
ISSN: 0976-9102 (ONLINE) ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, FEBRUARY 2023, VOLUME: 13, ISSUE: 03
DOI: 10.21917/ijivp.2023.0411

2883

ROBUSTCAPS: A TRANSFORMATION-ROBUST CAPSULE NETWORK FOR

IMAGE CLASSIFICATION

Sai Raam Venkataraman, S. Balasubramanian and R. Raghunatha Sarma
Department of Mathematics and Computer Science, Sri Sathya Sai Institute of Higher Learning, India

Abstract

Geometric transformations of the training data as well as the test data

present challenges to the use of deep neural networks to vision-based

learning tasks. To address this issue, we present a deep neural network

model that exhibits the desirable property of transformation-

robustness. Our model, termed RobustCaps, uses group-equivariant

convolutions in an improved capsule network model. RobustCaps uses

a global context-normalised procedure in its routing algorithm to learn

transformation-invariant part-whole relationships within image data.

This learning of such relationships allows our model to outperform

both capsule and convolutional neural network baselines on

transformation-robust classification tasks. Specifically, RobustCaps

achieves state-of-the-art accuracies on CIFAR-10, FashionMNIST,

and CIFAR-100 when the images in these datasets are subjected to

train and test-time rotations and translations.

Keywords:

Deep Learning, Capsule Networks, Transformation Robustness,

Equivariance

1. INTRODUCTION

1.1 EQUIVARIANCE AND GEOMETRIC

TRANSFORMATIONS

Convolutional neural networks (CNNs) have, for a decade

now, remained as one of the best performing models for computer

vision. Their successes in computer vision can be attributed to

both advances in computing hardware which allow for deeper

models, and to the weight sharing scheme that the correlations in

CNNs use.

Under this weight-sharing scheme, pattern detectors are

shared translationally so that an object detected at a location may

be detected at others even after translations. The Fig.1 presents a

visual representation of the weight-sharing, and Fig.2 presents a

depiction of this property of detection across translations. This

property is related directly to the fact that translations of objects

in a scene do not affect their categories. Seen more generally, this

translational symmetry can be generalised to other

transformations of the data such as rotations and reflections, or in

general, any symmetry transform which usually leaves the

category of the data unchanged.

While the detector-sharing of CNNs does not reflect such

general symmetries, the simple correlation on grid-locations has

been generalised to general groups of symmetry transforms. This

generalisation allows for the preservation of transformation

symmetries, and results in a greater sharing of detectors in layers.

These models, termed group-equivariant CNNs (GCNNs), were

first introduced in [1]. The authors extended the correlation in

CNNs to groups of more general transformations, such as that

formed from the composition of orthogonal rotations,

translations, and reflections. The Fig.3 shows a visual explanation

of equivariance to rotations and translations.

Fig.1. The above image depicts the usual weight-sharing scheme

in CNNs. Each blue rectangle within the image indicates a

region where a single correlation with a filter happens. The

weights of the CNNs are shared across these rectangles. Thus,

for a filter of a CNN-layer, the same pattern is detected at each

of the rectangles

Seen in another manner, it can be said that the filters are

translated across the regions of the image. The image is taken

from the ImageNet dataset.

Fig.2. The image on the left shows a dog on the right-bottom of

a black background. The image on the right shows the dog on

the top-left of a black background. It can be said that the pattern

of the dog has been translated to different locations of the image.

A CNN would give the same representation to both the images,

only translated to the appropriate locations. The image of the

dog is from the ImageNet dataset.

This more general setting in GCNNs allows for greater

transformation-robustness that is reflected both in empirical

results and in a formal, mathematical guarantee that is termed

group-equivariance. Informally, group-equivariance enforces

those transformations of the input data be reflected as the same

transformations of the output data. Thus, it may be seen as a

guarantee of predictability under transformations of the input.

Extensions to the original model are a subject of active research

and generally involve extending the definition of correlations to

various groups [2] [3].

Fig.3. The image on the left shows a dog on the right-bottom of

a black background. The image on the right shows the dog on

SAI RAAM VENKATARAMAN et al.: ROBUSTCAPS: A TRANSFORMATION-ROBUST CAPSULE NETWORK FOR IMAGE CLASSIFICATION

2884

the top-left of a black background. It can be said that the pattern

of the dog has been translated from the top left to the bottom

right and then rotated clockwise by 90°. An equivariant CNN

would give the same activations to both the images, only

translated to the appropriate locations, and rotated by the same

angle. The image of the dog is from the ImageNet dataset.

1.2 PRELIMINARIES: A FORMAL DEFINITION

OF EQUIVARIANCE

Based on the informal description of equivariance that we

have provided, we see that equivariance simply means the

preservation of a transformation applied on to the input by a

neural network. More formally, and generally, equivariance of

function is described by the preservation of a group-action on the

input space. We present these definitions that were introduced

earlier in works such as [1].

Group: To formally describe the effect of transformations on

inputs, it is first necessary to use a structure that can describe the

transformations. The concept of a group offers one means of

doing so, Groups allow for a conceptual categorisation of

geometric transformations such as translations, rotations,

shearing, scaling etc. The formal definition is given below.

A set G with a binary operator defined over G is said to be a

group if the following are true.

(Closure) For all g, h in G, g.h is also in G.

(Associativity) For g, h, k in G, (g.h).k = g.(h.k).

(Identity) There exists e in G such that for all g in G, g.e = e.g=g.

(Inverse) For all g in G, there exists g-1, such that g.g-1 = g-1.g=e.

A common way to represent geometric transforms is to write

them as matrices and use matrix multiplication as the operator.

Thus, compositions of transformations can be written as the

multiplication of matrices. Examples of these are given in [1].

Vector space: With groups serving as a formal structure for

transformations, it is also necessary to describe the representation

space of neural networks. One choice for this is to use vector

spaces to model their activations. Informally, vector spaces are

sets that are closed under compositions of addition and scalar

multiplication. Examples of vector spaces are Rn using

component-wise addition with the set of scalars being real

numbers, using multiplication of all components by the same

number as scalar multiplication, and matrices that use matrix-

addition with real numbers as the set of scalars. Since most neural

networks have representations in Rn, vector spaces are a natural

choice for representing them.

