - one 

for each pair of deeper and shallower capsules. The next step is to 

combine the predictions for each deeper capsule such that 

important predictions have a larger weight in the combination. 

Many algorithms use a weighted-summation to combine 

predictions and obtain the weights via iterative procedures [5], 

[6], graph-based methods [7], or directly from trainable networks 

[8]. Each of these methods represent a means of finding the extent 

of agreement among predictions, which is used as a measure of 

importance. 

Why agreement among predictions? Predictions may be 

thought of as candidate-poses for the deeper capsules. Shallower 

capsules represent objects that are seen as potential parts of deeper 

capsules. If an object is part of another object, its prediction for 

the pose of the bigger object would agree with the predictions for 

the pose made by other valid parts. This argument is referred to 

as routing-by-agreement and forms a key component of capsule 

network ideas. 

The weights for combining the predictions as well as the 

subnetworks can be considered to represent the part-whole 

relationships between the objects that the deeper and shallower 

capsules represent. Any geometric transformation of the inputs 

must not affect the relationships among capsules. A means of 

having this property is to specify that the predictions and the 

routing-weights are both equivariant to transformations of the 

input. This equivariance in routing can be seen as having 

invariance in the learnt part-whole relationships as shown in [7]. 

1.5 OUR CONTRIBUTIONS 

The above has established the need for models that are both 

equivariant and are equipped with mechanisms to learn 

compositional information in the images. However, most capsule 

models do not satisfy these properties. Formal guarantees for 

equivariance are not given for most capsule models as other 

aspects such as routing and an accurate prediction-mechanism are 

usually formulated. 

Models such as SOVNET [7] and group-equivariant capsules 

(GCAPS) [9] present equivariant capsule models. Both, however, 

have limitations on performance. GCAPS is limited by the fact 
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that its capsules are constrained to be elements of a fixed group. 

This limitation does not allow it to be highly accurate on data that 

has significant information that is not easily captured by groups. 

SOVNET does not have such limitations; nonetheless, its layers 

are not optimised for achieving state-of-the-art performance on 

transformation-robust classification on complex data. 

Specifically, the architectural aspects of SOVNET need 

improvement. This improvement can be done by bettering pre-

capsule layers to obtain object-centric features for capsules, and 

by using less bulky predictors in the capsule layers. A third 

improvement can be done by adjusting the scales of the predicting 

vectors in the capsule layers so that improper scaling can be 

avoided in the weighted summation of routing. 

Considering these observations, we propose a model for 

capsule networks termed RobustCaps that, like SOVNET, uses 

GCNNs in a capsule network framework with an equivariant 

routing procedure. Thus, RobustCaps also displays the property 

of group-equivariance. Unlike SOVNET, the modules of 

RobustCaps are designed to achieve state-of-the-art results on 

transformed data classification. 

The pre-capsule layers are improved using residual GCNN-

layers, while the predictors use a GCNN-layer instead of bulky 

residual predictors. RobustCaps also uses a global context-

normalisation mechanism in its routing mechanism to use 

appropriate scaling in the predictions. 

RobustCaps outperforms several capsule network models on 

classification of transformed images on CIFAR10, 

FashionMNIST, and CIFAR100. Further, RobustCaps also 

outperforms residual networks and group-equivariant residual 

networks on this task, showing that the learning of part-whole 

relationships in an equivariant manner is important towards 

transformation-robust classification. 

1.6 IMPLICATIONS OF OUR WORK 

Most capsule network models have, until this work, shown 

lower performance than CNNs and GCNNs. Our work can be seen 

as an effort to showcase the value of such learning and could help 

in the development of better models. 

The following summarise our contributions along with their 

implications: 

• We propose RobustCaps, a transformation-robust capsule 

network model. RobustCaps uses a novel routing algorithm 

along with group-equivariant convolutions to create a 

capsule network model that displays a high degree of 

equivariance as well as highly accurate. 

