
ISSN: 0976-9102 (ONLINE) ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, MAY 2022, VOLUME: 12, ISSUE: 04

DOI: 10.21917/ijivp.2022.0381

2679

IMAGE CLASSIFICATION USING MODEL ENSEMBLING

Debabrata Datta 1, Anweshan Mukherjee2, Soumen Mukherjee3, Arup Kr. Bhattacharjee4, Anal Acharya5
1,2,5Department of Computer Science, St. Xavier’s College, India

3Department of Computer Application, RCC Institute of Information Technology, India
4Department of Computer Science and Engineering, RCC Institute of Information Technology, India

Abstract

Classifying images efficiently using various algorithms is very useful

now-a-days given that the field of computer vision is growing rapidly.

The research work highlighted in this paper focuses on the independent

use of various models to classify images and then combining them

together to form a better model in terms of performance than each of

the individual models. The dataset used consists of 200 classes with

90,000 training images, 10,000 validation images and 10,000 test

images. The data preparation step in this work involves resizing the

images (data), shuffling them and transforming them into a data

generator to provide input to the models. The images were also

augmented using two different sets of image transformation effects to

get more data for the models to train on. These data were then used to

train five different models (one model trained from scratch and four

other models using pre-trained weights and transfer learning)

independently. The performance of each model was judged by checking

two evaluation metrics – f1-score and categorical accuracy. The models

were also tried to be fine-tuned to get a better performance, and finally

the models were ensembled together to get a better categorical accuracy

and f1-score on unseen (validation and test) data.

Keywords:

Image Classification, Convolutional Neural Networks, Image

Augmentation, Model Ensembling, F1-Score

1. INTRODUCTION

Computer Vision is a field of study that requires collective

knowledge from various scientific branches, focusing on training

computers to learn from electronic videos or images. This field of

artificial intelligence can be used to help humans by replicating

the work done by the human visual system, or even obtain better

results such as in low resolution images or videos [1].

Image Classification is one of the most widely used and

studied sub-domains of computer vision. It is the task of

predicting the class (label) an image belongs to by examining it

using various algorithms [2]. Image Classification is difficult

because what we see as an image, the computer sees it as an array

of binary numbers, which are actually the pixel values (either

RGB or Black and White) converted to binary. The pixel values

of a colored image are represented as RGB values. So, a colored

image is represented as a huge 3-dimensional array. And, this

array changes with changing the size of the image or, changing

the position of an object in the image or, even changing the

brightness and contrast of the image. This means that we may

have many different huge 3-dimensional arrays belonging to the

same class. Thus, what seems very trivial to us, is actually not a

very easy task to do while training the computer to do the same.

The method followed in this paper focuses on training

multiple models (using different algorithms) independently and

then joining them together to get a better result.

There were five models used here: a VGG16 inspired model

trained from scratch; Xception, InceptionResNetV2,

MobileNetV2 and DenseNet201 (all using ImageNet weights) for

transfer learning. These models are then ensembled together to get

the final model on which classification was done on unseen data.

The method described in this paper can be used to develop a

web application or a mobile application and if developed further,

can be applied in medical fields such as detection of pneumonia

and cancer or in military uses such as classifying enemies in the

battlefield.

2. RELATED WORK

The work of image classification generally starts off with

getting a uniform size and shape of the input images (data). This

is done for two reasons: firstly, the model to which the images are

to be fed, needs a fixed size of the input; and secondly, the original

data may be so small (size of the images are very small in

dimensions), that it becomes difficult for the model to extract

sufficient information from them.

Due to the large amount of data contained in each image, every

method related to machine learning cannot be applied to the

problem of image classification. Input images are made to go

through various series of convolution layers so that the vastness

of the data is reduced and a feasible amount of data can be

obtained to perform the classification task.

The quest to classify images and proposing various algorithms

to do that is not a very recent topic. It goes way back to the year

1998 when LeCun et al. [3] used convolutional neural networks

to classify images. Their model named LeNet-5, contains 7 layers

(other than the input layer), all of which contain trainable

parameters (weights).

LeNet-5 is one of the oldest networks for image classification.

In LeNet-5, deep neural networks were trained and optimized

using gradient-descent algorithm and it showed how independent

convolutional neural networks (CNNs) could be combined to get

interdependent layers of the model to obtain outputs with a better

accuracy [4].

Krizhevsky et al., in 2012, designed a network model called

AlexNet [5], to classify ImageNet [6] [7] data [8]. The AlexNet

architecture is famous because it focuses on the distribution of

work between two different GPUs. This network is one of the

pioneer networks able to achieve a significantly high

classification accuracy on a standard image classification task.

The fact that this network uses concepts like convolution layers,

pooling and GPUs (for parallel computing) makes it a significant

contribution to the image classification domain. It was the first

CNN-based award winner at ILSVRC 2012 with a top-5 error rate

of 16.4% [9].

DEBABRATA DATTA et al.: IMAGE CLASSIFICATION USING MODEL ENSEMBLING

2680

Out of the five models trained and ensembled together in the

research work mentioned in this paper, one of them was trained

from scratch. It is based on the VGGNet architecture. VGG16

architecture was developed by Simonyan and Zisserman [10].

The VGG16 model uses many but small convolutional filters

to extract information from the images [11]. This model was the

winner in localization at ILSVRC 2014 with a top-5 error rate of

7.3% [12].

The problem with AlexNet and VGG16 was that they had too

many parameters and VGG16 used too much of memory for

training (almost 96 MB per image). Szegedy et al. [13] proposed

the GoogLeNet architecture which solved these problems to a

great extent. It uses an Inception module, which is not simply a

convolutional layer but many different kinds of layers

concatenated together and arranged in a way that reduces the

number of computations.

The Inception module is based on the strategy to form a stack

of well-designed local network topology modules (a network

inside another network). The naïve version of the Inception

module [13] has three convolution layers which intuitively allows

one to see an image in different resolutions with respect to

zooming in or out the image. The filters (three convolutions and

one pooling operation) are applied parallelly and then the outputs

of these filters are concatenated depth-wise. But, the number of

operations in doing this is too high because along with the large

number of computations in the convolution layers, the pooling

layer also preserves feature depth. So, the images are never down

sampled, which could result in an increase (but never decrease) in

the total depth after filter concatenation is done at each layer.

To overcome this problem, an Inception module with

dimension reduction strategy involved was introduced [13]. In

that, there are several 1×1 convolution layers which serve as

bottleneck layers. They reduce the feature depth of the output at

that layer and as a result reduce the number of operations

significantly.