Group action: Group actions serve as a connection between

groups and vector spaces, allowing for the description of

transformations of representations. Formally, they are defined in

the following. Consider a group (G, .) and a vector space X. A

function f : G × X → X is termed a group action if the following

are true.

1. f(e, x) = x, for all x in X, and where e is the identity element

of G.

2. f(g, f(h, x)) = f(g.h), for all g, h in G and for all x in X.

In this work, as in [1], we shall consider a specific group action

denoted by L. First, consider a group (G,.). Further consider a

vector space X. Let f : G → X. Then for all g in G, let the following

group action be defined.

 [Lgf](x) = f(g-1x). (1)

where, f is representative of neural networks. For most CNNs, G

is any group that contains the translation group. L describes the

remapping of elements from their original locations after a

geometric transformation such as translation or rotation.

Group equivariance: Given this definition of how

transformations affect inputs by remapping the inputs to new

locations, equivariance is defined by the preservation of the action

of the group on the input space to the output space. Formally, this

is defined by the following.

Consider a group (G, .), a vector X, and a function f:G→X. Let

T and T’ be two group actions defined over G. f is said to be

equivariant with respect to T and T’ if the following is true for all

g in G and x in X.

 f(T(g, x)) = T’(g,f(x)). (2)

Equivariant convolutions: CNNs use correlations in their

layers that are equivariant to translations. This, generally non-

equivariant, operation is described below. We shall see that the

equivariant convolution is a generalisation of this operation.

Consider the translation group Gt. Consider also a CNN whose

lth layer is a function f:Gt→Rdl, where dl is a positive integer, and

represents the number of channels input to the filters of the l-th

layer. For example, for colour images, dl is 3, where l is the input

layer. For deeper layers of a neural network, dl depends on the

neural network model. Let us consider the set of dl+1 filters and

denote it by F, where each filter is represented by Fi:Gt→Rdl.

Moreover, let fk(x) denote the scalar at the kth dimension of the dl

dimensional vector that f(x) gives. Similarly, let Fk
i(x) denote the

scalar at the kth dimension of the dl dimensional vector that Fi(x)

is. The correlation operation between f and Fi is given by:

 () () ()()
11t l

i i

k k

y G k d

f F x f y F y x
+  

  = −    (3)

Given any translation t in Gt, translation-equivariance is

satisfied and expressed in the following expression. The proof is

in [1].

 [[Ltf]*Fi](x) = [Lt[f*Fi]](x). (4)

In simple terms, this means that translating an input and

performing correlation gives the same result as correlating and

then translating the output. Thus, CNNs are equivariant with

respect to translations.

The correlation described above is extended to more general

groups by the following definition.

Consider a group G. Like before, also consider a CNN whose

lth layer is a function f: Gt→Rdl, where dl is a positive integer, and

represents the number of channels input to the filters of the lth

layer. Let us consider the dl+1 filters F, where each filter is

represented by Fi:Gt→Rdl. Moreover, let fk(x) denote the scalar at

the kth dimension of the dl dimensional vector that f(x) is.

Similarly, let Fk
i(x) denote the scalar at the kth dimension of the dl

dimensional vector that Fi(x) is. The group-equivariant correlation

is defined as the following.

 () () ()()
1

1

1t l

i i

k k

y G k d

f F x f y F x y
+

−

  

  =    (5)

ISSN: 0976-9102 (ONLINE) ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, FEBRUARY 2023, VOLUME: 13, ISSUE: 03

2885

Like the usual correlation, the group-equivariant correlation

satisfies a related, but general, condition for equivariance. Given

any transformation g in G, the following property is satisfied. The

proof is in [1].

 [[Lgf]*Fi](x) = [Lg[f*Fi]](x). (6)

In simpler terms, this means that transforming the inputs and

then performing correlation gives the same results as performing

correlation and then transforming the output. Note the subtle

difference in using Lt and in using Lg. The first of these refers to

the action of translation, while the second is for a general group.

Thus, the equivariance conditions are generalised from

equivariance to translations to equivariance to more general

transformations.

1.3 LIMITATIONS OF GROUP-EQUIVARIANT

CONVOLUTIONS

GCNNs are transformation-robust by the equivariance

guarantee that the correlation operation bestows on each layer.

This is because the activations of transformed inputs are only

remapped versions of the activations of untransformed inputs.

GCNNs have shown, therefore, improved results on transformed

data as can be seen in [1], [2], and [3]. However, certain

limitations exist.

One limitation that we study and aim to remedy is since

GCNNs do not learn object-structure. The activations of GCNNs

represent the detection of patterns in the inputs. These activations

are based only on the activations of shallower layers and the

weights of filters. In other words, detection of patterns is based on

the existence of shallower patterns [4] [5].

Spatial objects, however, have structure that is reflected in

relationships among objects in a visual scene. This is seen in the

part-whole relationship among objects and their components, and

in the relationships among components. These relationships are

transformation-invariant, in that any symmetry transformation of

a visual scene preserves them. Fig.4 shows an example of such

relationships in images and their transformation-invariance.

Fig.4. Consider two images of face - one of them a rotated

version of the other. We can still see that components of the face

are made up of the same components - just rotated. An example

of such a hierarchy is presented in the bottom image. Note that

after rotation, the poses of all the parts change; the relations

between them do not. More generally, an object such as a face

can be hierarchically understood as a combination of parts. Since

the composition of a part does not change under transformations

such as rotation, the part-whole structure too does not change.

Images are from [16]

A neural network that detects objects based on this structure

and with the property that the relationships that this structure

defines are preserved under transformations would be expected to

perform better than GCNNs. This is because better features would

be learnt.