• RobustCaps uses a global-context normalisation layer with 

centrality-based routing weights to present an accurate 

model for capsule networks. 

• RobustCaps achieves state-of-the-art accuracies on 

transformed classification on CIFAR-10, FashionMNIST, 

and CIFAR-100. 

• Given the fact that RobustCaps outperforms strong 

convolutional baselines such as equivariant residual 

networks, our work can lead to further research on capsule 

networks. 

 

2. PREVIOUS WORK 

Research on equivariant convolutions has led to several 

extensions of the original work in [1]. For example, [3] extends 

GCNNs to be equivariant to rotations for spherical images. [2] 

presents a general framework for equivariant CNNs on the 

euclidean group E(2). Other works can be more theoretical. For 

example, [10] shows that any linear function that is equivariant 

can be written as an equivariant convolution. This allows a study 

of GCNNs to be considered as a study of equivariant models. 

Capsule network models aim to remedy the weakness of 

CNNs and GCNNs that is due to their detection-by-existence 

procedure for building activations. [4] suggested a remedy by 

using routing. This was extended to the capsule network models 

implemented in [5] [6]. Extensions to these models usually 

improved aspects of capsule networks such as prediction 

mechanisms. 

DeepCaps [11], STAR-CAPS [12], and self-attention capsules 

[8] are examples of models where different predictors and routing 

methods were proposed.  

DeepCaps uses the dynamic routing of the initial capsule 

network model in [5], but uses convolutional layers in the initial 

layers, to achieve good accuracies on several datasets. STAR-

CAPS and self-attention capsules use the idea of attention-

mechanisms in the routing procedure towards the same goal of 

high performance. The mechanisms used are, however, different. 

Models such as group-equivariant capsule networks (GCAPS) 

[9] and SOVNET [7], on the other hand, recognise that 

equivariance in routing is necessary towards learning invariant 

part-whole relationships among capsules. As we point out, these 

models can show better generalisation for transformations of the 

data but are not built to achieve the best results. We aim to remedy 

this. 

2.1 PROPOSED ROBUSTCAPS MODEL 

We recognise that to achieve state-of-the-art accuracies, the 

architecture of our model must be developed along with 

theoretically pleasing properties such as group-equivariance. To 

this end, we present a depth-specific construction of components 

for our model. RobustCaps has four components that correspond 

to different depths of the model. These are termed as follows: 

PreCaps, PrimaryCaps, ConvCaps, and ProjCaps. A description 

of each component is given below. A visual depiction of the 

model is presented in Fig.6. 

 

Fig.5. Diagram of the modules of RobustCaps 
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2.2 PRECAPS 

The PreCaps layer of RobustCaps is a simple residual GCNN 

network. Specifically, it comprises 7 residual blocks. Each block 

has the structure as shown in Fig.6. Note that unlike usual residual 

networks, PreCaps uses group-equivariant correlations. 

The use of such a structure for PreCaps has two purposes: 

obtaining sufficiently useful high-level features for capsules and 

maintaining the equivariance of the model for transformation-

robustness. The use of convolutional layers before capsule layers 

is inspired by empirical results in models such as [11]. The 

intuition behind this is that GCNNs detect sufficiently high-level 

features that correspond to complex features where the object-

based logic of capsule networks and routing can work. 

Note that the activations at each channel correspond to the 

existential information about patterns discovered at a 

transformational state. This information must now be converted 

into vectors that can then be used for the pose-centric mechanisms 

of the capsule layers. 

 

Fig.6. Basic residual block for PreCaps. The PreCaps 

subnetwork is made of 7 such blocks stacked end-to-end 

2.3 PRIMARYCAPS 

The PrimaryCaps layer does this by using the scalar 

activations as inputs for specialised GCNNs to obtain vector 

capsules. First, as intuition, the PrimaryCaps layer is responsible 

for detecting the pose and existence of relevant objects of various 

types. Moreover, since equivariance is desired for transformation-

robustness and invariance in the detection of object-relationships 

in later capsule layers, this layer uses GCNNs for this detection. 