In GoogLeNet, Inception modules are stacked one upon the

other for dimension reduction. In such deep networks, one major

problem is with the costly backpropagation. For that, GoogLeNet

uses a trick to have auxiliary outputs in the middle of the network

so that the backpropagation is made faster. The same output which

is there at the final fully connected layer is also available as some

intermediate Inception module’s auxiliary output. These auxiliary

outputs serve as additional gradients at lower layers.

GoogLeNet has almost 12 times lesser number of parameters

than AlexNet and it was classification winner at ILSVRC 2014

with a top-5 error of 6.7% [12].

He et al. [14] proposed another model, called ResNet, which

uses very deep network with residual connections. Generally, in

very deep networks, there is a disadvantage that the gradients are

not backpropagated properly. ResNet kind of bypasses certain

layers to solve this. There is a parallel path in the model which

intuitively helps in bypassing the weight layers. This path helps

in both forward and backward passes.

ResNet was the classification winner at ILSVRC 2015 with a

top-5 error rate of 3.57% (better than human performance) [15].

As days go by, the fields of computer vision and image

classification are developing more and more.

3. PROPOSED METHODOLOGY

The methodology proposed in this paper consists of training

five different models (one from scratch and four others by transfer

learning) and then ensembling them together for final

classification.

3.1 DATA PREPARATION

The data (images) were initially kept at 64×64 dimensions but

it was getting harder to extract sufficient information from them

and the validation categorical accuracy was stuck at around 53%.

For this reason, the input data dimension was changed to

128×128, which provided much better results. The pixel values

of each image were also rescaled to 1/255 so as to make the

computations easier. The images were then shuffled and

transformed into a data generator for providing input.

3.2 TRAINING THE VGG16 INSPIRED MODEL

FROM SCRATCH

The first model which was trained from scratch, was inspired

by the VGG16 architecture [11]. The model takes as input RGB

images of dimensions 128×128. The model has two convolution

layers with 64 kernels, two with 128 kernels, three with 256

kernels, and six with 512 kernels. The kernel size in each

convolution layer was 3×3. Each convolution layer has batch

normalization integrated to let the network train faster [19]. ReLU

activation has also been used in each convolution layer. Any two

successive convolution blocks were separated from each other by

a max-pooling layer of pool size 2×2 and a stride of 2 to reduce

computational complexity.

The result of the final max-pooling layer was flattened to be

passed through dense layers for classification. There were three

dense layers with 4096 units, 512 units and 200 units respectively.

The first dense layer (with 4096 units) had adropout of 50%

following it to prevent overfitting [20]. The first two dense layers

have ReLU activation while the final dense layer has softmax

activation.

The final dense layer had given the output in the form of a

vector which served as the probabilities of each of the 200 classes

and thus enabled the model to perform soft classification.

3.2.1 Reasons for using Convolution Neural Networks:

There might be some images which were essentially the same

but differed from each other drastically with respect to the pixel

values. This happened because some images might be zoomed in

or out; or the objects in the images were at different positions in

different images. Due to this huge variability in data, it was not

possible to use a dense neural network having so many parameters

and still be able to classify the data efficiently [16].

To tackle this problem, convolutional neural networks were

used which, intuitively, extracted some features or attributes from

an image and made the work of classification much easier. For

example, if a classifier has been given three images of a tiger as

input, the attributes such as having a tail, black and yellow stripes

on body and having two eyes will be the same for all images. So,

if the classifier could extract these features, it would be able to

easily classify that the images belong to the class ‘tiger’, though

ISSN: 0976-9102 (ONLINE) ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, MAY 2022, VOLUME: 12, ISSUE: 04

2681

in one image the tiger could be running, while in the other images

the tiger could be eating or sleeping.

For scanning the images for attributes or features, a kernel is

used. A hop size (or, stride size) was selected which is the shift in

kernel’s position for scanning.

3.2.2 Reasons for using Max Pooling:

Pooling was done to down-sample the data (image) and thus

reduce computational complexity of the succeeding operations

[16]. For example, if an image of a tiger is being scanned with the

kernel of its tail, the convoluted matrix would be almost 0’s

everywhere and 1 only at the specific pixel values where the tail

has been found. These insignificant values make the data sparse

and increase the computational complexity since the dimension of

the data gradually increases.

To overcome this, max pooling was done, which is actually

selecting a group of elements from the convoluted matrix and

selecting the maximum of them to be considered as an element of

max-pooled convoluted matrix.

3.2.3 Reasons for using Softmax and ReLU Non-Linearity:

The gradient descent algorithm [21] follows Eq.(1) for

updating the weights.

old

new old

w w

L
w w

w

=

 −

 (1)

where, w are the parameters; η is the learning rate and L is the loss

function.

Thus, the non-linearity needs to be differentiable, which both

Softmax and ReLU is. Using ReLU also tackled the problem of

vanishing gradients [22]. Using Softmax, provided a vector asthe

output, in which each element belonged to the interval [0, 1]; and,

the sum of all these elements equal to 1. Thus, these values could

be considered to be probability values for each class – allowing

the model to perform soft classification.

The different hyperparameters used are:

• Optimizer: Stochastic Gradient Descent (SGD) [23] with a

learning rate of 0.001 and momentum of 0.9

• Callback: ReduceLROnPlateau [24] with factor of 0.2,

patience of 3 and minimum learning rate of 10-7 was made

to monitor the validation loss. This was used to facilitate

faster training when the model did not show any more

improvement.

• Loss function: Categorical Cross-entropy [25]

• Evaluation Metrics: F1-Score and Categorical Accuracy

3.2.4 Stage 1 (Training on Original Data):

In this stage, the model was trained on original training data.

Stochastic gradient descent with a learning rate of 0.001 and

momentum of 0.9 was initially used as the optimizer.

ReduceLROnPlateau callback was incorporated in the training

process to prevent overfitting. This callback was made to monitor

the validation loss and it reduced the learning rate by a factor of

0.2 whenever the model did not show any improvement for 3

consecutive epochs (patience = 3). However, a minimum learning

rate was fixed at 10-7, below which the callback could no longer

reduce the learning rate. Categorical-cross entropy was used as

the loss function. The evaluation metrics used were f1-score and

categorical accuracy.

Fig.1. Model Architecture

The input images were shuffled to ensure that each image

creates a unique and independent change in the model weights

without being biased by the previous input data.