1.4 CAPSULE NETWORKS, PART-WHOLE

RELATIONSHIPS, AND EQUIVARIANCE

The above observation gave rise to the capsule network model

[5] [6]. In capsule networks, the vector activations, termed

capsules, denote poses of objects as opposed to existential

information alone (as in GCNNs). Thus, at each layer of a capsule

network, a pattern, and its pose, given by the vector capsule, are

together detected. To do this, unlike GCNNs, capsule networks

form deeper capsules from shallower capsules by a specialised

procedure termed routing. Routing ensures that the deeper

capsules reflect a notion of agreement in the poses of the objects

the shallower capsules denote.

The usual method for routing has shallower capsules first pass

through prediction sub-networks to give rise to predictions - one

for each pair of deeper and shallower capsules. The next step is to

combine the predictions for each deeper capsule such that

important predictions have a larger weight in the combination.

Many algorithms use a weighted-summation to combine

predictions and obtain the weights via iterative procedures [5],

[6], graph-based methods [7], or directly from trainable networks

[8]. Each of these methods represent a means of finding the extent

of agreement among predictions, which is used as a measure of

importance.

Why agreement among predictions? Predictions may be

thought of as candidate-poses for the deeper capsules. Shallower

capsules represent objects that are seen as potential parts of deeper

capsules. If an object is part of another object, its prediction for

the pose of the bigger object would agree with the predictions for

the pose made by other valid parts. This argument is referred to

as routing-by-agreement and forms a key component of capsule

network ideas.

The weights for combining the predictions as well as the

subnetworks can be considered to represent the part-whole

relationships between the objects that the deeper and shallower

capsules represent. Any geometric transformation of the inputs

must not affect the relationships among capsules. A means of

having this property is to specify that the predictions and the

routing-weights are both equivariant to transformations of the

input. This equivariance in routing can be seen as having

invariance in the learnt part-whole relationships as shown in [7].

1.5 OUR CONTRIBUTIONS

The above has established the need for models that are both

equivariant and are equipped with mechanisms to learn

compositional information in the images. However, most capsule

models do not satisfy these properties. Formal guarantees for

equivariance are not given for most capsule models as other

aspects such as routing and an accurate prediction-mechanism are

usually formulated.

Models such as SOVNET [7] and group-equivariant capsules

(GCAPS) [9] present equivariant capsule models. Both, however,

have limitations on performance. GCAPS is limited by the fact

SAI RAAM VENKATARAMAN et al.: ROBUSTCAPS: A TRANSFORMATION-ROBUST CAPSULE NETWORK FOR IMAGE CLASSIFICATION

2886

that its capsules are constrained to be elements of a fixed group.

This limitation does not allow it to be highly accurate on data that

has significant information that is not easily captured by groups.

SOVNET does not have such limitations; nonetheless, its layers

are not optimised for achieving state-of-the-art performance on

transformation-robust classification on complex data.

Specifically, the architectural aspects of SOVNET need

improvement. This improvement can be done by bettering pre-

capsule layers to obtain object-centric features for capsules, and

by using less bulky predictors in the capsule layers. A third

improvement can be done by adjusting the scales of the predicting

vectors in the capsule layers so that improper scaling can be

avoided in the weighted summation of routing.

Considering these observations, we propose a model for

capsule networks termed RobustCaps that, like SOVNET, uses

GCNNs in a capsule network framework with an equivariant

routing procedure. Thus, RobustCaps also displays the property

of group-equivariance. Unlike SOVNET, the modules of

RobustCaps are designed to achieve state-of-the-art results on

transformed data classification.

The pre-capsule layers are improved using residual GCNN-

layers, while the predictors use a GCNN-layer instead of bulky

residual predictors. RobustCaps also uses a global context-

normalisation mechanism in its routing mechanism to use

appropriate scaling in the predictions.

RobustCaps outperforms several capsule network models on

classification of transformed images on CIFAR10,

FashionMNIST, and CIFAR100. Further, RobustCaps also

outperforms residual networks and group-equivariant residual

networks on this task, showing that the learning of part-whole

relationships in an equivariant manner is important towards

transformation-robust classification.

1.6 IMPLICATIONS OF OUR WORK

Most capsule network models have, until this work, shown

lower performance than CNNs and GCNNs. Our work can be seen

as an effort to showcase the value of such learning and could help

in the development of better models.

The following summarise our contributions along with their

implications:

• We propose RobustCaps, a transformation-robust capsule

network model. RobustCaps uses a novel routing algorithm

along with group-equivariant convolutions to create a

capsule network model that displays a high degree of

equivariance as well as highly accurate.

• RobustCaps uses a global-context normalisation layer with

centrality-based routing weights to present an accurate

model for capsule networks.

• RobustCaps achieves state-of-the-art accuracies on

transformed classification on CIFAR-10, FashionMNIST,

and CIFAR-100.

• Given the fact that RobustCaps outperforms strong

convolutional baselines such as equivariant residual

networks, our work can lead to further research on capsule

networks.

2. PREVIOUS WORK

Research on equivariant convolutions has led to several

extensions of the original work in [1]. For example, [3] extends

GCNNs to be equivariant to rotations for spherical images. [2]

presents a general framework for equivariant CNNs on the

euclidean group E(2). Other works can be more theoretical. For

example, [10] shows that any linear function that is equivariant

can be written as an equivariant convolution. This allows a study

of GCNNs to be considered as a study of equivariant models.

Capsule network models aim to remedy the weakness of

CNNs and GCNNs that is due to their detection-by-existence

procedure for building activations. [4] suggested a remedy by

using routing. This was extended to the capsule network models

implemented in [5] [6]. Extensions to these models usually

improved aspects of capsule networks such as prediction

mechanisms.

DeepCaps [11], STAR-CAPS [12], and self-attention capsules

[8] are examples of models where different predictors and routing

methods were proposed.

DeepCaps uses the dynamic routing of the initial capsule

network model in [5], but uses convolutional layers in the initial

layers, to achieve good accuracies on several datasets. STAR-

CAPS and self-attention capsules use the idea of attention-

mechanisms in the routing procedure towards the same goal of

high performance. The mechanisms used are, however, different.

