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Abstract 

Transformation-robustness is an important feature for machine 

learning models that perform image classification. Many methods aim 

to bestow this property to models by the use of data augmentation 

strategies, while more formal guarantees are obtained via the use of 

equivariant models. We recognise that compositional, or part-whole 

structure is also an important aspect of images that has to be considered 

for building transformation-robust models. Thus, we propose a capsule 

network model that is, at once, equivariant and compositionality aware. 

Equivariance of our capsule network model comes from the use of 

equivariant convolutions in a carefully-chosen novel architecture. The 

awareness of compositionality comes from the use of our proposed 

novel, iterative, graph-based routing algorithm, termed Iterative 

collaborative routing (ICR). ICR, the core of our contribution, weights 

the predictions made for capsules based on an iteratively averaged 

score of the degree-centralities of its nearest neighbours. Experiments 

on transformed image classification on FashionMNIST, CIFAR-10, 

and CIFAR-100 show that our model that uses ICR outperforms 

convolutional and capsule baselines to achieve state-of-the-art 

performance. 
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1. INTRODUCTION 

What we see is a complex muddle of scenes, where objects 

and the scene themselves can occur in various confounded states 

such as being occluded or being in an unusual transformational 

state. While human perception is reliable for the most part, 

ongoing efforts continue to improve computer vision so that it is 

accurate and robust to confusions of input scenes. 

Specifically, this paper deals with a part of this larger puzzle - 

namely, transformation-robust image classification. Image 

classification remains an ongoing challenge in the larger goal of 

scene perception. While one aspect of image classification aims 

at improving performance across varied objects and complex 

backgrounds, transformation-robust classification aims at 

preserving gains across transformations of the input scene. 

Transformation-robustness is also practically necessary as 

transformations of inputs are a major source of deviations of test 

scenes from the training scenes. 

One means to bestow models with transformation-robustness 

is to use data-augmentation. Formal guarantees on the robustness 

of models, however, cannot be made for such techniques. It is for 

this reason that the equivariant models were proposed [1] [2]. For 

deep neural networks, these models preserve the representation of 

a scene across its transformations by having the hidden activations 

transform in the same manner as the input scene.  

This leads to a mathematical notion of transformation-

robustness where the hidden activations transform in the same 

way as the input. More formally, this is defined as the neural 

network preserving the group actions on an input. Equivariance, 

it must be noted, is a special property of the neural network, unlike 

the transformation-robustness offered by data augmentation. 

How can equivariance be used for better transformation-

robust learning? One means is to incorporate equivariant modules 

in a model that naturally uses its benefits for better learning of 

transformation-robust features. In this paper, we use equivariant 

modules to build a compositional, or part-whole aware deep 

neural network. 

Our model is compositional in the sense that its intuition 

involves the detection of objects being based on the detection of 

its components, and them being in an appropriate configuration. 

Thus, the model takes into account part-whole relationships that 

are part of visual scenes. Learning these relationships is important 

to building transformation-robust models, as these relationships 

are invariant to transformations. 

Specifically, our model is within the family of capsule 

networks that use vector activations, termed capsules, to model 

the poses of detected objects that are represented in their layers. 

Deeper capsules are built from shallower capsules by having the 

shallower capsules make predictions for the deeper capsules, and 

then combining these predictions in a manner that reflects the 

agreement in the predictions. 

The method of combination can be done by techniques such 

as weighted-summation. The manner of obtaining these weights 

is related to the notion of agreement seen among the predictions. 

The weights used are referred to as routing-weights. The method 

of obtaining predictions involves the use of trainable neural 

networks with the capsules as input to them. 

This process, termed routing-by-agreement, uses three 

assumptions that help explain its underlying intuition. First, that 

capsules represent objects that are detected by the corresponding 

layer and filter of a neural network. Second, that the predictions 

are seen as candidate poses for the object that deeper capsule 

represents. Third, that the routing-weights denote the extent of 

agreement among the candidate poses. Thus, the routing-weights 

can be seen to also denote the relationship between deeper and 

shallower capsules, along with being a notion of the extent to 

which the objects in the visual scene showcase a known 

compositional structure. 

Under these assumptions, a capsule network ensures that 

objects in the hidden representation are formed based on whether 

their components are detected in an appropriate configuration.  

Routing-by-agreement, when used in an equivariant setting 

leads to the following observation [3]. Equivariant routing assigns 

the same routing-weights to the same predictions, when seen for 

two inputs - one a transformed copy of the other. The only 

difference being that the weights and the predictions transform 

under the same transformation as the input. 
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Considering that capsules represent objects and routing-

weights represent the part-whole relations amongst deeper and 

shallower capsules, equivariant routing may be seen as 

transformation-invariance in the detection of compositional 

relationships. This intuition is explained visually in Fig.1. 

