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Abstract 

The only criteria that are used to evaluate the various neural network-

based object identification models that are currently in use are the 

inference times and accuracy levels. The issue is that in order to put 

these new classes and situations to use in smart cities, we need to train 

on them in real time. We were not successful in locating any research 

or comparisons that were centered on the length of time necessary to 

train these models. As a direct consequence of this, the initial reaction 

times of these object identification models will consistently be quite 

slow (maybe in days). As a consequence of this, we believe that models 

that put an emphasis on the speed of training rather than accuracy 

alone are in significant demand. Users are able to gather photos for use 

in training in the present by utilizing concept names in online data 

collection toolkits; however, these images are iconic and do not have 

bounding boundaries. Under these conditions, the implementation of 

semi-supervised or unsupervised models in a variety of smart city 

applications might be able to contribute to an improvement in the 

precision of data derived from IoMT. In this study, we categorize the 

video clips into their appropriate classes using an improved ensemble 

classification model. 
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1. INTRODUCTION 

All of the previously made projections are currently being 

reexamined because of the meteoric rise in the number of internet-

connected physical items. Even though the projection of 50 billion 

devices by 2020 will be widely discredited in the future, the next 

10 billion Internet of Things devices coming online in the 

following year will result in trillions of connected things [1]. 

In addition, several recent studies [3, 4] and [5] offer 

unequivocal evidence of a growth in the proportion of Internet 

traffic that is comprised of multimedia. Sensors in smart cities are 

also producing a significant amount of multimedia data. This is 

happening as a direct result of the recent surge in the volume of 

multimedia traffic that is carried over the Internet. Unstructured 

(multimedia) occurrences include things such as traffic delays, 

automobile accidents, changes in the weather, problems with 

parking, security risks, persons being followed, and other such 

things. 

As things stand, the Internet of Things was created to support 

the infrastructure of smart cities, which, in turn, improves the 

quality of life for the citizens who live in those cities. Researchers 

are primarily concerned with figuring out how to interpret scalar 

data in the context of smart cities. Examples of this are smart 

energy events that include readings from temperature sensors or 

energy sensors. An additional example of a scalar (structured) 

event is the data that is lost from RFID tags in the event that a 

packet is lost. 

Traditional IoT worked just fine for us until we realized that 

smart cities generate massive amounts of multimedia data (i.e., 

images, videos, and audio) in addition to scalar data. This 

realization compelled us to switch to multimedia-based IoT 

(IoMT), which stands for the Internet of Multimedia Things [6]. 

Because integrating multimedia into the Internet of Things is still 

a relatively new concept, it has not yet been fully standardized, 

and research into its numerous potential applications—in fields 

such as traffic management, security, monitoring activities, 

terrorist attacks, natural disasters, and many more—needs to be 

carried out in depth. IoT middleware, which is responsible for 

supplying common services to apps and simplifying the 

development process, is still in its infant stages. This is true even 

for scalar events. 

In this survey, we use the context of multimodal event 

processing in smart cities, which includes object detection, to 

highlight the research gaps that exist between this field and the 

current state of the art in IoT-based technologies. These gaps are 

highlighted using object detection as an example. In conclusion, 

we discuss the limitations of existing object identification models 

in the context of the implementation of smart cities, as well as the 

incapability of existing datasets to cover all varieties of smart 

cities. Additionally, we offer some possible solutions to the 

problems raised by these limitations. 

Because the Internet of Things (IoT) industry has reached a 

mature stage, the focus of many studies [9] has shifted to 

concentrate on this sector. Event-based middleware and big data 

computing are utilized by an extremely small percentage of these 

organizations [10]. These studies primarily concentrate their 

attention on technologies that do not support or even explore the 

possibility of IoMT. Some examples of these technologies are 

those that do not incorporate multimedia components. The authors 

introduce IoMT and explore its goals and difficulties in a review 

[2], but they do not offer any real proposals for how to address the 

issue of IoMT application to multimedia event processing. This is 

because the authors believe that there is no clear solution to this 

problem. 

Studies [2] that concentrate on the recognition of multimedia 

events tend to ignore the benefits of the internet of things. 