Thus, the PrimaryCaps is seen as a set of vector-valued 

functions defined over a group, where each function is 

representative of a capsule type of the PrimaryCaps layer. The 

PrimaryCaps layer is also seen as detecting the poses of an initial 

set of objects that are then used to detect other patterns in the 

object-hierarchy of the image, 

Thus, each vector-value of a capsule type in the PrimaryCaps 

layer can be seen as the pose of an instance of an object that the 

capsule type denotes. Each capsule type in PrimaryCaps is given 

by a GCNN. Specifically, each dimension of a capsule-type is 

given by one GCNN filter. 

The notion of capsule types and capsules defined on a group 

extends to other capsule layers. Thus, we explain the distinction 

between capsules and capsule types using an example. Consider a 

face detection task. Also consider a capsule network trained for 

detecting faces. Then, given an image, a capsule layer detects 

important patterns for the detection task. A capsule type in the 

capsule layer represents one pattern, such as eyes, ears, or mouths. 

Depending on the number of instances of these patterns, a capsule 

type presents vectors at the locations of these patterns. Thus, a 

capsule type that detects a part of a face for this task, would return 

vectors that capture the generalised pose of all instances of the 

object. These instances are termed capsules. Thus, capsule types 

may be seen as representative of patterns, while capsules are 

instances of these patterns. 

To facilitate better training, we normalise the capsules across 

all types, this is done using layernorm. While layernorm affects 

exact equivariance, as do the strided convolutions in the residual 

blocks of PreCaps, it plays a role in improving performance. More 

generally, multiple ‘equivariant’ models such as those in [1] and 

[2] make use of such operations that reduce exact equivariance, 

but help in empirical accuracy. 

2.4 CONVCAPS 

With the poses of object-components detected by the 

PrimaryCaps, RobustCaps uses a series of ConvCaps layers to 

sequentially detect objects right up to the class level. It is in these 

layers that the transformation-invariant relationships among 

objects are learnt and detected. We describe the details of a 

ConvCaps layer in the following. 

Each ConvCaps layer consists of the following: a GCNN 

predictor per capsule type, and a global context normalised 

centrality routing layer. These layers correspond to the steps of 

prediction and routing-by-agreement that is seen usually in 

routing algorithms [5] [6] [7] [11]. 

The inputs themselves are a set of capsule types. The 

predictions for a capsule type at a layer are formed by performing 

a correlation of the associated GCNN filter for that type with each 

input capsule type. The use of GCNNs for prediction of poses in 

capsules has been done in [7]. However, the use of the GCNNs 

does not lead to state-of-the-art accuracies. Each predictor there 

is a residual GCNN subnetwork, and therefore is bulky. In this 

work, we see that a single GCNN is enough for good performance, 

showcasing the relative light-weight nature of RobustCaps. 

The principle of routing can be seen from the view that a 

prediction for a deeper capsule that is aligned with other relevant 

predictions must get a larger weight in the combination of 

predictions to form the deeper capsule [7]. Based on this principle, 

a centrality-based routing algorithm was proposed in [7] that 

combines predictions as a weighted-summation. 

Each prediction is a vertex in a graph, where the edges are 

weighted by the cosine similarity between the vectors associated 

with them. Predictions are assigned weights based on the degree-

centrality of the vertices. A prediction with a larger degree-

centrality displays a greater alignment with the other predictions 

and therefore obtains a larger weight. Predictions that are not 

relevant to the compositionality of the input display a low 

centrality and are not weighted by as much in the model. 

This intuition does not consider the problem of non-

uniformity in scale in the predictions. Due to lack of a mechanism 

to normalise scales of predictions, there could be predictions that 

are not very well aligned, but with a larger scale that could cause 

a greater influence in the summation. While the weights 

themselves would be relatively low, the values of the elements of 

the vectors could be large enough to cause undue steering to itself. 