 

 

Fig.1. The image above shows a part-whole structure for a face 

which is not rotated. The parts of the face are also unrotated. 

Consider the image below where the face is rotated by 90°. All 

the parts of the face are also rotated accordingly. The part-whole 

relationships are invariant to the transformation applied to the 

face. The face image is from [22]. 

Compositional models detect more fine-grained features that 

are useful for transformation-robust classification than non-

compositional models do. Thus, we present a capsule network 

model that uses equivariant convolutions for this purpose. 

In order for our model to learn compositional relationships, we 

present a novel, improved routing strategy that we term Iterative 

collaborative routing (ICR). ICR uses the iteratively averaged 

degree-centralities of closely-aligned predictions to build routing 

weights for predictions. In doing so, it uses neighbourhood 

information to present a novel and improved way of routing 

among capsules. 

ICR also preserves equivariance - a property that makes it 

suitable for use in transformation-robust classification. This also 

allows it to share the intuition of transformation-invariant 

compositionality-detection that was presented in [3]. 

In order to demonstrate state-of-the-art performance on 

transformed image classification, we propose a strong 

architecture that could serve as a starting point for future work on 

capsule networks. Our architecture, with the use of ICR, achieves 

state-of-the-art classification accuracies on FashionMNIST, 

CIFAR-10, and CIFAR-100, outperforming several convolutional 

and capsule baselines. 

Our work may be seen as a direction of showcasing the 

usefulness of the capsule inductive bias which has gone 

unexplored in recent days. Specifically, our results showcase that 

capsule networks, under appropriate conditions, can show good 

performance even in challenging conditions of train and test time. 

In summary, our contributions are as follows: 

• A novel equivariant routing procedure, termed Iterative 

collaborative routing (ICR) for capsule networks. 

• A strong architecture for capsule networks that uses 

equivariant convolutions and ICR. 

• State-of-the-art results on transformed image classification 

on FashionMNIST, CIFAR-10 and CIFAR-100.  

The rest of this paper is organised as follows: Section 2 

presents related work on equivariant neural networks and capsule 

networks; our proposed model is described in detail in Section 3; 

the experiments are presented in Section4; the results of the 

experiments are discussed in Section 5; and the conclusion is 

presented in Section 6. 

2. RELATED WORK  

Equivariance is a well-studied property of neural networks, 

with multiple papers approaching the construction of equivariant 

networks across various groups, as well as building several 

network types. 

The earliest of such works for modern deep neural networks 

is seen in [1], where the motivation and a basic formulation for 

equivariant convolutional networks was presented. This work 

models geometric transformations of the inputs using group 

actions, and argues for the preservation of these group actions in 

order to achieve transformation-robustness. The authors of this 

work extend the usual correlation of convolutional networks to be 

defined on general groups. This extension naturally brings about 

equivariance - the preservation of group actions, and results in 

transformation-robust classification. Two examples of this 

correlation were presented for two specific groups. These groups 

are formed from the composition of translations, orthogonal 

rotations, and reflections. 

Several works, such as [2] and [4] extend the scope of 

equivariant convolutions to other, larger groups. For example, [2] 

presents convolutions for spherical transformations, while [4] 

presents a general framework for correlations equivariant to the 

euclidean group. Other works, such as [5] and [6] present 

applications of equivariant convolutions. 
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Fig.2. The Figure above shows the case of the detection of 

features (yellow) for an untransformed image. The Figure below 

shows the same case for a translated image. A translation-

equivariant network preserves the translations across its hidden 

representation. This is depicted by the translation of the yellow 

box that represents the detection of the features [23]. 

The rationale behind the structure of capsule networks is based 

on learning the compositional or part-whole structure of objects 

in visual scenes. Early intuitions for this were laid out in [7]. The 

adaptation to modern deep neural networks was seen in [8] and 

[9], where backpropagation-based networks for obtaining 

predictions, and non-trainable routing algorithms were both used. 

More recent capsule networks follow the basic structure of 

these models, but present variations in the manner of obtaining 

predictions and routing-weights. For example, [8] used fully-

connected layers for obtaining predictions, and an iterative 

algorithm for routing-weights. [9] used fully-connected networks 

in a correlation-like manner along with an EM-based algorithm 

for routing-weights. 

 

Fig.3. The Figure above shows the case of the detection of 

features (yellow) for an untransformed image. The Figure below 

shows the same case for a rotated image. A translation-

equivariant network preserves the rotations across its hidden 

representation. This is depicted by the rotation of the yellow box 

that represents the detection of the features. Image is from [23] 

Other works, such as [10], used convolutional prediction-

methods, while [11] used attention-based methods in routing. 

Most of these methods focused on improving classification 

performance without exploring the connections between 

equivariance and the compositional intuitions of capsule 

networks. Nonetheless, these models improved the structure of 

capsule models and provided starting points for high-performing 

equivariant models. 