Numerous articles [11] have discussed the development of deep 

learning-based object recognition models with and without 

datasets, but these articles have neglected to evaluate how well 

these models perform in the context of smart city applications (in 

terms of accuracy, testing time, training time, number of classes, 

size, etc.). 
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2. RELATED WORKS 

Image recognition [2] has become one of the conventional 

spheres of smart cities in order to recognize multimedia events 

when a camera detects a certain object. Alarms are sent in real 

time via text or image communications to the nearest city officials 

in order to notify them of the situation. Congestion, accidents, 

shifts in the weather, terrorist attacks, parking troubles, security 

threats, and other events of a similar nature are only some of the 

many conditions that could potentially result in multimedia 

occurrences. 

This type of question can be answered with the help of a 

camera that has been installed at the bus stop. The camera can 

record multimedia events that detail the current bus schedule. 

People would have a much easier time monitoring the situation if 

we had something like Public Transport Management to answer 

questions of this nature. This would make it possible for more 

people to stay informed. In a similar vein, if a user wished to 

subscribe to parking-lot-related events such as Is a parking slot 

empty? which the present systems that are based on public transit 

are unable to answer, then the user would want a system that is 

referred to as Car Parking Management. 

Again, users who wish to sign up for additional services, such 

as those that demand a taxi or pedestrian membership, won't be 

able to do so if the system doesn't understand how to adapt to their 

needs and learn from their actions. Additionally, in the 

decentralized environment of smart cities, millions of known and 

unknown classes may be added to user subscriptions. Because 

none of the real-time apps are going to require exactly those 

generic classes, and because the object detection datasets that are 

now available only apply to generic classes, none of the real-time 

applications are going to require them. 

As a direct consequence of this, there is an increasing trend 

toward the creation of an entirely new dataset for each and every 

original smart city use case. Combining image recognition 

technology with machine learning models is becoming 

increasingly important as the focus shifts toward the goal of 

allowing high-performance systems for the identification of 

events in smart cities. However, IoT-based solutions do not make 

the most of these improvements and instead focus exclusively on 

text-based actions. This is despite the fact that these developments 

are extremely beneficial. 

When it comes to managing unstructured events, however, 

solutions that are based on middleware are still in their infancy, 

despite the fact that they are effective at abstracting domain-

specific applications and distributed platforms. Research on 

multimedia event processing in smart cities, with an emphasis on 

event-based middleware solutions, is required because all of these 

issues, as well as the challenges and potential answers, make it 

necessary to do this research. 

In recent years, there has been a proliferation of reviews 

covering a wide range of topics related to the Internet of Things. 

Some examples of these reviews include IoT middleware, event 

processing, multimedia big data, multimedia processing with 

deep learning, object identification models, comparisons of image 

processing datasets, and many more. In order for us to understand 

the relevance of the work that is being given, we must first 

conduct an in-depth analysis of the reviews that have come before. 

The research that has been conducted on the subject of the Internet 

of Things has resulted in a large body of published material that 

is continually having its breadth and depth broadened, 

investigated, and summarized in a number of surveys. The 

recognition of events in multimedia is another domain in which 

the Internet of Things is occasionally, but not always, utilized. In 

the deep learning-based surveys, many image recognition 

techniques, such as object detection models, were included along 

with the dimensions of their technical implementation; however, 

performance in real-time applications was not included. 

A survey on deep learning for the Internet of Things, big data, 

and streaming analytics [13] reviews several deep neural network-

based designs and investigates IoT-based applications that can 

benefit from DL methods. The purpose of this survey is to gain a 

better understanding of how DL algorithms can be applied to 

Internet of Things (IoT) data. This document serves as a reference 

for matching the appropriate deep learning models with the 

appropriate Internet of Things applications. However, it does not 

explore the efficacy of deep learning models (such as CNN in 

object recognition models) in the several smart city scenarios in 

which they are utilized. These situations include: 

A further survey, this one centered on the function of the 

Internet of Things (IoT) in smart cities across all industries, 

provides a thorough review of IoT middleware. It investigates the 

compatibility of existing middleware solutions with the 

requirements of the Internet of Things. However, it does not cover 

the processing of multimedia data that is produced in smart cities, 

despite its extensive discussion of middleware for dealing with 

data from the Internet of Things (IoT). Event-based middleware 

is one of the design methodologies utilized by existing 

middleware solutions for the Internet of Things, such as those 

used in smart cities, banking, medical services, 

telecommunications, entertainment, etc. A classification approach 

for event-based programming environments is presented in the 

paper [14], which can be found here. 