3.2.5 Stage 2 (Training on Augmented Data 1):

One of the most prioritized objectives in image classification

is to get more and more data for training the model. Using image

Input; shape = 128×128×3

3 X CONV

kernels = 512; kernel size = 3×3; strides = (1, 1)

MaxPool

pool size = 2×2; strides = 2

Flatten

Dense

Units = 4096; activation = ReLU

Dropout

Rate = 0.5

Dense

Units = 512; activation = ReLU

Dense

Units = 200; Activation = softmax

MaxPool

pool size = 2×2; strides = 2

3 X CONV

kernels = 512; kernel size = 3×3; strides = (1, 1)

MaxPool

pool size = 2×2; strides = 2

3 X CONV

kernels = 256; kernel size = 3×3; strides = (1, 1)

MaxPool

pool size = 2×2; strides = 2

2 X CONV

kernels = 128; kernel size = 3×3; strides = (1, 1)

MaxPool

pool size = 2×2; strides = 2

2 X CONV

kernels = 64; kernel size = 3×3; strides = (1, 1)

DEBABRATA DATTA et al.: IMAGE CLASSIFICATION USING MODEL ENSEMBLING

2682

augmentation, more training data can be generated from the

already existing data. It is very useful in applications where data

is not so easily available [17].

For performing image augmentation, the already available

data were made to undergo several transformations such as

rotation, re-scaling of images and so on. These transformations

were done keeping in mind the application that the model is being

trained for and at the same time prevent overfitting of the model.

This was because getting too much of data for one class might

make the model biased towards that class and could provide not

very satisfactory results for images belonging to other classes.

In this stage, the training data were augmented using a list of

transformations as:

• Rescaling each pixel of the image by 1/255

• Rotating each image randomly within a range of 40°

• Shifting width of each image by a range of 0.2

• Shifting height of each image by a range of 0.2

• Shearing each image by a range of 0.2°

• Zooming each image by a range of 0.2

• Randomly flipping some images horizontally

After these transformations were done, the images were

shuffled and fed to the model as input. All of these

transformations were applied using ImageDataGenerator [26]

class of keras.preprocessing.

Original Data

Augmented Data

Fig.2. Images after applying Image Augmentation 1

The optimizer and the callback used in this stage was same as

that in Stage 1 other than the initial learning rate which was

reduced to 10-4 for stochastic gradient descent optimizer; and the

patience and the minimum learning rate was changed to 4 and 10-

14 respectively for the ReduceLROnPlateau callback.

3.2.6 Stage 3 (Training on Augmented Data 2):

In this stage, the input data were augmented using a different

set of transformations from the ones in stage 1.

The transformations applied were:

• Horizontally flipping 50% of the images.

• Cropping images from each side by 0 to 4px (randomly

chosen).

• Applying Gaussian blur with sigma between 0 and 2.5.

• Increasing or decreasing the contrast in each image by

varying the linear contrast between 0.75 and 1.25.

• Applying additive Gaussian noise within a scale of 0 to

0.05×255.

• Scaling each image within the range of (0.8, 1.2) for both x-

and y-axes.

• Rotating each image by some degree ranging from -20° to

20°.

• Dropping some pixels from each image, 2% to 5% of the

original size, leading to large dropped rectangles.

All of these transformations were applied using imgaug [27]

library. Unlike image augmentation 1, image augmentation 2 did

not use all the transformations mentioned. It was made to

randomly select an integer from 0 to 6, and that many

transformations were applied on the images. This was done so that

the images were not heavily augmented which could result in

underfitting the model. The optimizer and the callback used in this

stage was the same as that in stage 2.

Original Data

Augmented Data

Fig.3. Images after applying Image Augmentation 2

3.3 TRANSFER LEARNING USING XCEPTION

CONVOLUTION BASE AND IMAGENET

WEIGHTS

Transfer learning is a technique in machine learning where an

algorithm or a model which has been already used for a task, is

used for another task. This facilitates for a better performance on

the second task since the model being used is already pre-trained.

Xception [28] is a deep learning model for image

classification that performs its task using point-wise convolution

and depth-wise convolution. The convolution block for Xception

is divided into 3 flows – entry flow, middle flow and exit flow.

In the entry flow, images of size 299 × 299 × 3 are taken as

input (default input) and they are made to pass through two

convolution layers – one having 32 kernels, kernel size = 3×3 and

stride = 2×2, and the other having 64 kernels of size 3×3. Two

separable convolution networks of 128 kernels of size 3×3, two

of 256 kernels of size 3×3 and two of 728 kernels of size 3×3 are

also present. All of these have ReLU non-linearity attached.

The entry flow also contains three max pooling layers of pool

size 3×3 and stride 2×2. Three convolution layers with kernel size

1×1 and stride 2×2 are present as linear residual connections to

various points in the entry flow. For a default input of 299×299×3

image, the entry flow outputs feature maps of dimension

19×19×728.

Image Augmentation 2

Image Augmentation 2

ISSN: 0976-9102 (ONLINE) ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, MAY 2022, VOLUME: 12, ISSUE: 04

2683

The middle flow takes as input the 19×19×728 feature maps

from the entry flow and passes it through three separable

convolution layers of 728 kernels of size 3×3 having ReLU

activation. The middle flow has a linear residual connection and

is repeated 8 times to produce 19×19×728 feature maps for the

default input.

The exit flow takes as input 19×19×728 feature maps and is

made to pass through four separable convolution layers of 728

kernels, 1024 kernels, 1536 kernels and 2048 kernels respectively

each of size 3×3 and ReLU non-linearity. A convolution layer

with kernel size 1×1 and stride 2×2 is attached to the linear

residual connection. For pooling, a max pooling layer with pool

size 3×3 and stride 2×2 and a global average pooling layer is

present as the final layer for the convolution block. All the blocks

in all the three flows have batch normalization integrated.

In the research work highlighted in this paper, the convolution

block for Xception was imported with pre-trained weights

obtained on feeding them the ImageNet [29] dataset. A dense

layer of 200 units and softmax non-linearity was added on top for

classification. The optimizer used was Adadelta [30] and the input

images were rescaled to size 128×128 after undergoing image

augmentation 2. ReduceLROnPlateau callback was not

incorporated in the training process because the models were not

trained for many epochs at a time due to their large size and usage

limits on Google Colaboratory GPU. Reduction in learning rate,

if required, was done manually.

3.4 TRANSFER LEARNING USING

INCEPTIONRESNETV2 CONVOLUTION BASE

AND IMAGENET WEIGHTS

InceptionResNetV2 [31] is a deep learning model which uses

very deep convolution networks for image classification. It uses

both residual connections and inception blocks for lesser

computations and better training.

The schema for InceptionResNetV2 is divided into several

blocks/stages, namely ‘Input’, ‘Stem’, ‘Inception-resnet-A’,

‘Reduction-A’, ‘Inception-resnet-B’, ‘Reduction-B’, ‘Inception-

resnet-C’, ‘Average Pooling’, ‘Dropout’ and ‘Softmax’.

The default input in the Input layer is of size 229×229×3.The

Stem layer takes this input and passes it through three convolution

layers with 32, 32 and 64 kernels respectively, each of kernel size

3×3. The path from this output is split, made to pass through a

max pooling layer of pool size 3×3 and strides 2, and a

convolution layer with 96 kernels of size 3×3 and strides 2. The

outputs from these are concatenated together using a ‘Filter

concat’ layer.