Equivariance in capsule networks is studied in works such as 

[3] and [12]. Both of these works, however, do not achieve state-

of-the-art performance. This may be attributed, in part, to 

inefficient architectures used in the models. However, these 

models, and others [13], [14] show the benefits of introducing 

equivariance to capsule networks. [3] explores a connection 

between the preservation of detected compositionality and the 

equivariance of capsule networks. 

3. PROPOSED METHOD 

In this section, we present a formal description of our capsule 

network model and the ICR algorithm. In order to do so, we first 

define preliminaries necessary to their formal definition. These 

are: the definition of general group-equivariant correlations and 

that of group-equivariance. 

3.1 PRELIMINARIES 

We first provide the usual definition for correlations used in 

convolutional neural networks, following that with definitions for 

group-equivariant correlations and group-equivariance. 

3.1.1 Correlation: 

Consider a function 2:
ldf Z R→ , that denotes the feature 

map output at the l-th layer of a neural network. Let Ψ represent 

a set of kl+1 filters of the l+1th layer. Further, let Ψi: 2 ldZ R→

denote the i-th filter of these. Further, let us use the notation f_k 

to denote the k-th component of f, and i

k  to denote the k-th 

component of Ψi. The correlation operator * is defined as: 

 ( ) ( ) ( )
2 1

*
l

i i

k k

y Z k d

f x f y y x
  

  =  −     

This correlation operation has the property that it is 

equivariant to translations of the input. While we mathematically 

define equivariance in the next section of this paper, the actual 

consequences of this are simple. The Fig.2 visually depicts 

equivariance to translations. Simply, this means that translations 

of the input are preserved to the output. The proof of this property 

is given in [1]. 

While the intuition of translation equivariance is simple, the 

authors of [1] argue that it is an important reason behind the 

success of convolutional neural networks. The gist of their 

argument is that natural symmetries in data, such as the invariance 

of label-information of objects when subjected to translations is 

captured in translation equivariance. This allows for a model that 

more closely resembles natural properties. Moreover, the 

correlation operation also allows for a detection of the same 

pattern shared across all translations, leading to lesser duplication 

of pattern detectors and, thereby, efficient neural networks. 

While this correlation operation has shown itself to be a game 

changer of sorts for computer vision and continues to be a major 

driver for deep learning, in terms of equivariance it does not 

completely satisfy observed natural properties. 

Natural images display label-invariance to transformations 

that are more than translations. However, as was shown in [1], the 
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correlation operation is not equivariant to them. In particular, it is 

not equivariant to rotations.  

In order to have this property, [1] proposes a general definition 

of correlation that extends the usual definition. In this definition, 

the input and the filters are defined over a group of 

transformations as opposed to the grid-based definitions given 

earlier. 

Formally, let G denote a group of transformations. Let 

:
ldf G R→ , denote the feature map output at the l-th layer of a 

neural network. Let Ψ represent a set of kl+1 filters of the l+1th 

layer. Further, let Ψi:
ldG R→ denote the i-th filter of these. 

Further, let us use the notation 𝑓𝑘 to denote the k-th component of 

f, and i

k  to denote the k-th component of Ψi. The correlation 

operator * is defined as: 

 ( ) ( ) ( )1

1

*
l

i i

k k

h G k d

f g f y g h−

  

  =      

Depending upon the group, a deep neural network using this 

correlation displays equivariance to transformations from that 

group. The Fig.3 shows the case for rotation equivariance. 

As can be seen, this correlation operation extends the usual 

correlation towards general transformations and aligns it with 

more general properties of observed symmetries. 

 The authors in [1] defined it for two groups: p4 - the group of 

translations composed with orthogonal rotations, and p4m - the 

group of translations composed with orthogonal rotations and 

reflections. 

The use of this correlation on these groups has led to an 

increase in transformation-robustness. Convolutional neural 

networks using equivariant correlations defined on p4 and p4m 

display greater robustness to rotations of the images. More 

general groups have also been studied, and further extensions of 

this correlation have been done in [2] and [4]. 

3.1.2 Equivariance: 

The Fig.2 and Fig.3 convey the essence of group-

equivariance: the preservation of transformations applied on the 

input of a function to its output. A formal description of this 

notion would necessitate a modelling of transformations and their 

effects on inputs and outputs. 

In the equivariance literature, this modelling is done by using 

group actions. Group actions use intuition that transformations 

come from a group, and that the inputs and outputs come from 

vector spaces. Both assumptions are justified in that groups are a 

common way to model geometric transformations, while the 

inputs and outputs of neural networks are commonly seen as 

vectors in Rn. 

We provide the formal definition of a group action first, and 

then the formal definition of equivariance. 