Models such as group-equivariant capsule networks (GCAPS)

[9] and SOVNET [7], on the other hand, recognise that

equivariance in routing is necessary towards learning invariant

part-whole relationships among capsules. As we point out, these

models can show better generalisation for transformations of the

data but are not built to achieve the best results. We aim to remedy

this.

2.1 PROPOSED ROBUSTCAPS MODEL

We recognise that to achieve state-of-the-art accuracies, the

architecture of our model must be developed along with

theoretically pleasing properties such as group-equivariance. To

this end, we present a depth-specific construction of components

for our model. RobustCaps has four components that correspond

to different depths of the model. These are termed as follows:

PreCaps, PrimaryCaps, ConvCaps, and ProjCaps. A description

of each component is given below. A visual depiction of the

model is presented in Fig.6.

Fig.5. Diagram of the modules of RobustCaps

ISSN: 0976-9102 (ONLINE) ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, FEBRUARY 2023, VOLUME: 13, ISSUE: 03

2887

2.2 PRECAPS

The PreCaps layer of RobustCaps is a simple residual GCNN

network. Specifically, it comprises 7 residual blocks. Each block

has the structure as shown in Fig.6. Note that unlike usual residual

networks, PreCaps uses group-equivariant correlations.

The use of such a structure for PreCaps has two purposes:

obtaining sufficiently useful high-level features for capsules and

maintaining the equivariance of the model for transformation-

robustness. The use of convolutional layers before capsule layers

is inspired by empirical results in models such as [11]. The

intuition behind this is that GCNNs detect sufficiently high-level

features that correspond to complex features where the object-

based logic of capsule networks and routing can work.

Note that the activations at each channel correspond to the

existential information about patterns discovered at a

transformational state. This information must now be converted

into vectors that can then be used for the pose-centric mechanisms

of the capsule layers.

Fig.6. Basic residual block for PreCaps. The PreCaps

subnetwork is made of 7 such blocks stacked end-to-end

2.3 PRIMARYCAPS

The PrimaryCaps layer does this by using the scalar

activations as inputs for specialised GCNNs to obtain vector

capsules. First, as intuition, the PrimaryCaps layer is responsible

for detecting the pose and existence of relevant objects of various

types. Moreover, since equivariance is desired for transformation-

robustness and invariance in the detection of object-relationships

in later capsule layers, this layer uses GCNNs for this detection.

Thus, the PrimaryCaps is seen as a set of vector-valued

functions defined over a group, where each function is

representative of a capsule type of the PrimaryCaps layer. The

PrimaryCaps layer is also seen as detecting the poses of an initial

set of objects that are then used to detect other patterns in the

object-hierarchy of the image,

Thus, each vector-value of a capsule type in the PrimaryCaps

layer can be seen as the pose of an instance of an object that the

capsule type denotes. Each capsule type in PrimaryCaps is given

by a GCNN. Specifically, each dimension of a capsule-type is

given by one GCNN filter.

The notion of capsule types and capsules defined on a group

extends to other capsule layers. Thus, we explain the distinction

between capsules and capsule types using an example. Consider a

face detection task. Also consider a capsule network trained for

detecting faces. Then, given an image, a capsule layer detects

important patterns for the detection task. A capsule type in the

capsule layer represents one pattern, such as eyes, ears, or mouths.

Depending on the number of instances of these patterns, a capsule

type presents vectors at the locations of these patterns. Thus, a

capsule type that detects a part of a face for this task, would return

vectors that capture the generalised pose of all instances of the

object. These instances are termed capsules. Thus, capsule types

may be seen as representative of patterns, while capsules are

instances of these patterns.

To facilitate better training, we normalise the capsules across

all types, this is done using layernorm. While layernorm affects

exact equivariance, as do the strided convolutions in the residual

blocks of PreCaps, it plays a role in improving performance. More

generally, multiple ‘equivariant’ models such as those in [1] and

[2] make use of such operations that reduce exact equivariance,

but help in empirical accuracy.

2.4 CONVCAPS

With the poses of object-components detected by the

PrimaryCaps, RobustCaps uses a series of ConvCaps layers to

sequentially detect objects right up to the class level. It is in these

layers that the transformation-invariant relationships among

objects are learnt and detected. We describe the details of a

ConvCaps layer in the following.

Each ConvCaps layer consists of the following: a GCNN

predictor per capsule type, and a global context normalised

centrality routing layer. These layers correspond to the steps of

prediction and routing-by-agreement that is seen usually in

routing algorithms [5] [6] [7] [11].

The inputs themselves are a set of capsule types. The

predictions for a capsule type at a layer are formed by performing

a correlation of the associated GCNN filter for that type with each

input capsule type. The use of GCNNs for prediction of poses in

capsules has been done in [7]. However, the use of the GCNNs

does not lead to state-of-the-art accuracies. Each predictor there

is a residual GCNN subnetwork, and therefore is bulky. In this

work, we see that a single GCNN is enough for good performance,

showcasing the relative light-weight nature of RobustCaps.

The principle of routing can be seen from the view that a

prediction for a deeper capsule that is aligned with other relevant

predictions must get a larger weight in the combination of

predictions to form the deeper capsule [7]. Based on this principle,

a centrality-based routing algorithm was proposed in [7] that

combines predictions as a weighted-summation.

Each prediction is a vertex in a graph, where the edges are

weighted by the cosine similarity between the vectors associated

with them. Predictions are assigned weights based on the degree-

centrality of the vertices. A prediction with a larger degree-

centrality displays a greater alignment with the other predictions

and therefore obtains a larger weight. Predictions that are not

relevant to the compositionality of the input display a low

centrality and are not weighted by as much in the model.

This intuition does not consider the problem of non-

uniformity in scale in the predictions. Due to lack of a mechanism

to normalise scales of predictions, there could be predictions that

are not very well aligned, but with a larger scale that could cause

a greater influence in the summation. While the weights

themselves would be relatively low, the values of the elements of

the vectors could be large enough to cause undue steering to itself.