To mitigate this, we introduce a global-context normalising 

layer prior to routing using degree-centrality. This layer 

normalises predictions by a shallower capsule type for a deeper 

capsule type by subtracting the mean and dividing the standard 
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deviation for each element of the capsules across all types and 

transformational states. To incorporate a learnable component 

into this for better performance, the normalised capsules are 

multiplied by and divided by two learnable vectors. This layer is 

easily implemented using a layernorm after the predictions. 

After the normalisation, rescaling, and recentering, the 

centrality of each prediction is calculated using the cosine 

similarity as an edge-weight. The centralities are softmaxed to 

keep the weights for the predictions for a deeper capsule between 

0 and 1. The global-context normaliser is especially useful here, 

as the softmax layer tends to increase the relative gap between 

elements. In a setting where non-uniform scales are present, the 

softmax layer tends to increase the unfairness of weights. 

However, the use of softmax is important to performance, as 

observed in experiments. Thus, the global-context normaliser is 

useful to avoid unfair weight assignment, while retaining the 

softmax layer. 

The mathematical algorithm for the global context-normalised 

centrality routing is presented below. The primary differences 

between this and the routing procedure in [8] is the use of less 

bulky single GCNN-layers and, more importantly, the global-

context normalisation layer. The routing algorithm is presented 

below. 

2.4.1 Global Context-Normalised Centrality Routing 

Algorithm: 

Input: {fi
l|i∈{0,…,Nl- 1}, fi

l:G→Rdl
|} 

Output: {fi
l+1|i∈{0,…,Nl+1- 1}, fi

l+1:G→Rdl+1|} 

Trainable functions: (Ψjl+1,*) , 0≤j≤Nl+1- 1, ⋆ is the group 

equivariant convolution operator. Ψjl+1 is indexed further by 

p∈{0,…,dl+1-1}, where each Ψjl+1,p:G→R. 
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As described previously, the input capsule-types are first input 

to predictor GCNNs to obtain predictions for deeper capsule 

types. The predictions pass through the global context 

normalisation layer, denoted by GlobalConNorm, and then used 

to obtain centralities. The centralities are softmaxed to obtain 

routing-weights, which are then used in a weighted-summation to 

form deeper capsules from predictions. These deeper capsules are 

rescaled to have a norm between 0 and 1 using the squash 

operation of [5]. 

In the architectures we used, the ConvCaps layers were used 

sequentially with the number of capsules of the last ConvCaps 

layer being equal to the number of classes. This ensures that the 

RobustCaps model learns to represent the pose of the class objects 

in the last layer. Consequently, the hidden capsule layers can be 

thought of as learning to detect intermediate objects that are 

components of the class objects. 

2.5 PROJCAPS 

After the final ConvCaps layer, the output gives the poses, 

across transformational states, of detected class objects. In the 

classification setting, we wish that only the highest scoring 

prediction be used. To obtain scores from the vector capsules, 

many capsule networks such as DeepCaps, the model in [5], and 

the model in [7] use the 2-norm of the capsules as the score. In 

our work, we propose an alternative that works well for 

RobustCaps. 

We project each capsule to a scalar using a GCNN that is 

shared among all the class capsule types. Thus, we use a learnable 

mechanism for classification instead of using the 2-norm. The 

sharing of the GCNNs allows for parameter-efficiency as certain 

classes such as CIFAR-100 have a relatively large number of 

classes. 

Following the projection, the higher scalar value across all 

transformational states for a class capsule type is taken as the 

score for that capsule type. The prediction for RobustCaps is taken 

as the index of the class capsule type that has the highest score. 

3. EXPERIMENTS AND RESULTS 

A challenging task for models, that is close to the real-world 

setting, is obtaining high performance while training and testing 

in the presence of significant geometric transformations of the 

input. Thus, we conduct experiments on transformed image 

classification on three datasets, namely CIFAR-10, 

FashionMNIST, and CIFAR-100. We explain the setting of these 

experiments. 