Group Action: Consider a group (G, .) and a vector space X 

Then, a function f∶ G × X → X is said to be a group action if the 

following are true: 

 f(e,x) = x,∀x ∈X. 

 f(g1,f(g2,x)) = f(g!.g2,x),∀g1,g2  ∈ G, ∀x∈X.  

In this work, as in most of the equivariant literature, we shall 

concern ourselves with linear group actions or group 

representations. Each element of a group can be associated with a 

matrix that comes from the group representation. Thus, given a 

group (G, .) and g ∈ G, a group representation for g can be written 

as a matrix Tg. This is the notation we shall use in this work. 

Equivariance, the preservation of transformations across the 

layers of a neural network, directly translates to preservation of 

the group representation. 

Group Equivariance: Consider a group (G, .) and a function 

f ∶ X →Y, where X and Y are vector spaces. Let T and T' be two 

group representations for G over X and Y, respectively. f is said to 

be equivariant with respect to T and T' if the following holds for 

all g: f(Tgx) = T'g(f(x)), ∀x∈X.  

For equivariance to correspond to the intuition described in 

Fig.2 and Fig.3, we have to use a specific kind of group 

representation. This group representation is given in [1]; we 

replicate its definition below. 

[Lgf](x) = [f(g-1x)]. 

The group-equivariant correlation defined previously satisfies 

the equivariance property [[Lgf]*Ψ](x) = [Lg[f*Ψ]](x). 

With the definition of group-equivariant correlations and 

group-equivariance as given, we now proceed to the definition of 

our proposed model. 

3.2 ITERATIVE COLLABORATIVE ROUTING 

AMONG CAPSULES 

While equivariance is a mathematically guaranteed form of 

transformation-robustness, there are enhancements in model-

structure that can add to it. Specifically, a model that utilises 

useful aspects of visual structure in a manner that incorporates 

equivariance naturally would be more robust to transformations 

than a model that does not utilise such intuitions. 

One aspect of visual structure that remains invariant under 

symmetry transformations of the input is compositionality, or the 

part-whole structure of visual objects. Fig.4 demonstrates this 

transformation-invariance. 

We consider the capsule network model for this purpose. It 

has been shown in [3] that the hidden representation between two 

capsule layers can be represented by a graph, where each 

prediction by a shallower capsule is treated as a vertex. Edges 

among vertices are constructed such that they exist only between 

predictions for the same deeper capsules, with an edge-weight 

given by a similarity between these predictions. 

In [3] also discusses how this capsule-decomposition graph is 

invariant (by isomorphism) under geometric transformations in an 

equivariant setting. Thus, in a capsule setting, it could be argued 

that a model which is able to learn relationships among the 

components of a visual object, and which is equivariant to those 

transformations can be thought of as preserving the detection of 

those relationships across transformations. Thus, equivariant 

capsule networks may be thought of as being transformation-

invariant detectors of compositionality. 

Capsule networks can be considered as a viable candidate for 

transformation-robust models. We now describe how we 

construct an equivariant capsule network by describing how we 

construct each type of layer in our model. 

3.2.1 Equivariant Pre-Capsule Layers: 

Capsules are thought of as denoting objects, with shallower 

capsules being representative of components of deeper capsules. 



ISSN: 0976-9102 (ONLINE)                                                                                      ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, NOVEMBER 2022, VOLUME: 13, ISSUE: 02 

2869 

The role of routing algorithms is to build the deeper capsules in a 

manner that captures the agreement in the pose of the components. 

The intuitions of capsules being representative of objects, and 

that of routing algorithms capturing relationships among those 

objects necessitates that the patterns dealt with in these layers 

correspond to a sufficiently high level complexity.  

In other words, the first capsule layer that represents the 

simplest manner of objects must itself be input patterns that are 

complex enough to correspond to notions of parts and 

components. 

With this in mind, and also keeping in mind the importance of 

equivariance, we propose to use a set of equivariant convolutional 

layers as initial pattern-detectors. This is based on the idea that 

stacking such layers leads to deeper layers capturing relatively 

complex features [15]. The use of such layers as a pre-processing 

of sorts for capsule layers has been done in capsule models such 

as DeepCaps [10] and STAR-CAPS [16]. 

In our model, we use 7 residual blocks that use equivariant 

convolutional layers. The equivariant correlations are defined on 

p4 - the group of transformations that can be thought of as 

compositions of translations and orthogonal rotations [1]. 

3.2.2 Equivariant Primary Capsule Layer: 

The representation returned by the convolutional layers can be 

seen as a function that returns a scalar at each transformational 

state. These scalars can be thought of as the confidence of a 

pattern being present at a transformational state. These scalars 

must be converted to vectors that correspond to generalised poses 

of objects. 

We propose to do this by using equivariant convolutions, one 

per dimension of the capsules. In order to have a uniform scale for 

these initial capsules, we follow the convolutions by a layernorm. 