To mitigate this, we introduce a global-context normalising

layer prior to routing using degree-centrality. This layer

normalises predictions by a shallower capsule type for a deeper

capsule type by subtracting the mean and dividing the standard

SAI RAAM VENKATARAMAN et al.: ROBUSTCAPS: A TRANSFORMATION-ROBUST CAPSULE NETWORK FOR IMAGE CLASSIFICATION

2888

deviation for each element of the capsules across all types and

transformational states. To incorporate a learnable component

into this for better performance, the normalised capsules are

multiplied by and divided by two learnable vectors. This layer is

easily implemented using a layernorm after the predictions.

After the normalisation, rescaling, and recentering, the

centrality of each prediction is calculated using the cosine

similarity as an edge-weight. The centralities are softmaxed to

keep the weights for the predictions for a deeper capsule between

0 and 1. The global-context normaliser is especially useful here,

as the softmax layer tends to increase the relative gap between

elements. In a setting where non-uniform scales are present, the

softmax layer tends to increase the unfairness of weights.

However, the use of softmax is important to performance, as

observed in experiments. Thus, the global-context normaliser is

useful to avoid unfair weight assignment, while retaining the

softmax layer.

The mathematical algorithm for the global context-normalised

centrality routing is presented below. The primary differences

between this and the routing procedure in [8] is the use of less

bulky single GCNN-layers and, more importantly, the global-

context normalisation layer. The routing algorithm is presented

below.

2.4.1 Global Context-Normalised Centrality Routing

Algorithm:

Input: {fi
l|i∈{0,…,Nl- 1}, fi

l:G→Rdl
|}

Output: {fi
l+1|i∈{0,…,Nl+1- 1}, fi

l+1:G→Rdl+1|}

Trainable functions: (Ψjl+1,*) , 0≤j≤Nl+1- 1, ⋆ is the group

equivariant convolution operator. Ψjl+1 is indexed further by

p∈{0,…,dl+1-1}, where each Ψjl+1,p:G→R.

1. () ()1* ,l l

ijp i jS g f p+= 

2. Sl+1=GlobalConNorm(Sl+1).

3. () ()1 1

0 1
,..., l

l l

j N j
c g c g+ +

−
= () ()()1

1 1

0 ,..., l

l l

j N j
DegreeScore S g S g+

+ +

4. () ()()
()

()

1

1 1

2
11

l

jl l

j j
l

j

f g
f g Squash f g

f g

+

+ +

+
= =

+

Procedure: () ()()1 1

0 0,...,l l

j jDegreeScore S g S g+ +

1. ()
() ()

() ()

1 1

1 1

l l

ij kjj

ik l l

ij kj

S g S g
A g

S g S g

+ +

+ +


=



2. () ()
1

0

lN
j j

i ik

k

Degree g A g
−

=

=

3. ()
()()

()()

1

1

0

expexp

expexp
l

j

il

ij N
j

i

i

Degree g
c g

Degree g

+

−

=

=



return ()1l

ijc g+

As described previously, the input capsule-types are first input

to predictor GCNNs to obtain predictions for deeper capsule

types. The predictions pass through the global context

normalisation layer, denoted by GlobalConNorm, and then used

to obtain centralities. The centralities are softmaxed to obtain

routing-weights, which are then used in a weighted-summation to

form deeper capsules from predictions. These deeper capsules are

rescaled to have a norm between 0 and 1 using the squash

operation of [5].

In the architectures we used, the ConvCaps layers were used

sequentially with the number of capsules of the last ConvCaps

layer being equal to the number of classes. This ensures that the

RobustCaps model learns to represent the pose of the class objects

in the last layer. Consequently, the hidden capsule layers can be

thought of as learning to detect intermediate objects that are

components of the class objects.

2.5 PROJCAPS

After the final ConvCaps layer, the output gives the poses,

across transformational states, of detected class objects. In the

classification setting, we wish that only the highest scoring

prediction be used. To obtain scores from the vector capsules,

many capsule networks such as DeepCaps, the model in [5], and

the model in [7] use the 2-norm of the capsules as the score. In

our work, we propose an alternative that works well for

RobustCaps.

We project each capsule to a scalar using a GCNN that is

shared among all the class capsule types. Thus, we use a learnable

mechanism for classification instead of using the 2-norm. The

sharing of the GCNNs allows for parameter-efficiency as certain

classes such as CIFAR-100 have a relatively large number of

classes.

Following the projection, the higher scalar value across all

transformational states for a class capsule type is taken as the

score for that capsule type. The prediction for RobustCaps is taken

as the index of the class capsule type that has the highest score.

3. EXPERIMENTS AND RESULTS

A challenging task for models, that is close to the real-world

setting, is obtaining high performance while training and testing

in the presence of significant geometric transformations of the

input. Thus, we conduct experiments on transformed image

classification on three datasets, namely CIFAR-10,

FashionMNIST, and CIFAR-100. We explain the setting of these

experiments.

3.1 TRANSFORMED IMAGE CLASSIFICATION

Given a dataset of images in a classification setting,

transforming the train or test images by geometric transformations

does not, in general, change the category of the image. It however

changes the configuration of the pixels of the image. The effect

and purpose of transformations of the train set and test set are

different.

Test time transformations can be used as a mechanism to

showcase the transformation robustness of models. Models that

show good performance on transformed datasets can be thought

of as being more robust to transformations. Train time

transformations, on the other hand, can be used as a means of

checking the ability of a model to learn from transformations.

Together, building a train and test system where train and test time

transformations both are used allows the checking of a model’s

transformation-robustness and ability to learn from transformed

data.

ISSN: 0976-9102 (ONLINE) ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, FEBRUARY 2023, VOLUME: 13, ISSUE: 03

2889

A similar setup was explored in [8], where a variety of train

and test time transformations were used. In our work, we study

the most challenging part of this setup and use this to investigate

the models’ behaviour. Concretely, we modify a given dataset by

randomly transforming its train set by translating by up to 2 pixels

in the x and y directions, and then by rotating the image by a

randomly chosen angle in the range of (-180°, 180°). We represent

this by a tuple of (2, 180°).