3.1 TRANSFORMED IMAGE CLASSIFICATION 

Given a dataset of images in a classification setting, 

transforming the train or test images by geometric transformations 

does not, in general, change the category of the image. It however 

changes the configuration of the pixels of the image. The effect 

and purpose of transformations of the train set and test set are 

different. 

Test time transformations can be used as a mechanism to 

showcase the transformation robustness of models. Models that 

show good performance on transformed datasets can be thought 

of as being more robust to transformations. Train time 

transformations, on the other hand, can be used as a means of 

checking the ability of a model to learn from transformations. 

Together, building a train and test system where train and test time 

transformations both are used allows the checking of a model’s 

transformation-robustness and ability to learn from transformed 

data. 
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A similar setup was explored in [8], where a variety of train 

and test time transformations were used. In our work, we study 

the most challenging part of this setup and use this to investigate 

the models’ behaviour. Concretely, we modify a given dataset by 

randomly transforming its train set by translating by up to 2 pixels 

in the x and y directions, and then by rotating the image by a 

randomly chosen angle in the range of (-180°, 180°). We represent 

this by a tuple of (2, 180°). 

More generally, the transformation extents for a dataset can be 

written as (tr, rot), where tr gives the translational extent and rot 

given the rotational extent. To study the robustness of models, we 

create five tests from the original test set. We retain the test set as 

the first set, and then create four more by using a translational 

extent of 2 pixels, and rotational extents of 30°, 60°, 90°, and 

180°. The train and test transformational extents are given in 

Table.1. 

3.2 DESCRIPTION OF THE DATASETS 

With the transformed classification set up explained above, we 

present a description of the datasets used in our experiments. 

3.2.1 FashionMNIST: 

The FashionMNIST dataset [13] consists of a train and a test 

set, each consisting of grayscale images of clothing items. The 

train set consists of 60,000 28×28 images of clothing items, 

belonging to ten categories. Each category has 6000 images in the 

train dataset. The test set consists of 10,000 28×28 images of 

clothing. Each category has 1000 images in the test dataset. 

FashionMNIST is a reasonably challenging dataset for mid-sized 

deep neural networks, and obtaining high accuracies on the 

transformed test datasets showcases the performance of models. 

3.2.2 CIFAR-10: 

The CIFAR-10 dataset [14] consists of a train and test dataset, 

each consisting of colour images of general objects. The train set 

consists of 50,000 32×32 images of general objects belonging to 

10 categories. Each category has 5000 images in the train dataset. 

The test set consists of 10,000 32×32 images. Each category has 

1000 images in the test dataset. CIFAR-10 is more challenging 

than FashionMNIST as it introduces aspects such as variable 

backgrounds and differently posed objects. 

3.2.3 CIFAR-100: 

The CIFAR-100 dataset [14] consists of a train and test 

dataset, each consisting of colour images of general objects. The 

train set consists of 50,000 32×32 images of general objects 

belonging to 100 categories. Each category has 500 images in the 

train dataset. The test set consists of 10,000 32×32 images. Each 

category has 100 images in the test dataset. CIFAR-100 is more 

challenging than FashionMNIST and CIFAR-10 as it introduces 

a larger category set while reducing the number of images per 

class, along with other challenging aspects variations in 

background and differently posed objects. 

All the above datasets were used to create a train dataset and 

5 test datasets as described previously. During train time, we also 

augmented the train dataset in a few experiments by random crops 

and randomly chosen horizontal flips. This augmentation is 

denoted by the suffix -aug in the Tables. These augmentations are 

simple augmentations, and used frequently in the literature. 

3.3 DESCRIPTION OF BASELINES 

To present a fair and diverse comparison for the robustness of 

RobustCaps, we have considered several capsule baselines. These 

models are as follows: CapsNet [5], EMCaps [6], GCAPS [9] , 

DeepCaps [11], SOVNET [7]. We also trained and tested the 

following CNN baselines: ResNet-18 [15], ResNet-34, and their 

group-equivariant versions defined on the p4m group [16], and 

denoted by GResNet-18 and GResNet-34. 