This taxonomy categorizes event-based programming systems 

according to their service architecture and the event model that 

they support, thereby illuminating the traits that are common to 

all of these systems. A more detailed classification of event 

services according to organizational and interaction models as 

well as other functional and non-functional aspects is presented. 

By utilizing this hierarchical collection of attributes, it is possible 

to specify the relationships that exist between event systems, 

event services, and event models. Even though it does not include 

more contemporary event processing models, the taxonomy that 

has been presented is extremely extensive. 

The research presented in this paper [12] offers a 

comprehensive analysis of the most recent developments in the 

field of event recognition, with a particular focus on deep learning 

architectures for multimedia. Multimedia event recognition takes 

the following forms: single photographs, personal photo 

collections, motion pictures, and audio recordings. In particular, 

it provides an in-depth review of systems that are based on deep 

learning for the purpose of event recognition. In addition, 

benchmark datasets are given a lot of importance in order to 

validate event identification methods. Therefore, it is the most 

relevant survey for image recognition; however, performance-

based assessments of deep learning models are also required for 

real-time IoT applications. 
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3. DEEP LEARNING MODEL 

It is difficult to obtain data for negative classes, a medical 

dataset may end up being unbalanced as a result. As a 

consequence of this, not all scores had access to the same amount 

of BBS motion data. On the other hand, if the model is trained 

with an imbalanced dataset, it is possible that it may be unduly 

sensitive to the class that is dominating, and it will perform 

poorly. In order to make the dataset more even, one method is to 

generate new data that is statistically equivalent to the one that 

was originally used.  

In a manner analogous to that of downsampling, oversampling 

is a technique that may be utilized to improve BBS motion data. 

In study [11], an approach that was very similar to over-sampling 

was utilized in order to increase the overall number of 

observations and guarantee statistical equality between the two 

groups.  

3.1 CLASSIFICATION MODEL 

The BBS scoring technique was altered to incorporate the 

application of 1D-CNN and GRU ensemble classification models. 

The 1D-CNN and LSTM models, when used to analyze 

multivariate time-series data, typically produce findings that are 

encouraging. Because there is a very small amount of BBS data, 

each 1D-CNN and GRU model had to be constructed with a 

shallow structure. A shallow structure is advantageous for 

working with tiny quantities of data. In this piece, we will discuss 

the 1D-CNN and GRU structures that were utilized in the 

experiment, in addition to the ensemble model that turned out to 

be the most successful of its kind. 

3.2 1D-CNN HEAD AND GRU HEAD 

The one-dimensional convolutional neural network (1D-

CNN) consists of one convolutional layer, a max-pooling layer 

with a size of 2, a flattening layer, and then a fully connected 

layer. In the convolution layer, there were a total of 64 filters, and 

the activation function was the rectified linear unit. The same 

value was utilized for padding, and 1 was chosen as the figure for 

stride. 

The output of the GRU was simplified as a result of the fact 

that the GRU layer included within the GRU head was only 

delivered once. Data in a 64-bit format was both received and 

transmitted by the GRU unit. When the GRU layer was not time-

distributed, all of the data from the layer units was condensed into 

a single vector of fixed size. Because the performance of the 

model may be negatively affected due to the loss of information 

if the input is too long, short inputs are preferred. This problem, 

however, is solvable thanks to the feature vectors that are 

produced by each node in the temporally distributed GRU layer. 

3.3 1D-CNN, GRU STACKING ENSEMBLE MODEL 

The ensemble model that is comprised of the 1D-CNN and the 

GRU stacking has a total of three nodes. The first two heads are 

1D-CNNs, each having a kernel size of one, while the third head 

is a GRU, which is composed of a single distributed GRU layer. 

After the outputs of the three nodes are combined, a dense layer 

consisting of 100 perceptrons is layered on top of the structure. A 

dropout of fifty percent was put in between these two layers so as 

to prevent the model from becoming overfit and to make it more 

general. As the last layer, a softmax that consisted of five 

perceptrons was utilized. 