The capsules detected in this layer may be thought of as in the 

following manner. Each capsule represents an instance of a 

particular type of object detected at a transformational state. In 

other words, capsules are instances of archetypal capsule-types. 

This is ingrained into the model by the fact that each capsule can 

be seen as the result of the application of a set of specific 

equivariant filters to input scalars at specific transformational 

states.  

These filters, for each type, detect the important features for 

that type. Thus, the output of this layer can be thought of as a set 

of capsule-types, with each type denoting the capsules detected at 

various transformational states. 

3.2.3 Capsule Layers with Iterative Collaborative Routing: 

To detect objects based on the learned compositionality 

present in them, and so as to ultimately classify objects, our model 

uses capsule layers that use equivariant correlations in 

conjunction with a novel equivariant routing algorithm. We 

describe the details of how these are used in the algorithm below. 

Before we describe the algorithm, however, we present the 

intuitions behind this. 

First, given a set of input capsule-types, candidate capsules 

must be created for each deeper capsule. These candidate capsules 

can be thought of as poses of the object a deeper capsule 

represents, seen from the point-of-view of the shallower capsule. 

Our model uses the SOVNET-style of obtaining these predictions 

[3] in that each capsule-type is associated with a set of equivariant 

filters. 

Each capsule-type obtains predictions for its capsules across 

transformational states by having capsules of the shallower 

capsule-types act as input to these filters. Unlike the SOVNET 

model, our model uses a single equivariant convolutional layer 

instead of a residual block.  

The purpose of the computation of the routing-weights is to 

assign greater weights to predictions that are greatly similar to a 

large number of other predictions for the same deeper capsule. 

Moreover, an intuition for obtaining such weights is also that 

important predictions are, in turn, connected to other important 

predictions. This is akin to a notion of social importance, where 

individuals of influence are usually well-connected to other 

individuals of influence. 

We model this idea by the following steps. We explain for a 

single capsule of a deeper capsule-type - the procedure is similar 

for other capsules of all capsule-types. First, we consider the 

predictions made by shallower capsules for a single capsule of a 

deeper capsule-type.  

We construct the affinity matrix of cosine similarities between 

all pairs of these predictions. From this, we construct the degree-

centrality vector for the predictions. We then update the degree-

centralities of the predictions by setting it to the mean of the 

degree-centralities of its nearest neighbours. The number of these 

neighbours is a hyper-parameter that is determined by 

experimental design. The nearest neighbours are determined by 

the affinity matrix. 

This procedure is then repeated with the new degree-

centralities using the same affinity matrix to obtain the nearest 

neighbours. The degree-centralities convey the notion of vertex-

importance. By updating them based on the values of their nearest 

neighbours, ICR incorporates the notion of social importance that 

we discussed before. 

After obtaining the weights for the predictions, the deeper 

capsule is formed by a weighted summation of the predictions 

using the softmaxed routing-weights. The algorithm describing 

this is given below. We provide the theorem showcasing the 

equivariance of ICR in a future section. 

Algorithm 1: Iterative collaborative routing 

Input: {fi
l|i∈{0, …, Nl-1}, fi

l:G→Rdl
 |} 

Output: 

{fj
l+1|j∈{0, …, Nl+1-1 }, fj

l+1 : G → Rdl-1
|} 

Hyper Parameters: k, NUMITER 

Trainable functions: (Ψj
l+1, *), 0 ≤ j ≤ Nl+1-1, * is the group 

equivariant correlation operator. Ψj
l+1 conveys a set of filters 

Ψj
l+1,p : G →R, where p ∈ { 0, …, dl+1 - 1}. 

1Pr l

ijped +
 (g) = (fi

l * Ψj
l+1,p) 

( ) ( ) ( ) ( )( )1

1 1 1 1

0 01 1
,..., Pr ,...,Prl l

l l l l

j jN j N j
c g c g ICR ed g ed g+

+ + + +

− −
=  

( ) ( )( )
( )

( )

1

1 1

2
11

l

jl l

j j
l

j

f g
f g Squash f g

f g

+

+ +

+
= =

+
 

Procedure: ( ) ( )( )1

1 1

0 1
Pr ,...,Pr l

l l

j N j
ICR ed g ed g+

+ +

−
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( )
( ) ( )

( ) ( )

1 1

1 1

Pr Pr

Pr Pr
ik

l l

ij kjj

l l

ij kj

ed g ed g
A g

ed g ed g

+ +

+ +


=


 

( ) ( )
1

0

lN
j j

i ik

k

Dcen g A g
−

=

=   

KNi
j(g) = NearestNeighbour(A,k,i,j)(g) 

For i = 1 to NUMITER: 

DCeni
j(g) = NearestNeighbourMean(KN,  Dceni

j(g), i, j) 

 ( )
( )( )

( )( )

1

1

0

exp

exp
l

j

il

ij N
j

i

i

Dcen g
c g

Dcen g

+

−

=

=


 

return ( )1l

ijc g+
 

3.2.4 Projection to Classification Scores: 

The use of the capsule layers described before allows to create 

a hidden representation where intermediate object-shapes 

important to the classification of images can be learnt. This is 

extended to a final class-capsule layer, where the capsule-types of 

this layer represent the objects of the classes themselves. 