The performance on capsule baselines on the three datasets 

have been reported in [7] - these are mentioned for the sake of 

comparison in Table 2, Table 3, and Table 4. All of the above 

models have been tested on FashionMNIST and CIFAR-10. For 

CIFAR-100, we tested only the best performing baselines as 

CIFAR-100 is challenging for most models. 

Table.1. Translational and rotational extents to generate the 

datasets 

Name of 

dataset 
Translational Rotational Representation 

Train 2 180° (2, 180°) 

First test 0 0° (0, 0°) 

Second test 2 30° (2, 30°) 

Third test 2 60° (2, 60°) 

Fourth test 2 90° (2, 90°) 

Fifth test 2 180° (2, 180°) 

3.4 DESCRIPTION OF THE ROBUSTCAPS 

ARCHITECTURE 

The RobustCaps architecture that we used for our experiments 

involves 7 residual blocks for the PreCaps layers, a single 

PrimaryCaps layer that uses 32 capsule-types of 16 dimensions, 4 

ConvCaps layers that use 32 capsule-types of 16 dimensions, 

except for the last layer that uses capsule-types equal to the 

number of classes. All the GCNN layers were defined over the p4 

group that consists of translations composed with rotations of 

multiples of 90°. The results comparing the classification 

accuracies on the test sets are given in Table.2, Table.3, and 

Table.4. 

3.5 TRAINING OF ROBUSTCAPS 

All the RobustCaps models were trained using 3 Nvidia 

GeForce RTX 2080 ti GPUs. The models were trained using cross 

entropy loss with the AdamW optimiser [17] and a OneCycleLR 

[18] scheduler. All these models were trained for 150 epochs. The 

code was written in pytorch. 

3.6 RESULTS OF OUR EXPERIMENTS 

3.6.1 Comparison with Capsule Networks: 

First, we see that RobustCaps outperforms all the capsule 

baselines on each test set, including the equivariant models 

GCAPS and SOVNET. This is because of the equivariance and 

improved model-structure of RobustCaps. 
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Table.2. The accuracies of various models on transformed classification for FashionMNIST. The training images have been translated by 

pixels up to 2 pixels and rotated by a random angle between (-180°, 180°). The results of the models on 5 test datasets have been given. 

Our model achieves the best results on all the 5 test datasets 

Method (0, 0°) (2, 30°) (0, 60°) (2, 90°) (2, 180°) 

CapsNet 86.90% 84.94% 84.93% 84.75% 84.72% 

EMCaps 82.99% 82.67% 82.18% 82.32% 82.18% 

GCaps 80.65% 79.66% 79.46% 79.47% 79.37% 

DeepCaps 92.07% 91.71% 91.70% 91.76% 91.66% 

SOVNET 94.11% 93.77% 93.56% 93.57% 93.60% 

SOVNET-aug 94.21% 93.58% 93.46% 93.57% 93.61% 

ResNet-18-aug 94.21% 93.55% 93.24% 93.30% 93.45% 

ResNet-34-aug 94.38% 93.75% 93.78% 93.78% 93.73% 

GResNet-18-aug 93.63% 93.38% 93.32% 93.31% 93.35% 

GResNet-34-aug 93.22% 92.71% 93.08% 93.01% 92.81% 

RobustCaps-aug (ours) 94.33% 93.98% 93.87% 94.01% 94.07% 

Table.3. Accuracies of various models on transformed classification for CIFAR-10. The training images have been translated by pixels 

up to 2 pixels and rotated by a random angle between (-180°, 180°). The results of the models on 5 test datasets have been given. Our 

model achieves the best results on all the 5 test datasets 

Method (0, 0°) (2, 30°) (0, 60°) (2, 90°) (2, 180°) 