The path from the Filter concat layer is again split into two

paths: one with two convolution layers (one with 64 kernels of

size 1×1 and another with 96 kernels of size 3×3), and another

with four convolution layers (a 64 kernel of size 1×1, a 64 kernel

of size 7×1, a 64 kernel of size 1×7, and a 96 kernel of size 3×3).

The outputs from these paths are again concatenated and the paths

are split: one to a convolution layer with 192 kernels of size 3×3

and the other with a max pooling layer with stride = 2.

The Stem layer is followed by five Inception-resnet-A layers.

It is a 35×35 grid module consisting of three convolution layers

of 32 kernels and size 1×1, three convolution layers with 32, 48

and 64 kernels respectively each of size 3×3 and a convolution

layer with 384 kernels of size 1×1 to the linear residual

connection. This layer has ReLU activation both at the starting

and at the end.

The Reduction-A layer takes the filter concat version of the

output from the Inception-resnet-A layer. The path is split into

three ways: one with a max pooling layer of strides 2, one with a

convolution layer with 284 kernels of kernel size 3×3, and the

other with three convolution layers (one with 256 kernels of size

1×1, one with 256 kernels of size 3×3, and the last one with 384

kernels of size 3×3). The outputs from the three paths were again

filter concatenated.

The Reduction-A layer is followed by ten Inception-resnet-B

layers. It is a 17×17 grid module consisting of two convolution

layers with 128 kernels and 192 kernels respectively, each of size

1×1, a convolution layer with 160 kernels of size 1×7, and a

convolution layer with 192 kernels of size 7×1. A convolution

layer with 1154 kernels of size 1×1 is also connected to the linear

residual connection. Both the input to this layer and the output

generated from this layer are ReLU activated.

The Reduction-B module reduces a 17×17 grid to 8×8 grid.

From the Inception-resnet-B layers, it gets divided into four paths.

One path contains a max pooling layer with pool size 3×3 and

strides 2. Another path contains two convolution layers: one with

256 kernels of size 1×1 and another with 384 kernels of size 3×3.

The third path also contains two convolution layers: one with 256

kernels of size 1×1 and another with 288 kernels of size 3×3. And,

the final path contains three convolution layers: one with 256

kernels of size 1×1, one with 288 kernels of size 3×3, and one

with 320 kernels of size 3×3. The outputs from all these paths

were filter concatenated.

The output from the Reduction-B module is fed into five

Inception-resnet-C modules. It is a 8×8 grid module consisting of

two convolution layers with 192 kernels of size 1×1, one

convolution layer with 224 kernels of size 1×3, one convolution

layer with 256 kernels of size 3×1 and a convolution layer with

2048 kernels of size 1×1 connected to the linear residual

connection. Both the input to this layer and the output generated

from this layer are ReLU activated.

The output from Inception-resnet-C module is made to go

through average pooling, dropout of 20% and finally a Softmax

non-linearity. The 1×1 convolution layers are added to keep the

dimension optimum since inception modules reduce dimensions.

The convolution block for InceptionResNetV2 was imported

with pre-trained weights obtained on feeding them the ImageNet

[29] dataset. A dense layer of 200 units and softmax non-linearity

was added on top for classification. The optimizer used was

Adadelta [30] and the input images were rescaled to size 128×128

after undergoing image augmentation 2.

3.5 TRANSFER LEARNING USING

MOBILENETV2 CONVOLUTION BASE AND

IMAGENET WEIGHTS

MobileNetV2 [32] is a deep learning model for image

classification which is based on depth-wise separable

convolutions and bottleneck layers. Depth-wise separable

convolutions require much smaller number of computations than

normal convolution layers. Generally, non-linearities tend to lose

some information due to their behavior in certain intervals (for

DEBABRATA DATTA et al.: IMAGE CLASSIFICATION USING MODEL ENSEMBLING

2684

example, ReLU non-linearity loses negative data). This could

deteriorate the performance of the model. Instead, if a linear

bottleneck is used such that the last convolution block produces a

linear output before it undergoes the initial non-linearities, it

would be very useful.

In MobileNetV2 architecture, a default input of 224×224×3 is

given to a convolution layer with 32 channels and strides 2. Seven

bottleneck layers are used. The first bottleneck layer takes as input

images of size 112×112×32, has 16 output channels, stride 1 and

is not repeated. The second bottleneck layer takes as input images

of size 112×112×16, has 24 output channels, strides 2 (for first

layer only; 1 for the rest) and it repeated twice. The third

bottleneck layer takes as input images of size 56×56×24, has 32

output channels, strides 2 (for first layer only; 1 for the rest) and

is repeated thrice. The fourth bottleneck layer takes as input

images of size 28×28×32, has 64 output channels, strides 2 (for

first layer only; 1 for the rest) and is repeated four times. The fifth

bottleneck layer takes as input images of size 14×14×64, has 96

output channels, strides 1 and is repeated thrice. The sixth

bottleneck layer takes as input images of size 14×14×96, has 160

output channels, strides 2 (for first layer only; 1 for the rest) and

is repeated thrice. The seventh bottleneck layer takes as input

images of size 7×7×160, has 320 output channels, strides 1 and is

not repeated. All the bottleneck layers except the first one has the

input expanded by a factor of 6. Another convolution layer

accepting inputs of size 7×7×320, having 1280 output channels

and stride 1 is also present. An average pooling layer having input

size 7×7×1280 is present. A convolution layer accepting input of

size 1×1×1280 is present at the end.

In the research work mentioned in this paper, the convolution

block for MobileNetV2 was imported with pre-trained weights

obtained on feeding them the ImageNet [29] dataset. A dense

layer of 200 units and softmax non-linearity was added on top for

classification. The optimizer used was Adadelta [30] and the input

images were rescaled to size 128×128 after undergoing image

augmentation 2.

3.6 TRANSFER LEARNING USING DENSENET201

CONVOLUTION BASE AND IMAGENET

WEIGHTS

DenseNet201 [33] is a deep learning model used for image

classification. It is based on dense convolutional networks where

the layers close to the input layer and the output layer have shorter

connections between them. The feature-maps of the previous

layers are used as inputs to the current layer and the feature-maps

of the current layer are used as inputs to all the succeeding layers.

Due to this, the flow of features from one layer to another is

increased which reduces the overall number of parameters. The

problem of vanishing gradients is also solved to a great extent.

The convolution block for DenseNet201 was imported with

pre-trained weights obtained on feeding them the ImageNet [29]

dataset. A dense layer of 200 units and softmax non-linearity was

added on top for classification. The optimizer used was Adadelta

[30] and the input images were rescaled to size 128×128 after

undergoing image augmentation 2.