The representation of this layer consists of vector capsules of 

various types. For classification, however, we require scalar 

scores that indicate the confidence of the presence of a particular 

kind of class-object. The conversion of vector capsules to scalar 

values was done in earlier works by considering a separate score 

for capsules, or by using the norm of the class capsules. 

We instead use an equivariant convolutional layer that 

converts the number of dimensions to 1, while retaining the 

number of class capsules. The use of such a layer allows a 

learnable component in classification, thereby improving the 

accuracy of models. 

3.3 EQUIVARIANCE OF ICR 

In this section, we prove that the procedure ICR is equivariant 

when we use the group representation L.  

Theorem 1. Algorithm 1 is equivariant.  

Proof: First, we see from the equivariance of * that 

[[Lgf]*j
l+!](x) = Lg[f *]*j

l+!](x). Further, the product of two 

equivariant maps is also equivariant [1]. Moreover, the 2-norm of 

an equivariant function is also equivariant as it is the result of the 

post-composition of a pointwise non-linear map with an 

equivariant function [1]. Finally, the division of an equivariant 

map without another equivariant map results in an equivariant 

function [1]. Thus, the computation of Aik
j(g) and DCeni

j(g) at the 

steps 1 and 2 is equivariant. 

From the equivariance of the computation of Aik
j(g), the 

computation of computation of KNi
j(g) is also equivariant. This is 

because the predictions as well as the cosine similarities at a 

transformational state g all get remapped to same transformational 

state h-1g upon application of a transformation by a transformation 

h.  

From the equivariance of KNi
j(g) and that of computing the 

mean and the maximum function [1], the computation in the 

iterations are again equivariant. Finally, computation of softmax 

is again equivariant as it is a pointwise nonlinearity [1]. 

4. EXPERIMENTS 

4.1 DESCRIPTION OF THE DATASETS 

We performed three sets of experiments that demonstrate the 

state-of-the-art transformation-robust classification performance 

of our model. Each set is performed on a separate, popular image 

classification dataset. 

The images of the train dataset, for each of these datasets, are 

transformed by a random translation that has a maximum extent 

of upto 2 pixels in the horizontal and vertical directions, 

respectively. This is followed by a random rotation between -180° 

and 180°. Thus, the train dataset of the image classification 

datasets is significantly transformed so as to pose a challenge to 

models for learning in a noisy training setup. 

Each of the test sets of the datasets we consider are 

transformed to yield 5 test datasets. Each of these test datasets 

corresponds to a level of geometric transformation-noise. The first 

of these is the untransformed test dataset itself. The second 

corresponds to a transformed version where images are first 

translated by a random translation with a maximum extent of upto 

2 pixels, and then rotated by a random rotation between -30° and 

30°. The other datasets are generated similarly, with their images 

being generated by transforming the original test images by a 

random translation and rotation. The extent for the translations is 

the same for all of these datasets, being upto 2 pixels in the vertical 

and horizontal directions. The rotational extent for the third 

dataset is between -60° and 60°, while it is between -90° and 90° 

for the fourth test dataset. The fifth, and hardest test dataset, has a 

rotational extent of -180° and 180°. 

Thus, each classification dataset we consider is transformed 

so that the training data is transformed by high geometric noise, 

while the test dataset yields 5 versions that showcase various 

levels of geometric transformations. Good performance on the 5 

test datasets shows that a model is able to learn in the presence of 

geometric transformations and generalise to situations that 

showcase transformations. This setup for testing this ability was 

formulated in [3] and [17].  

We now present details about the datasets we have used, 

namely CIFAR10 [18], FashionMNIST [19], and CIFAR100 

[18]. 

CIFAR10: The train dataset of CIFAR-10 consists of 50,000 

32×32 images of 10 categories. Each category has 5000 images in 

the train dataset. The test dataset of CIFAR10 consists of 10,000 

32×32 images of the 10 categories. Each category has 1000 

images. CIFAR10 shows relatively diverse objects with variable 

backgrounds, making for a good challenge for transformation-

robust classification. 

FashionMNIST: The train dataset of FashionMNIST consists 

of 50,000 28×28 images of 10 clothing categories. The test set 

consists of 10,000 28×28 images of the 10 categories. Like 

CIFAR10, there are 5000 images of each category in the train 

dataset. Each category has 1000 images in the test dataset. 