The structure as a whole was composed of individual 

components that were stacked over one another. The lower levels 

represented the meta-learners, and each of the three noggins 

served as a stand-in for one of the models. The meta-use was 

beneficial to not just the model that was proposed but also to other 

experimental models.  

4. RESULTS AND DISCUSSION 

The Open Photos V4 dataset [10] is a vast database of 9.2 

million annotated photographs that can be used for the purposes 

of picture categorization, object identification, and visual 

association. The size of open pictures V4 can be inferred from its 

image count (9,178,275), annotations (30,113,078 image-level 

labels, 15,440,132 bounding boxes, and 374,768 visual 

connection triplets), and visual concepts (classes) scale (19,794 

for image-level labels and 600 for bounding boxes). This 

distribution may be thought of as 15.4 million bounding boxes for 

600 categories spread across 1.9 million photographs, which is 

extremely helpful for object detection. Thinking of it in this way 

can help us comprehend it better. 

OID photographs also have highly detailed annotations, with 

an average of eight bounding boxes for each image, making them 

an excellent choice for object recognition. The primary steps in 

its image acquisition process are locating all Flickr3 images that 

are licensed under CC-BY (Creative Commons Attribution), 

downloading the original images, extracting relevant metadata, 

weeding out common/inappropriate/duplicate images, and 

dividing the remaining images into a training (9,011,219 images), 

validation (41,620 images), and testing (125,436 images) dataset. 

All of these steps take place on Flickr3.com. After this, OID 

employs photo classifiers and individuals to classify the 600 

different types of objects before generating bounding boxes that 

are acceptable within given parameters (details appear in the up-

to-date dataset on the Open Images V4 website). 

Table.5. Comparison of available Object Detection Datasets. 

Dataset Classes 
Training 

Images 

Validation 

Images 

ImageNet 220 963 56 

Pascal VOC 23 1510 

Microsoft COCO 85 4595 58 

Open Images 

Dataset 
660 848 35 

Dataset 
Testing 

Images 
Objects Image Size 

ImageNet 231 1.15 ~ 5 MB 

Pascal VOC 154 2.48 ~ 1 MB 

Microsoft COCO 345 7.78 ~ 1 MB 

Open Images 

Dataset 
776 8.12 ~ 2 MB 
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Our primary focus was on object detection in smart city 

multimedia event processing; as a result, we explored datasets 

along the following dimensions: 

Number of Classes: The number of classes specifies the 

number of distinct categories of things (including but not limited 

to cats, dogs, automobiles, trees, bikes, and other items) that are 

depicted in the training, validation, and testing pictures of the 

dataset. The number of pictures that are considered to be part of a 

particular category may vary from one class to another. 

Average Number of Objects per Image: This metric function 

is to calculate the average number of classes that are present in a 

given image. Since the number of objects in an image is a vital 

metric for any object identification model to learn from, this 

metric job is to calculate the average number of classes that are 

present. 

Average Image Size: The storage complexity of the dataset 

can be measured by looking at the average size of an image in a 

specific category. High-quality photos are ideal for use in 

instruction, but they take up a lot of storage space and can be time-

consuming to process. Because of this, it is strongly 

recommended that optimal size be taken into consideration before 

choosing a dataset for object detection in real-time event 

processing. 

Average Number of Training Images per Class: When 

finding the median, each and every training photo associated with 

that particular class is taken into consideration. Because the 

number of images contained within a certain category can change 

from one category to the next, any dataset that asserts that it is 

suitable for training on all classes is required to first be evaluated 

along this dimension. 

Average Number of Validation Images per Class: In a similar 

manner, the median is determined by adding all of the validation 

photos that are applied to a certain class. 

Average Number of Testing Images per Class: In the final 

step, it determines the average number of testing images for each 

class by using the total number of testing images available in that 

class. It then determines the median value using this information. 