3.7 MODEL ENSEMBLING

Model ensembling is a type of regularization in machine

learning where various models are trained independently to solve

the same problem and then they are combined (taken average of

the weights) to get better results [18]. The intuition behind this is

that when several weak models are correctly combined, the result

obtained is better (in terms of accuracy) than any of the combined

models individually.

In the research work mentioned in this paper, after all the

models were trained independently, they were ensembled together

to get the final model for classification on unseen/test data.

These five models were ensembled together:

• VGG16 inspired model (trained from scratch)

• Xception (transfer learning)

• InceptionResNetV2 (transfer learning)

• MobileNetV2 (transfer learning)

• DenseNet201 (transfer learning)

3.7.1 Algorithm for Model Ensembling:

models = [VGG16_inspired_model, Xception_model, Inception

ResNetV2_model, MobileNetV2_model, DenseNet201_model]

input = input layer of shape (128,128,3)

yhat = []

function ensemble_models (models, input)

{

for each model in models

yhat = yhat, [model(input)]

yavg = average(elements of yhat)

model_ens = new_model(inputs = input, outputs = yavg)

return model_ens

}

4. RESULTS AND ANALYSIS

The various models were first trained individually and then

they were ensembled together to get the final model.

The Dataset used [37] consists of 200 classes with 90,000

training images, 10,000 validation images and 10,000 test images.

Size of each image is 64×64 pixels. The small dimension of each

image made it harder to extract sufficient information from them.

∴ Training set : Validation set : Testing set = 9:1:1

4.1 TRAINING THE VGG16 INSPIRED MODEL

FROM SCRATCH

4.1.1 Stage 1: Training on Original Data:

The model was trained for 24 epochs with a batch size of 64.

After the 16th epoch, the learning rate was manually changed to

10-6. This resulted in an improvement in both training and

validation metrics. After stage 1, the model showed the results as

given in Table.1.

4.1.2 Stage 2: Training on Augmented Data 1:

The model was trained for 24 epochs with a batch size of 64.

Since the images used here were augmented, the overall

ISSN: 0976-9102 (ONLINE) ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, MAY 2022, VOLUME: 12, ISSUE: 04

2685

performance of the model was poorer than that in stage 1. As the

training went further, the performance of the model gradually got

improved. After stage 2, the model showed the results as shown

in Table.2.

4.1.3 Stage 3: Training on Augmented Data 2:

The model was trained for 24 epochs with a batch size of 64.

After the 16th epoch, the learning rate was manually reduced to

10-5, which resulted in better performance of the model. After

stage 3, the model showed the results as shown in Table.3.

From Table.3, it can be seen that the model performed much

better in stage 3 than in stage 2, both in terms of training and

validation f1-score and categorical accuracy.

4.2 TRANSFER LEARNING USING XCEPTION

CONVOLUTION BASE AND IMAGENET

WEIGHTS

The model was trained for 12 epochs. Till epoch 8, the

learning rate was fixed at 10-3. After that, the learning rate was

decreased to 10-4 for the model to be trained for 4 more epochs.

Fine-tuning the last convolution block did not prove any

improvement. Transfer learning the Xception model provided the

results as shown in Table.4.

4.3 TRANSFER LEARNING USING

INCEPTIONRESNETV2 CONVOLUTION BASE

AND IMAGENET WEIGHTS

The model was trained for 16 epochs. Till epoch 8, the

learning rate was fixed at 10-3. After that, the learning rate was

decreased to 10-4 for the model to be trained for 8 more epochs.

Fine-tuning the last convolution block did not provide any

improvement. Transfer learning the InceptionResNetV2 model

provided the results as shown in Table.5.

4.4 TRANSFER LEARNING USING

MOBILENETV2 CONVOLUTION BASE AND

IMAGENET WEIGHTS

The model was initially trained for 24 epochs. Till epoch 16,

the learning rate was fixed at 10-3. After that, the learning rate was

decreased to 10-4 for the model to be trained for 8 more epochs.

Fine-tuning the last convolution block provided improvement in

both training and validation loss and metrics. For fine-tuning the

last convolution block, the learning rate was fixed at 10-4 and it

was trained for 4 more epochs.

Transfer learning the MobileNetV2 model provided the results

as shown in Table.6 and the results after fine-tuning the last

convolution block are shown in Table.7.

4.5 TRANSFER LEARNING USING

MOBILENETV2 CONVOLUTION BASE AND

IMAGENET WEIGHTS

The model was trained for 26 epochs. Till epoch 8, the

learning rate was fixed at 10-3. After that, the learning rate was

decreased to 10-4 for the model to be trained for 18 more epochs.

Fine-tuning the last convolution block did not provide any

improvement. Transfer learning the DenseNet201 model

provided the results as shown in Table.8.