FashionMNIST is relatively less of a challenge with respect to 

CIFAR10 as its images have a uniform background. However, it 

is still not trivial especially for transformed image classification. 

CIFAR-100: The train dataset of CIFAR-100 consists of 

50,000 32×32 images of 100 categories. Each category has 500 
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images in the train dataset. The test dataset of CIFAR100 consists 

of 10,000 32×32 images of the 100 categories. Each category has 

100 images. CIFAR100 is harder to classify when compared to 

the other two datasets due to the larger number of categories and 

the diverse objects and backgrounds in the images. 

4.2 DESCRIPTION OF THE BASELINES 

In order to showcase the challenging nature of the task of 

transformation-image classification, we consider the following 

capsule baselines: CapsNet [8], EMCaps [9], GCaps [12], 

DeepCaps [10], SOVNET [3]. We also consider ResNet18, 

ResNet34 [19], and their group-equivariant versions defined over 

the p4m group: P4MResNet18 and P4MResNet34 [1]. The results 

for these models have been obtained from [3] and independent 

experiments. 

4.3 IMPLEMENTATION DETAILS 

In order to achieve the best possible results on image 

classification, certain hyperparameters were found empirically. 

Moreover, a change to Algorithm 1 is also implemented that 

causes a slight loss in exact equivariance but improves empirical 

performance significantly. 

We first describe the change in Algorithm 1 and also the 

reasoning why we modify the algorithm so that exact equivariance 

is lost. 

The predictions in Algorithm 1 need not be of a uniform scale 

as they are the result of learned correlations with the group-

equivariant layers. This could cause the scale of predictions 

affecting the alignment and capturing of the agreement in the 

creation of the deeper capsules. Thus, we introduce a layernorm 

that normalises all capsules across capsule-types and 

transformational states. This allows for Algorithm 1 to better 

follow the idea of importance and agreement that we discussed. 

This, however, causes a loss of exact equivariance. We justify this 

implementation by the following. 

We see that the layernorm improves the performance of the 

models we train for classification, lending credence to our theory 

of the scale of predictions affecting the agreement among 

predictions. Moreover, many ‘equivariant’ models such as those 

in [1] and [2] have used techniques such as strided convolutions 

and layernorm to improve empirically observed performance at 

the expense of exact equivariance. We believe that the use of 

methods is justified as empirically observed good model structure 

and mathematically derived methods that build such structures are 

both important to build high performing models. The 

experimental results that we show in the next section justify our 

use of layer norm in Algorithm 1. 

For all of the experiments, we use 32 16-dimensional capsule-

types for the primary capsule layer and 3 capsule layers with 32 

16-dimensional capsule-types for each of the layers. The class-

capsule layer has as many capsule-types as the number of classes 

of the dataset in question. All the convolutional layers and 

prediction mechanisms are correlation operators defined over the 

p4 group [1]. 

The capsule layers for CIFAR10 and FashionMNIST use 2 

iterations of Algorithm 1 and set k to 10. The capsule layers for 

CIFAR100 use 2 iterations and set k to 5. These hyperparameters 

were determined empirically. 

4.4 TRAINING OF OUR MODEL 

The models were all trained using the cross-entropy loss and 

AdamW [20] with a OneCycleLR scheduler [21]. The models 

were trained for 150 epochs. The code was written in pytorch. 

5. RESULTS 

The results of the experiments are given in Table.1, Table.2 

and Table.3. Each table presents classification accuracies for the 

5 test sets for a single dataset. The heading for each test datasets 

gives the extents of the translations and rotations in a tuple. Thus, 

the second column denotes test set 1, the third column denotes test 

2 etc. We discuss the findings below. 

First, we see that the task of transformed image-classification 

is not particularly easy. This is pronounced in the results on test 

dataset 5, where for almost all models test dataset 5 yields the 

lowest results. We also see that FashionMNIST is relatively easier 

as it has images with a uniform background and lower difficulty. 

CIFAR10 is harder to classify, and CIFAR100 is the hardest. 

The capsule baselines CapsNet, EMCaps, and GCaps show a 

marked decrease in accuracies on CIFAR10 and CIFAR100, 

indicating their inability to learn diverse and complex objects. 

We see that SOVNET and DeepCaps are stronger models, 

achieving better results. SOVNET shows better generalisation to 

transformations than the other baselines because of its equivariant 

modules. However, it (and DeepCaps) is not expressive enough 

to achieve the best results. 

The residual models outperform the previously described 

baselines due to their architecture; particularly, P4MResNet18 

and P4MResNet34 achieve much better generalisation and 

performance than the other models. 

Our model, termed ICR, outperforms all the models on all the 

test sets, obtaining state-of-the-art results on transformed-image 

classification. This shows that equivariance and compositionality 

together with a carefully chosen architecture can improve the 

performance of a model. This is particularly important as ICR 

improves over the equivariant resnet models, something that 

many older capsule models were not able to do. 