More generally, the transformation extents for a dataset can be

written as (tr, rot), where tr gives the translational extent and rot

given the rotational extent. To study the robustness of models, we

create five tests from the original test set. We retain the test set as

the first set, and then create four more by using a translational

extent of 2 pixels, and rotational extents of 30°, 60°, 90°, and

180°. The train and test transformational extents are given in

Table.1.

3.2 DESCRIPTION OF THE DATASETS

With the transformed classification set up explained above, we

present a description of the datasets used in our experiments.

3.2.1 FashionMNIST:

The FashionMNIST dataset [13] consists of a train and a test

set, each consisting of grayscale images of clothing items. The

train set consists of 60,000 28×28 images of clothing items,

belonging to ten categories. Each category has 6000 images in the

train dataset. The test set consists of 10,000 28×28 images of

clothing. Each category has 1000 images in the test dataset.

FashionMNIST is a reasonably challenging dataset for mid-sized

deep neural networks, and obtaining high accuracies on the

transformed test datasets showcases the performance of models.

3.2.2 CIFAR-10:

The CIFAR-10 dataset [14] consists of a train and test dataset,

each consisting of colour images of general objects. The train set

consists of 50,000 32×32 images of general objects belonging to

10 categories. Each category has 5000 images in the train dataset.

The test set consists of 10,000 32×32 images. Each category has

1000 images in the test dataset. CIFAR-10 is more challenging

than FashionMNIST as it introduces aspects such as variable

backgrounds and differently posed objects.

3.2.3 CIFAR-100:

The CIFAR-100 dataset [14] consists of a train and test

dataset, each consisting of colour images of general objects. The

train set consists of 50,000 32×32 images of general objects

belonging to 100 categories. Each category has 500 images in the

train dataset. The test set consists of 10,000 32×32 images. Each

category has 100 images in the test dataset. CIFAR-100 is more

challenging than FashionMNIST and CIFAR-10 as it introduces

a larger category set while reducing the number of images per

class, along with other challenging aspects variations in

background and differently posed objects.

All the above datasets were used to create a train dataset and

5 test datasets as described previously. During train time, we also

augmented the train dataset in a few experiments by random crops

and randomly chosen horizontal flips. This augmentation is

denoted by the suffix -aug in the Tables. These augmentations are

simple augmentations, and used frequently in the literature.

3.3 DESCRIPTION OF BASELINES

To present a fair and diverse comparison for the robustness of

RobustCaps, we have considered several capsule baselines. These

models are as follows: CapsNet [5], EMCaps [6], GCAPS [9] ,

DeepCaps [11], SOVNET [7]. We also trained and tested the

following CNN baselines: ResNet-18 [15], ResNet-34, and their

group-equivariant versions defined on the p4m group [16], and

denoted by GResNet-18 and GResNet-34.

The performance on capsule baselines on the three datasets

have been reported in [7] - these are mentioned for the sake of

comparison in Table 2, Table 3, and Table 4. All of the above

models have been tested on FashionMNIST and CIFAR-10. For

CIFAR-100, we tested only the best performing baselines as

CIFAR-100 is challenging for most models.

Table.1. Translational and rotational extents to generate the

datasets

Name of

dataset
Translational Rotational Representation

Train 2 180° (2, 180°)

First test 0 0° (0, 0°)

Second test 2 30° (2, 30°)

Third test 2 60° (2, 60°)

Fourth test 2 90° (2, 90°)

Fifth test 2 180° (2, 180°)

3.4 DESCRIPTION OF THE ROBUSTCAPS

ARCHITECTURE

The RobustCaps architecture that we used for our experiments

involves 7 residual blocks for the PreCaps layers, a single

PrimaryCaps layer that uses 32 capsule-types of 16 dimensions, 4

ConvCaps layers that use 32 capsule-types of 16 dimensions,

except for the last layer that uses capsule-types equal to the

number of classes. All the GCNN layers were defined over the p4

group that consists of translations composed with rotations of

multiples of 90°. The results comparing the classification

accuracies on the test sets are given in Table.2, Table.3, and

Table.4.

3.5 TRAINING OF ROBUSTCAPS

All the RobustCaps models were trained using 3 Nvidia

GeForce RTX 2080 ti GPUs. The models were trained using cross

entropy loss with the AdamW optimiser [17] and a OneCycleLR

[18] scheduler. All these models were trained for 150 epochs. The

code was written in pytorch.

3.6 RESULTS OF OUR EXPERIMENTS

3.6.1 Comparison with Capsule Networks:

First, we see that RobustCaps outperforms all the capsule

baselines on each test set, including the equivariant models

GCAPS and SOVNET. This is because of the equivariance and

improved model-structure of RobustCaps.

ISSN: 0976-9102 (ONLINE) ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, MAY 2022, VOLUME: 12, ISSUE: 04

2890

Table.2. The accuracies of various models on transformed classification for FashionMNIST. The training images have been translated by

pixels up to 2 pixels and rotated by a random angle between (-180°, 180°). The results of the models on 5 test datasets have been given.

Our model achieves the best results on all the 5 test datasets

Method (0, 0°) (2, 30°) (0, 60°) (2, 90°) (2, 180°)

CapsNet 86.90% 84.94% 84.93% 84.75% 84.72%

EMCaps 82.99% 82.67% 82.18% 82.32% 82.18%

GCaps 80.65% 79.66% 79.46% 79.47% 79.37%

DeepCaps 92.07% 91.71% 91.70% 91.76% 91.66%

SOVNET 94.11% 93.77% 93.56% 93.57% 93.60%

SOVNET-aug 94.21% 93.58% 93.46% 93.57% 93.61%

ResNet-18-aug 94.21% 93.55% 93.24% 93.30% 93.45%

ResNet-34-aug 94.38% 93.75% 93.78% 93.78% 93.73%

GResNet-18-aug 93.63% 93.38% 93.32% 93.31% 93.35%

GResNet-34-aug 93.22% 92.71% 93.08% 93.01% 92.81%

RobustCaps-aug (ours) 94.33% 93.98% 93.87% 94.01% 94.07%

Table.3. Accuracies of various models on transformed classification for CIFAR-10. The training images have been translated by pixels

up to 2 pixels and rotated by a random angle between (-180°, 180°). The results of the models on 5 test datasets have been given. Our

model achieves the best results on all the 5 test datasets

Method (0, 0°) (2, 30°) (0, 60°) (2, 90°) (2, 180°)