Table.1. Results after training model 1 on original data

Loss and

Metrics vs

Epochs

Training Validation

Loss
F1-

Score

Categorical

Accuracy
Loss

F1-

Score

Categorical

Accuracy

Epoch 1 4.9837
8.2935

×10-4
0.0324 4.3599 0.0062 0.0782

Epoch 2 4.2236 0.0175 0.1057 3.8721 0.0251 0.1319

Epoch 3 3.7294 0.0576 0.1736 3.5868 0.0797 0.2021

Epoch 4 3.3929 0.1088 0.2287 3.1137 0.1123 0.2407

Epoch 5 3.1291 0.1606 0.2733 2.7731 0.1542 0.2661

Epoch 6 2.8988 0.2130 0.3151 3.5337 0.2150 0.2969

Epoch 7 2.6904 0.2665 0.3549 2.3900 0.2207 0.3027

Epoch 8 2.4951 0.3179 0.3919 2.8664 0.2796 0.3428

Epoch 9 2.3189 0.3631 0.4275 2.2265 0.2843 0.3384

Epoch 10 2.1391 0.4100 0.4637 3.8136 0.3221 0.3636

Epoch 11 1.9628 0.4574 0.5005 2.4065 0.3459 0.3776

Epoch 12 1.7969 0.5001 0.5358 3.0625 0.3530 0.3653

ReduceLROnPlateau reducing learning rate to

0.00020000000949949026

Epoch 13 1.2356 0.6488 0.6728 3.4637 0.4438 0.4503

Epoch 14 1.0434 0.7020 0.7194 3.8950 0.4342 0.4271

Epoch 15 0.9236 0.7327 0.7485 1.8921 0.4457 0.4313

Epoch 16 0.8090 0.7631 0.7782 2.9619 0.4354 0.4234

Manually reducing learning rate to 1e-6

Epoch 17 0.6851 0.7972 0.8158 2.6833 0.4550 0.4451

Epoch 18 0.6531 0.8074 0.8278 2.5127 0.4569 0.4508

Epoch 19 0.6388 0.8121 0.8312 1.7470 0.4591 0.4524

Epoch 20 0.6322 0.8154 0.8350 2.3139 0.4599 0.4541

Epoch 21 0.6292 0.8159 0.8366 1.8152 0.4620 0.4553

Epoch 22 0.6220 0.8175 0.8370 1.9120 0.4608 0.4542

ReduceLROnPlateau reducing learning rate to

1.9999999949504855e-07

Epoch 23 0.6196 0.8176 0.8384 3.6468 0.4617 0.4544

Epoch 24 0.6174 0.8190 0.8376 1.8759 0.4593 0.4533

Table.2. Results after training model 1 on Image Augmentation

1 data

Loss and

Metrics vs

Epochs

Training Validation

Loss
F1-

Score

Categorical

Accuracy
Loss

F1-

Score

Categorical

Accuracy

Epoch 1 2.9792 0.2545 0.3137 2.1032 0.3017 0.3182

Epoch 2 2.7904 0.2737 0.3412 2.9635 0.2854 0.2996

Epoch 3 2.7272 0.2838 0.3523 3.1365 0.3072 0.3238

Epoch 4 2.6693 0.2975 0.3642 3.0420 0.3159 0.3348

Epoch 5 2.6313 0.3052 0.3698 2.9908 0.3264 0.3371

ReduceLROnPlateau reducing learning rate to

1.9999999494757503e-05

Epoch 6 2.5801 0.3156 0.3804 3.3823 0.3437 0.3592

Epoch 7 2.5648 0.3224 0.3839 3.0035 0.3507 0.3695

Epoch 8 2.5521 0.3245 0.3862 3.1798 0.3440 0.3580

Epoch 9 2.5427 0.3248 0.3851 3.1259 0.3483 0.3592

Epoch 10 2.5309 0.3300 0.3897 4.2754 0.3479 0.3604

DEBABRATA DATTA et al.: IMAGE CLASSIFICATION USING MODEL ENSEMBLING

2686

Epoch 11 2.5224 0.3306 0.3905 2.5517 0.3441 0.3588

Epoch 12 2.5157 0.3327 0.3929 2.8440 0.3533 0.3673

Epoch 13 2.5014 0.3361 0.3952 2.8635 0.3596 0.3737

Epoch 14 2.4976 0.3362 0.3965 2.0916 0.3577 0.3716

Epoch 15 2.5006 0.3386 0.3961 2.3885 0.3695 0.3843

Epoch 16 2.4818 0.3433 0.3994 3.4623 0.3738 0.3894

Epoch 17 2.4853 0.3407 0.3973 3.5315 0.3814 0.3964

Epoch 18 2.4679 0.3454 0.4017 4.0982 0.3664 0.3777

Epoch 19 2.4720 0.3429 0.4020 3.0072 0.3534 0.3643

Epoch 20 2.4633 0.3467 0.4033 2.0370 0.3714 0.3831

Epoch 21 2.4565 0.3480 0.4049 3.0719 0.3743 0.3898

Epoch 22 2.4582 0.3457 0.4030 2.1521 0.3841 0.3994

Epoch 23 2.4468 0.3489 0.4059 2.1513 0.3773 0.3901

Epoch 24 2.4434 0.3497 0.4065 3.4570 0.3751 0.3847

Table.3. Results after training model 1 on Image Augmentation

2 data

Loss and

Metrics vs

Epochs

Training Validation

Loss
F1-

Score

Categorical

Accuracy
Loss

F1-

Score

Categorical

Accuracy

Epoch 1 2.3762 0.3896 0.4380 3.0034 0.4498 0.4591

Epoch 2 2.1614 0.4321 0.4748 3.4550 0.4563 0.4594

Epoch 3 2.0806 0.4540 0.4928 2.0705 0.4654 0.4659

Epoch 4 2.0270 0.4677 0.5012 2.6434 0.4689 0.4686