CapsNet 61.08% 59.53% 60.04% 59.85% 59.90% 

EMCaps 57.57% 55.89% 56.85% 56.35% 55.20% 

GCaps 39.09% 41.03% 41.43% 41.25% 41.08% 

DeepCaps 81.12% 80.81% 80.64% 81.05% 80.92% 

SOVNET 82.50% 81.80% 81.78% 81.95% 81.82% 

SOVNET-aug 80.14% 79.64% 79.94% 79.99% 79.65% 

ResNet-18-aug 78.84% 79.28% 79.72% 79.60% 78.95% 

ResNet-34-aug 81.27% 81.15% 81.44% 81.60% 81.65% 

GResNet-18-aug 89.88% 89.46% 89.33% 89.54% 89.41% 

GResNet-34-aug 89.12% 89.02% 89.18% 88.85% 89.10% 

RobustCaps-aug (ours) 92.01% 91.44% 91.39% 91.25% 91.36% 

Table.4. Accuracies of various models on transformed classification for CIFAR-100. The training images have been translated by pixels 

up to 2 pixels and rotated by a random angle between (-180°, 180°). The results of the models on 5 test datasets have been given. Our 

model achieves the best results on all the 5 test datasets 

Method (0, 0°) (2, 30°) (0, 60°) (2, 90°) (2, 180°) 

SOVNET 40.38% 39.74% 39.84% 39.76% 39.77% 

SOVNET-aug 40.38% 39.82% 39.69% 39.78% 39.99% 

ResNet-18-aug 50.03% 50.56% 51.15% 51.00% 51.14% 

ResNet-34-aug 51.40% 51.86% 51.49% 51.93% 52.11% 

GResNet-18-aug 64.22% 64.19% 63.86% 63.89% 63.38% 

GResNet-34-aug 66.12% 65.90% 65.66% 65.56% 65.92% 

RobustCaps-aug (ours) 67.60% 67.03% 67.40% 66.96% 67.18% 

In particular, the low performance of GCAPS on CIFAR-10 

and CIFAR-100 suggests that equivariance is not enough to attain 

good performance - a sufficiently strong model structure is also 

necessary. The performance of RobustCaps is evidence for this. 

On FashionMNIST, we see that all capsule baselines achieve 

over 80% performance. This is because the dataset has a single 

background, and the complexity of the dataset is relatively low. 

Nevertheless, there is a significant gap in the performance 

between RobustCaps and most capsule networks. The models 
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closest to the performance of RobustCaps is SOVNET and 

SOVNET-aug. Even these models showcase a gap of around 0.1-

0.4% gap. We see that the gap is largest on the test set transformed 

by (2, 180°), This showcases the improved transformation 

robustness of RobustCaps. 

While RobustCaps performs better than other capsule network 

models on FashionMNIST, the dataset itself does not fully bring 

out a challenge to the models. As mentioned, this is because of its 

simpler objects and shared background across all data. CIFAR-10 

and CIFAR-100 differ in this. They showcase more complex 

objects and background information. This makes them harder to 

classify. 

We see that RobustCaps beats the closest capsule model by 

almost 10% on all test sets for CIFAR-10. This showcases the 

need for an improved architecture along with equivariance. On 

CIFAR-100, we evaluated only the best-performing model from 

before, that is SOVNET. SOVNET performs poorly on CIFAR-

100, achieving low accuracies on all test sets. RobustCaps 

achieves much higher than SOVNET on all test sets. 

3.6.2 Comparison with CNN Models: 

We see that the residual networks ResNet18, ResNet34, 

GResNet18, and GResNet34 perform well across all datasets. In 

particular, the equivariant resnets perform well and display great 

transformation-robustness. Thus, these are strong baselines for 

comparison. RobustCaps outperforms these baselines on all the 

test sets of all the datasets, indicating that it is both high-

performing and capable of robustness. 

The results showcasing the improved performance of 

RobsuCaps over resnets is important for capsule network 

research. This is since most capsule network models do not 

perform as well as CNN models on classification tasks. By 

showcasing improvements over even equivariant CNN models, 

our work can renew interest in capsule research. 