CapsNet 61.08% 59.53% 60.04% 59.85% 59.90%

EMCaps 57.57% 55.89% 56.85% 56.35% 55.20%

GCaps 39.09% 41.03% 41.43% 41.25% 41.08%

DeepCaps 81.12% 80.81% 80.64% 81.05% 80.92%

SOVNET 82.50% 81.80% 81.78% 81.95% 81.82%

SOVNET-aug 80.14% 79.64% 79.94% 79.99% 79.65%

ResNet-18-aug 78.84% 79.28% 79.72% 79.60% 78.95%

ResNet-34-aug 81.27% 81.15% 81.44% 81.60% 81.65%

GResNet-18-aug 89.88% 89.46% 89.33% 89.54% 89.41%

GResNet-34-aug 89.12% 89.02% 89.18% 88.85% 89.10%

RobustCaps-aug (ours) 92.01% 91.44% 91.39% 91.25% 91.36%

Table.4. Accuracies of various models on transformed classification for CIFAR-100. The training images have been translated by pixels

up to 2 pixels and rotated by a random angle between (-180°, 180°). The results of the models on 5 test datasets have been given. Our

model achieves the best results on all the 5 test datasets

Method (0, 0°) (2, 30°) (0, 60°) (2, 90°) (2, 180°)

SOVNET 40.38% 39.74% 39.84% 39.76% 39.77%

SOVNET-aug 40.38% 39.82% 39.69% 39.78% 39.99%

ResNet-18-aug 50.03% 50.56% 51.15% 51.00% 51.14%

ResNet-34-aug 51.40% 51.86% 51.49% 51.93% 52.11%

GResNet-18-aug 64.22% 64.19% 63.86% 63.89% 63.38%

GResNet-34-aug 66.12% 65.90% 65.66% 65.56% 65.92%

RobustCaps-aug (ours) 67.60% 67.03% 67.40% 66.96% 67.18%

In particular, the low performance of GCAPS on CIFAR-10

and CIFAR-100 suggests that equivariance is not enough to attain

good performance - a sufficiently strong model structure is also

necessary. The performance of RobustCaps is evidence for this.

On FashionMNIST, we see that all capsule baselines achieve

over 80% performance. This is because the dataset has a single

background, and the complexity of the dataset is relatively low.

Nevertheless, there is a significant gap in the performance

between RobustCaps and most capsule networks. The models

ISSN: 0976-9102 (ONLINE) ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, FEBRUARY 2023, VOLUME: 13, ISSUE: 03

2891

closest to the performance of RobustCaps is SOVNET and

SOVNET-aug. Even these models showcase a gap of around 0.1-

0.4% gap. We see that the gap is largest on the test set transformed

by (2, 180°), This showcases the improved transformation

robustness of RobustCaps.

While RobustCaps performs better than other capsule network

models on FashionMNIST, the dataset itself does not fully bring

out a challenge to the models. As mentioned, this is because of its

simpler objects and shared background across all data. CIFAR-10

and CIFAR-100 differ in this. They showcase more complex

objects and background information. This makes them harder to

classify.

We see that RobustCaps beats the closest capsule model by

almost 10% on all test sets for CIFAR-10. This showcases the

need for an improved architecture along with equivariance. On

CIFAR-100, we evaluated only the best-performing model from

before, that is SOVNET. SOVNET performs poorly on CIFAR-

100, achieving low accuracies on all test sets. RobustCaps

achieves much higher than SOVNET on all test sets.

3.6.2 Comparison with CNN Models:

We see that the residual networks ResNet18, ResNet34,

GResNet18, and GResNet34 perform well across all datasets. In

particular, the equivariant resnets perform well and display great

transformation-robustness. Thus, these are strong baselines for

comparison. RobustCaps outperforms these baselines on all the

test sets of all the datasets, indicating that it is both high-

performing and capable of robustness.

The results showcasing the improved performance of

RobsuCaps over resnets is important for capsule network

research. This is since most capsule network models do not

perform as well as CNN models on classification tasks. By

showcasing improvements over even equivariant CNN models,

our work can renew interest in capsule research.

3.7 SUMMARY OF RESULTS

We see that our RobustCaps model outperforms all baselines

on all test sets on the challenging transformed classification task.

Specifically, the improved performance seen against CNN

baselines shows that capsule networks have the potential to

achieve good results and can renew interest in capsule research.

3.8 ABLATION STUDIES

In this section, we present some ablation studies to showcase

the importance of using the PreCaps and ProjCaps layers.

Specifically, we train and test certain RobustCaps models on the

transformed classification on CIFAR-10 that do not use the

PreCaps and ProjCaps layers of the model. A dip in performance

is indicative of the importance of these layers that we used.

3.9 REMOVAL OF PRECAPS

We trained and tested a modified RobustCaps model that uses

a simple convolutional pre-capsule network instead of PreCaps.

This network uses convolutions with batchnorm and relu. The

model was trained and tested on the transformed versions of

CIFAR-10 just as the original RobustCaps model. The

performance of this model and the original RobustCaps model is

given in Table 5. This model is given as NoPreCaps.

Table.5. Accuracies of three RobustCaps models on transformed

tests of CIFAR-10. NoPreCaps uses a simple convolutional pre-

capsule layer. NoProjCaps uses the 2-norms of final layer

capsules for predictions. Note the importance of these

subnetworks, as their inclusion improves the performance of the

model

Method (0, 0°) (2, 30°) (2, 60°) (2, 90°) (2, 180°)

NoPreCaps 75.09% 74.67% 74.94% 74.76% 74.95%

NoProjCaps 90.30% 89.63% 89.50% 89.62% 89.53%

RobustCaps 92.01% 91.44% 91.39% 91.25% 91.36%

We see that the performance suffers a significant decrease if

PreCaps is substituted for a simple convolutional network. This is

because the capsule intuition requires objects at a sufficiently high

semantic level. Using deeper PreCaps layers allows for the

detection of such patterns.