Table.1. The accuracies of various models on transformed 

classification for FashionMNIST. The training images have been 

translated by pixels up to 2 pixels and rotated by a random angle 

between (-180°, 180°). The results of the models on 5 test 

datasets have been given. Our model achieves the best results on 

all the 5 test datasets. 

Method (0, 0°) (2, 30°) (0, 60°) (2, 90°) (2, 180°) 

CapsNet 86.90% 84.94% 84.93% 84.75% 84.72% 

EMCaps 82.99% 82.67% 82.18% 82.32% 82.18% 

GCaps 80.65% 79.66% 79.46% 79.47% 79.37% 

DeepCaps 92.07% 91.71% 91.70% 91.76% 91.66% 

SOVNET 94.11% 93.77% 93.56% 93.57% 93.60% 

SOVNET-

aug 

94.21% 93.58% 93.46% 93.57% 93.61% 

ResNet-18-

aug 

94.21% 93.55% 93.24% 93.30% 93.45% 
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ResNet-34-

aug 

94.38% 93.75% 93.78% 93.78% 93.73% 

P4MResNet-

18-aug 

93.63% 93.38%  93.32%  93.31%  93.35% 

P4MResNet-

34-aug 

93.22% 92.71% 93.08% 93.01% 92.81% 

ICR 

(ours) 

94.15% 94.13%  94.03%  94.09%  94.05% 

Table.2. The accuracies of various models on transformed 

classification for CIFAR-10. The training images have been 

translated by pixels up to 2 pixels and rotated by a random angle 

between (-180°, 180°). The results of the models on 5 test 

datasets have been given. Our model achieves the best results on 

all the 5 test datasets. 

Method (0, 0°) (2, 30°) (0, 60°) (2, 90°) (2, 180°) 

CapsNet 61.08% 59.53% 60.04% 59.85% 59.90% 

EMCaps 57.57% 55.89% 56.85% 56.35% 55.20% 

GCaps 39.09% 41.03% 41.43% 41.25% 41.08% 

DeepCaps 81.12% 80.81% 80.64% 81.05% 80.92% 

SOVNET 82.50% 81.80% 81.78% 81.95% 81.82% 

SOVNET-

aug 

80.14% 79.64% 79.94% 79.99% 79.65% 

ResNet-18-

aug 

78.84% 79.28% 79.72% 79.60% 78.95% 

ResNet-34-

aug 

81.27% 81.15% 81.44% 81.60% 81.65% 

P4MResNet-

18-aug 

89.88% 89.46% 89.33% 89.54% 89.41% 

P4MResNet-

34-aug 

89.12% 89.02% 89.18% 88.85% 89.10% 

ICR 

(ours) 

92.08% 91.54%  91.24%  91.22%  91.48% 

Table.3. The accuracies of various models on transformed 

classification for CIFAR100. The training images have been 

translated by pixels up to 2 pixels and rotated by a random angle 

between (-180°, 180°). The results of the models on 5 test 

datasets have been given. Our model achieves the best results on 

all the 5 test datasets. 

Method (0, 0°) (2, 30°) (0, 60°) (2, 90°) (2, 180°) 

SOVNET 40.38% 39.74% 39.84% 39.76% 39.77% 

SOVNET-

aug 
40.38% 39.82% 39.69% 39.78% 39.99% 

ResNet-18-

aug 
50.03% 50.56% 51.15% 51.00% 51.14% 

ResNet-34-

aug 
51.40% 51.86% 51.49% 51.93% 52.11% 

P4MResNet-

18-aug 
64.22% 64.19% 63.86% 63.89% 63.38% 

P4MResNet-

34-aug 
66.12% 65.90% 65.66% 65.56% 65.92% 

ICR (ours) 69.10% 68.53% 68.41% 68.42% 68.13% 

6. CONCLUSION 

Our paper proposes a new routing algorithm for capsule 

networks. We term this algorithm ‘iterative collaborative routing 

(ICR)’. ICR is an equivariant routing algorithm that allows for 

mathematical guarantees on transformation-robustness, and 

thereby guarantees for transformation-invariant learning of 

compositionality in visual objects [3]. 

We study the transformation-robustness of our proposed 

capsule network models with ICR and see that it achieves state-

of-the-art performance in classification under train and test 

geometric transformations. 

Models that use ICR outperform a number of capsules, as well 

as residual, network baselines, showing that equivariance, 

compositionality, and a careful choice of model-architecture are 

important for high performance. 

Our results can be seen as a step in the direction of showing 

that capsule networks can achieve high performance. Future work 

includes studying the role of compositionality and equivariance in 

more object-centric and diverse tasks such as visual question 

answering, where capsules can correspond directly to objects, and 

routing can correspond directly to seen relationships. 
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