3.7 SUMMARY OF RESULTS 

We see that our RobustCaps model outperforms all baselines 

on all test sets on the challenging transformed classification task. 

Specifically, the improved performance seen against CNN 

baselines shows that capsule networks have the potential to 

achieve good results and can renew interest in capsule research. 

3.8 ABLATION STUDIES 

In this section, we present some ablation studies to showcase 

the importance of using the PreCaps and ProjCaps layers. 

Specifically, we train and test certain RobustCaps models on the 

transformed classification on CIFAR-10 that do not use the 

PreCaps and ProjCaps layers of the model. A dip in performance 

is indicative of the importance of these layers that we used. 

3.9 REMOVAL OF PRECAPS 

We trained and tested a modified RobustCaps model that uses 

a simple convolutional pre-capsule network instead of PreCaps. 

This network uses convolutions with batchnorm and relu. The 

model was trained and tested on the transformed versions of 

CIFAR-10 just as the original RobustCaps model. The 

performance of this model and the original RobustCaps model is 

given in Table 5. This model is given as NoPreCaps. 

Table.5. Accuracies of three RobustCaps models on transformed 

tests of CIFAR-10. NoPreCaps uses a simple convolutional pre-

capsule layer. NoProjCaps uses the 2-norms of final layer 

capsules for predictions. Note the importance of these 

subnetworks, as their inclusion improves the performance of the 

model 

Method (0, 0°) (2, 30°) (2, 60°) (2, 90°) (2, 180°) 

NoPreCaps 75.09% 74.67% 74.94% 74.76% 74.95% 

NoProjCaps 90.30% 89.63%  89.50%  89.62% 89.53% 

RobustCaps 92.01% 91.44% 91.39% 91.25% 91.36% 

We see that the performance suffers a significant decrease if 

PreCaps is substituted for a simple convolutional network. This is 

because the capsule intuition requires objects at a sufficiently high 

semantic level. Using deeper PreCaps layers allows for the 

detection of such patterns. 

3.10 REMOVAL OF PROJCAPS 

We train and test a RobustCaps model where, instead of using 

the ProjCaps subnetwork, the predictions are based on the 2-

norms of the capsules of the last layer. This is the same approach 

used in most capsule networks. The model was trained on the 

CIFAR-10 dataset with the same transformations as RobustCaps. 

The performance of this model and the original RobustCaps 

model is given in Table.5. This model is given as NoProjCaps. 

We see that the performance suffers a decrease. This, while 

not as high as that of NoPreCaps, is still high enough to warrant 

as significant.  

4. CONCLUSION 

In conclusion, we have presented a group-equivariant model 

for transformation-robust capsule networks, termed RobustCaps. 

RobustCaps uses GCNNs in a capsule framework, allowing for 

the learning of transformation-invariant relationships, while 

ensuring that the routing-by-agreement principle of capsule 

networks is not affected by factors such as scale of activations. 

Specifically, our model improves upon capsule network 

models by using depth-specific subnetworks that use equivariant 

mechanisms to build capsules.  Our experiments show that 

RobustCaps outperforms several strong baselines. This 

establishes the efficacy of part-whole learning in an equivariant 

framework. 

We wish to investigate the use of such a model in more 

complex tasks where object-relationships are more explicit and 

complex. Models along these lines can lead to better 

interpretability. 

Extensions to our work include training and testing of robust 

capsule networks to larger data such as ImageNet. Further 

extensions can be done to use robust capsule networks for tasks 

that use both the object-centric nature of capsule networks and the 

transformation-robustness of equivariant layers. An example of a 

task that satisfies the above is image captioning. 

Other extensions beyond the use of capsule networks to new 

domains deal with the modification of the capsule layers. One 

direction that necessitates improvement is the alignment of 

capsule-types to relevant objects, while ignoring irrelevant 
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information. Future work can include means of having capsules 

that have this property. 
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