Table 1 presents a comparison of the datasets that are currently 

available along the dimensions that have been stated. When 

deciding on a dataset to employ for the processing of multimedia 

events in smart cities, these considerations need to be given 

careful attention. The Open Images Dataset contains images that, 

on average, contain 8.1 different objects per picture. Additionally, 

it provides access to 600 different lessons. However, out of these 

600 courses, many of them comprise as few as 10 or 40 training 

pictures in OID, which renders it unsuitable for use as a teaching 

tool in some contexts. In spite of the fact that the majority of the 

photographs in the ImageNet dataset are iconic instances that only 

feature a single object, the dataset is nevertheless commonly used 

despite the fact that there are only a limited number of object 

detection categories available (about 200). When attempting to 

train models that are built on neural networks, this presents a 

dilemma. PascalVOC is comprised of only twenty classes, which 

is a drop in the bucket in comparison to the millions of classes that 

are required to model real-world scenarios. In addition, the 

number of photographs contained in this dataset per category is 

somewhat variable, which means that it is excellent for some 

categories but only adequate for others. The Microsoft COCO 

dataset is similarly accurate and popular because of its 

performance; however, it only contains 80 samples, which 

severely limits its usefulness. We used the median to calculate the 

normal number of photos that are used for training, validating, and 

testing in each category, despite the fact that the total number of 

images contained within these datasets is relatively large.  

An examination of the OID datasets reveals that some of them 

contain a comparatively small number of categories, with an 

average of 740, 26, or 77 pictures assigned to each class. In 

comparison to Pascal VOC and ImageNet, Microsoft COCO has 

outstanding performance. Microsoft COCO offers one of the 

highest object-to-picture ratios and the smallest image size of any 

other platform. Nevertheless, despite the fact that they cover a 

wide range of topics, each of these datasets has the potential to be 

useful in some capacity, whether it be as a standard for the 

construction of foundational classifiers or as a source of 

inspiration for domain-specific adaptations of already existing 

models. In the next section, we will take a cursory look at some 

possible developments in the future. 

Important challenges associated with data based on IoMT 

include a relatively high volume of heterogeneous multimedia 

information, a high requirement for bandwidth, and an excessive 

level of energy usage. Because multimedia traffic is so important, 

several modern models have attempted to solve the problem of 

having a large bandwidth while also providing a shorter latency 

from beginning to end.This is in response to the fact that these 

types of transmissions take place. Due to the increase in the 

amount of big data generated from multimedia sources, energy-

efficient processing has become a top priority in the Internet of 

Things that is based on multimedia (such as movies and 

photographs from smartphones). It is generally agreed upon that 

accommodating heterogeneity will be the most significant 

challenge facing the Internet of Things (IoT) of the future. This is 

due to the increasing prevalence of multimedia applications such 

as smart homes, transportation, security systems, and 

manufacturing. 

5. CONCLUSION 

Not only is the training data, but there are also stringent 

performance criteria that have an effect on the identification of 

multimedia events. In addition, there is the issue of needing to 

make a trade-off between speed and accuracy. It is important to 

keep in mind that the total amount of time spent training and 

testing is considered in the calculation of response time. During 

the process of training the model for novel courses, there was a 

discernible decrease in performance, which was compensated for 

by a faster response time. Additionally, if we adopt fully trained 

models to detect objects for seen classes, our response time will 

be dependent on the inference (testing) duration of the model, and 

existing object identification models suffer from a performance-

reaction time trade-off even in the testing of the model. If we 

adopt fully trained models, however, our response time will not 

depend on the inference (testing) duration of the model. We 

explain the results of our testing of various pre-existing models 

by utilizing a variety of different types of item identification 

datasets. Among the various models that we have examined for 

their ability to recognize objects, we have discovered that YOLO, 

which is the most efficient, can analyze an image in only 8.77 
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milliseconds while also having the lowest mAP (35.4). The faster 

RCNN performs poorly when it comes to the duration of the test. 

Even though SSD has a testing time of only 47.62 milliseconds 

and its mAP is relatively high, this is still a very low value for 

identifying multimedia events in real time. The present state-of-

the-art accuracy is provided by RetinaNet; unfortunately, we are 

unable to use it because of the extensive amount of time it takes 

to compute (142.86 ms). Given the current state of the art in object 

recognition, we have come to the conclusion that, in order to 

implement the multimedia event-based applications that smart 

cities require, we will always be required to make a choice 

between accuracy and speed. 
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