Epoch 5 1.9907 0.4750 0.5078 3.4008 0.4713 0.4664

Epoch 6 1.9565 0.4836 0.5149 2.5456 0.4745 0.4727

Epoch 7 1.9340 0.4905 0.5200 2.6562 0.4770 0.4717

ReduceLROnPlateau reducing learning rate to

3.999999898951501e-06

Epoch 8 1.9125 0.4962 0.5245 2.1752 0.4789 0.4749

Epoch 9 1.9480 0.4875 0.5180 2.2418 0.4633 0.4578

Epoch 10 1.8865 0.5057 0.5309 1.9330 0.4670 0.4626

Epoch 11 1.8444 0.5142 0.5399 2.3276 0.4699 0.4613

Epoch 12 1.8077 0.5230 0.5463 2.8729 0.4709 0.4622

Epoch 13 1.7801 0.5318 0.5540 1.8726 0.4744 0.4681

Epoch 14 1.7554 0.5364 0.5579 1.0774 0.4804 0.4703

Epoch 15 1.7379 0.5424 0.5640 2.4314 0.4719 0.4654

Epoch 16 1.7120 0.5492 0.5690 1.9042 0.4759 0.4726

Manually changing learning rate to 1e-5

Epoch 17 1.6420 0.5642 0.5832 2.2347 0.4945 0.4893

Epoch 18 1.6195 0.5714 0.5914 1.7109 0.4987 0.4897

Epoch 19 1.6093 0.5749 0.5924 2.1635 0.4979 0.4897

Epoch 20 1.6080 0.5777 0.5934 2.6233 0.4975 0.4877

Epoch 21 1.6051 0.5782 0.5946 2.4903 0.4983 0.4915

Epoch 22 1.6010 0.5794 0.5966 1.9718 0.4978 0.4880

Epoch 23 1.6039 0.5779 0.5941 1.8970 0.5008 0.4892

Epoch 24 1.5897 0.5832 0.5976 2.1555 0.5017 0.4904

Table.4. Results after transfer learning Xception convolution

base with a dense layer fitted on top on Image Augmentation 2

data

Loss and

Metrics vs

Epochs

Training Validation

Loss
F1-

Score

Categorical

Accuracy
Loss

F1-

Score

Categorical

Accuracy

Epoch 1 2.3766 0.4194 0.4477 2.4278 0.5390 0.5319

Epoch 2 1.6484 0.5906 0.5883 1.6726 0.5895 0.5799

Epoch 3 1.3680 0.6580 0.6506 0.8879 0.6215 0.6070

Epoch 4 1.1751 0.7017 0.6925 1.8066 0.6457 0.6236

Epoch 5 1.0302 0.7352 0.7254 0.8405 0.6439 0.6225

Epoch 6 0.9003 0.7649 0.7565 1.9879 0.6424 0.6185

Epoch 7 0.7971 0.7887 0.7805 2.8998 0.6541 0.6314

Epoch 8 0.7067 0.8110 0.8031 1.1810 0.6572 0.6345

Manually changing learning rate to 1e-4

Epoch 9 0.5428 0.8504 0.8480 1.2028 0.6906 0.6716

Epoch 10 0.5397 0.8511 0.8493 0.5792 0.6916 0.6719

Epoch 11 0.5404 0.8515 0.8492 1.8780 0.6915 0.6719

Epoch 12 0.5362 0.8516 0.8509 1.4777 0.6921 0.6727

Table.5. Results after transfer learning InceptionResNetV2

convolution base with a dense layer fitted on top on Image

Augmentation 2 data

Loss and

Metrics vs

Epochs

Training Validation

Loss
F1-

Score

Categorical

Accuracy
Loss

F1-

Score

Categorical

Accuracy

Epoch 1 2.6320 0.3468 0.3902 2.6481 0.4794 0.4929

Epoch 2 1.8931 0.5212 0.5320 2.6178 0.5086 0.5000

Epoch 3 1.5905 0.5971 0.5974 2.0026 0.5548 0.5438

Epoch 4 1.3528 0.6530 0.6496 0.8843 0.5875 0.5698

Epoch 5 1.1756 0.6960 0.6894 1.0983 0.6012 0.5813

Epoch 6 1.0143 0.7347 0.7267 2.8491 0.6053 0.5811

Epoch 7 0.8827 0.7669 0.7584 3.3372 0.6147 0.5897

Epoch 8 0.7671 0.7939 0.7870 1.8681 0.5997 0.5788

Manually changing learning rate to 1e-4

Epoch 9 0.6697 0.8193 0.8117 1.7691 0.6222 0.5993

Epoch 10 0.5918 0.8398 0.8340 1.5458 0.6211 0.6001

Epoch 11 0.5165 0.8581 0.8520 2.1342 0.5733 0.5535

Epoch 12 0.4658 0.8718 0.8663 2.5184 0.6338 0.6148

Epoch 13 0.3700 0.8966 0.8933 2.9483 0.6485 0.6291

Epoch 14 0.3632 0.8983 0.8961 2.6975 0.6499 0.6299

Epoch 15 0.3639 0.8990 0.8963 1.8291 0.6495 0.6307

Epoch 16 0.3580 0.9001 0.8974 1.3072 0.6508 0.6319

Table.6. Results after transfer learning MobileNetV2

convolution base with a dense layer fitted on top on Image

Augmentation 2 data

Loss and

Metrics

vs

Epochs

Training Validation

Loss
F1-

Score

Categorical

Accuracy
Loss

F1-

Score

Categorical

Accuracy

Epoch 1 3.0173 0.2406 0.3073 11.7397 0.0164 0.0169

ISSN: 0976-9102 (ONLINE) ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, MAY 2022, VOLUME: 12, ISSUE: 04