3.10 REMOVAL OF PROJCAPS

We train and test a RobustCaps model where, instead of using

the ProjCaps subnetwork, the predictions are based on the 2-

norms of the capsules of the last layer. This is the same approach

used in most capsule networks. The model was trained on the

CIFAR-10 dataset with the same transformations as RobustCaps.

The performance of this model and the original RobustCaps

model is given in Table.5. This model is given as NoProjCaps.

We see that the performance suffers a decrease. This, while

not as high as that of NoPreCaps, is still high enough to warrant

as significant.

4. CONCLUSION

In conclusion, we have presented a group-equivariant model

for transformation-robust capsule networks, termed RobustCaps.

RobustCaps uses GCNNs in a capsule framework, allowing for

the learning of transformation-invariant relationships, while

ensuring that the routing-by-agreement principle of capsule

networks is not affected by factors such as scale of activations.

Specifically, our model improves upon capsule network

models by using depth-specific subnetworks that use equivariant

mechanisms to build capsules. Our experiments show that

RobustCaps outperforms several strong baselines. This

establishes the efficacy of part-whole learning in an equivariant

framework.

We wish to investigate the use of such a model in more

complex tasks where object-relationships are more explicit and

complex. Models along these lines can lead to better

interpretability.

Extensions to our work include training and testing of robust

capsule networks to larger data such as ImageNet. Further

extensions can be done to use robust capsule networks for tasks

that use both the object-centric nature of capsule networks and the

transformation-robustness of equivariant layers. An example of a

task that satisfies the above is image captioning.

Other extensions beyond the use of capsule networks to new

domains deal with the modification of the capsule layers. One

direction that necessitates improvement is the alignment of

capsule-types to relevant objects, while ignoring irrelevant

SAI RAAM VENKATARAMAN et al.: ROBUSTCAPS: A TRANSFORMATION-ROBUST CAPSULE NETWORK FOR IMAGE CLASSIFICATION

2892

information. Future work can include means of having capsules

that have this property.

REFERENCES

[1] T. Cohen and M. Welling, “Group Equivariant

Convolutional Networks”, Proceedings of International

Conference on Machine Learning, pp. 2990-2999, 2016.

[2] M. Weiler and G. Cesa, “General E (2)-Equivariant

Steerable CNNs”, Advances in Neural Information

Processing Systems, Vol .32, pp. 1-15, 2019.

[3] T.S. Cohen and M. Welling, “Spherical CNNs”, Proceedings

of International Conference on Learning Representations,

pp. 1-7, 2018.

[4] G.E. Hinton, A. Krizhevsky and S.D. Wang, “Transforming

Auto-Encoders”, Proceedings of International Conference

on Artificial Neural Networks, pp. 44-51, 2011.

[5] S. Sabour and G.E. Hinton, “Dynamic Routing between

Capsules”, Advances in Neural Information Processing

Systems, Vol. 30, pp. 1-12, 2017.

[6] G.E. Hinton, S. Sabour and N. Frosst, “Matrix Capsules with

EM Routing”, Proceedings of International Conference on

Learning Representations, pp. 241-254, 2018.

[7] S.R. Venkataraman, S. Balasubramanian and R.R. Sarma,

“Building Deep Equivariant Capsule Networks”,

Proceedings of International Conference on Learning

Representations, pp. 1-10, 2020.

[8] R. Pucci, C. Micheloni and N. Martinel, “Self-Attention

Agreement Among Capsules”, Proceedings of International

Conference on Computer Vision, pp. 272-280, 2021.

[9] J.E. Lenssen and P. Libuschewski, “Group Equivariant

Capsule Networks”, Advances in Neural Information

Processing Systems, Vol. 31, pp. 1-15, 2018.

[10] T.S. Cohen and M. Weiler, “A General Theory of

Equivariant CNNs on Homogeneous Spaces”, Advances in

Neural Information Processing Systems, Vol. 32, pp. 1-12,

2019.

[11] J. Rajasegaran, S. Seneviratne and R. Rodrigo, “Deepcaps:

Going Deeper with Capsule Networks”, Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 10725-10733, 2019.

[12] K. Ahmed and L. Torresani, “Star-Caps: Capsule Networks

with Straight-Through Attentive Routing”, Advances in

Neural Information Processing Systems, Vol. 32, pp. 167-

178, 2018.

[13] H. Xiao, K. Rasul and R. Vollgraf, “Fashion-Mnist: A Novel

Image dataset for Benchmarking Machine Learning

Algorithms”, Proceedings of International Conference on

Computer Vision, pp. 1-8, 2017.

[14] A. Krizhevsky and G. Hinton, “Learning Multiple Layers of

Features from Tiny Images”, Available at

https://www.cs.toronto.edu/~kriz/learning-features-2009-

TR.pdf, 2009.

[15] K. He and J. Sun, “Deep Residual Learning for Image

Recognition”, Proceedings of the IEEE International

Conference on Computer Vision and Pattern Recognition,

pp. 770-778, 2016.

[16] D. Romero and M. Hoogendoorn, “Attentive Group

Equivariant Convolutional Networks”, Proceedings of the

IEEE International Conference on Machine Learning, pp.

8188-8199, 2020.

[17] I. Loshchilov and F. Hutter, “Decoupled Weight Decay

Regularization”, Proceedings of International Conference

on Learning Representations, Vol. 32, pp. 89-97, 2018.

[18] L.N. Smith and N. Topin, “Super-Convergence: Very Fast

Training of Neural Networks using Large Learning Rates”,

Artificial Intelligence and Machine Learning for Multi-

Domain Operations Applications, Vol. 11006, pp. 369-386,

2019.