2687

Epoch 2 2.3245 0.3983 0.4359 9.1230 0.0536 0.0599

Epoch 3 2.0484 0.4710 0.4925 6.6012 0.1549 0.1512

Epoch 4 1.8744 0.5173 0.5293 5.1103 0.1634 0.1751

Epoch 5 1.7313 0.5553 0.5614 3.4618 0.3020 0.2963

Epoch 6 1.6110 0.5839 0.5863 5.6468 0.3184 0.3081

Epoch 7 1.5177 0.6068 0.6082 3.6592 0.3964 0.3816

Epoch 8 1.4328 0.6276 0.6258 2.4346 0.4355 0.4183

Epoch 9 1.3580 0.6483 0.6424 2.7962 0.4705 0.4542

Epoch 10 1.2763 0.6669 0.6623 2.6735 0.4589 0.4440

Epoch 11 1.2154 0.6789 0.6743 2.0015 0.4586 0.4425

Epoch 12 1.1602 0.6941 0.6868 2.4261 0.4804 0.4631

Epoch 13 1.1024 0.7059 0.6999 1.8106 0.4948 0.4777

Epoch 14 1.0518 0.7207 0.7145 1.8682 0.4655 0.4498

Epoch 15 1.0013 0.7314 0.7258 4.2774 0.5110 0.4861

Epoch 16 0.9638 0.7418 0.7344 1.5714 0.4687 0.4511

Manually changing learning rate to 1e-4

Epoch 17 0.8031 0.7788 0.7757 1.3163 0.6307 0.6117

Epoch 18 0.8118 0.7772 0.7741 1.6644 0.6390 0.6174

Epoch 19 0.8039 0.7786 0.7758 1.3992 0.6406 0.6195

Epoch 20 0.8018 0.7795 0.7777 2.0463 0.6394 0.6197

Epoch 21 0.8024 0.7788 0.7757 2.0415 0.6401 0.6206

Epoch 22 0.7992 0.7803 0.7777 1.3196 0.6409 0.6215

Epoch 23 0.7967 0.7804 0.7776 1.7722 0.6406 0.6218

Epoch 24 0.7938 0.7822 0.7786 2.5375 0.6407 0.6204

Table.7. Results after fine-tuning the last convolution block of

MobileNetV2

Loss and

Metrics vs

Epochs

Training Validation

Loss
F1-

Score

Categorical

Accuracy
Loss

F1-

Score

Categorical

Accuracy

Epoch 1 0.7048 0.8073 0.8015 1.3346 0.6553 0.6364

Epoch 2 0.7043 0.8096 0.8038 2.3650 0.6546 0.6354

Epoch 3 0.7106 0.8063 0.8002 1.9359 0.6551 0.6366

Epoch 4 0.7103 0.8061 0.7995 1.9308 0.6552 0.6356

Table.8. Results after transfer learning DenseNet201

convolution base with a dense layer fitted on top on Image

Augmentation 2 data

Loss and

Metrics vs

Epochs

Training Validation

Loss
F1-

Score

Categorical

Accuracy
Loss

F1-

Score

Categorical

Accuracy

Epoch 1 3.8564 0.1024 0.1747 3.2780 0.2292 0.2605

Epoch 2 2.8137 0.2742 0.3395 4.9444 0.2934 0.3098

Epoch 3 2.5553 0.3422 0.3912 2.9525 0.2958 0.3148

Epoch 4 2.2713 0.4119 0.4493 2.9322 0.3883 0.3864

Epoch 5 2.0819 0.4630 0.4874 1.9389 0.4762 0.4675

Epoch 6 2.0425 0.4791 0.4955 2.1287 0.4653 0.4626

Epoch 7 2.0010 0.4874 0.5031 2.7383 0.4826 0.4732

Epoch 8 1.8498 0.5293 0.5354 1.9524 0.5104 0.5111

Manually changing learning rate to 1e-4

Epoch 9 1.6537 0.5712 0.5769 1.4003 0.5718 0.5675

Epoch 10 1.6433 0.5711 0.5807 1.3074 0.5745 0.5698

Epoch 11 1.6200 0.5768 0.5882 2.4057 0.5742 0.5693

Epoch 12 1.6488 0.5711 0.5834 1.7445 0.5731 0.5686

Epoch 13 1.6376 0.5725 0.5826 1.3678 0.5777 0.5714

Epoch 14 1.6261 0.5770 0.5845 1.5088 0.5794 0.5750

Epoch 15 1.5915 0.5851 0.5942 1.7061 0.5940 0.5879

Epoch 16 1.5390 0.6002 0.6080 1.6332 0.6043 0.5972

Epoch 17 1.5311 0.6045 0.6125 1.9447 0.6041 0.5980

Epoch 18 1.5191 0.6055 0.6137 1.7622 0.6056 0.5993

Epoch 19 1.4819 0.6135 0.6214 1.9073 0.6128 0.6049

Epoch 20 1.4336 0.6226 0.6352 1.7370 0.6188 0.6093

Epoch 21 1.4276 0.6279 0.6351 1.3144 0.6216 0.6154

Epoch 22 1.4094 0.6332 0.6376 2.0288 0.6268 0.6198

Epoch 23 1.4000 0.6353 0.6419 1.0301 0.6276 0.6204

Epoch 24 1.4001 0.6366 0.6418 1.3012 0.6290 0.6198

Epoch 25 1.3961 0.6367 0.6427 1.7881 0.6287 0.6212

Epoch 26 1.3959 0.6362 0.6428 1.6528 0.6292 0.6200

4.6 FINAL RESULTS OF ALL THE MODELS

The VGG16 inspired model was trained with 50.4 million

parameters for 72 epochs (24 epochs for each of the three stages).

After this, the model started overfitting.

The Xception model was trained with 21.2 million parameters

(pre-trained ImageNet weights) for 12 epochs. The training had to

be stopped after that since the validation metrics stopped

improving further.

The InceptionResNetV2 model was trained with 54.6 million

parameters (pre-trained ImageNet weights) for 16 epochs after

which the model started overfitting.

The MobileNetV2 model was trained with 2.5 million

parameters (pre-trained ImageNet weights) for 28 epochs

(including 4 epochs for fine-tuning). It is the only model that

showed improvement on fine-tuning.

The DenseNet201 model was trained with 18.7 million

parameters (pre-trained ImageNet weights) for 26 epochs. The

training was stopped after this since it started overfitting.

The ensembled model has 147.6 million parameters. It scored

a categorization accuracy of 0.71300 on Kaggle [34], which

means a categorical accuracy of 71.3%.

Thus, ensembling these models have provided better results

than any of the above-mentioned models individually. The final

results of the models have been compiled in Table.9 and the final

plots of “f1-score v/s epochs” and “loss v/s epochs” for each

model is given in Table.10.

DEBABRATA DATTA et al.: IMAGE CLASSIFICATION USING MODEL ENSEMBLING

2688

Table.9. Final results of all the models after training them on Image Augmentation 2 data

Loss and

Metrics vs

Models

Training Validation

Loss F1-Score Categorical Accuracy Loss F1-Score Categorical Accuracy

VGG16 inspired model 1.5897 0.5832 0.5976 2.1555 0.5017 0.4904

Xception 0.5362 0.8516 0.8509 1.4777 0.6921 0.6727

InceptionResNetV2 0.3580 0.9001 0.8974 1.3072 0.6508 0.6319

MobileNetV2 0.7103 0.8061 0.7995 1.9308 0.6552 0.6356

DenseNet201 1.3959 0.6362 0.6428 1.6528 0.6292 0.6200

Ensembled Model Kaggle Best Categorization Accuracy Score = 0.71300

Table.10. Final performance plots for each model

Performance plots

vs. Models
F1-Score v/s Epochs Loss v/s Epochs

VGG16 inspired model

Xception

InceptionResNetV2

ISSN: 0976-9102 (ONLINE) ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, MAY 2022, VOLUME: 12, ISSUE: 04

2689

MobileNetV2

DenseNet201

4.7 FINAL RESULTS OF ALL THE MODELS

The ensembled model was tested on other data as well to

check its performance, as shown in Table.11. During testing,

images of different dimensions were given as input. The model

was programmed to first convert each image to 128×128 size and

then start the classification process.

Table.11. Testing the Ensembled Model on Various Data

Image Predicted class Result

Grasshopper,

Hopper
✓

Syringe ×

Parking Meter ✓

Brown Bear ✓

Wooden Spoon

✓

(Could be

“ice-cream”

as well)

Goose ✓

Golden Retriever ✓

Grasshopper,

Hopper
✓

DEBABRATA DATTA et al.: IMAGE CLASSIFICATION USING MODEL ENSEMBLING

2690

4.8 COMPARISON OF RESULTS OBTAINED

WITH RELATED WORK

The related works’ models were trained on the same dataset to

check where the final ensembled model’s algorithm and training

process stands with respect to other models. The related models

which were trained were: LeNet-5 [3], AlexNet [5], VGG16 [10],

GoogLeNet [13] and ResNet50 [14].

All these models were trained with the following properties:

• Every model was trained from scratch (no pre-trained

weights were incorporated in the learning process)

• No image augmentation was done

• Each input image was rescaled to 1/255

• Each input image was resized to 128×128. Thus, input size

of each image was 128×128×3 (due to RGB values)

• Batch size = 64

• An additional Dense (Fully Connected) Layer with 200 units

and softmax non-linearity was attached at the top of each

model for classification

• Optimizer used: Stochastic Gradient Descent (SGD) with

learning rate = 0.001 and momentum = 0.9

• Callback used: ReduceLROnPlateau callback with factor of

0.2, patience of 3 and minimum learning rate of 10-7

was made to monitor the validation loss

• Loss Function used: Categorical Cross-entropy

• Evaluation Metrics: F1-Score, Categorical Accuracy

AlexNet model was trained on one GPU (Google

Colaboratory GPU) only. The original model was trained on two

GPUs simultaneously.

All of the training process was done till the respective models

started overfitting. No image augmentation, manual change in

learning rate or inspection on which optimizer works the best was

done in training the related works’ models.

This comparison was done only to check whether the

procedure of the research work described in this paper provides

more fruitful results than the results given by already established

models when they are trained without any type of data

augmentation. The results given by the above-mentioned models

and their comparison are given in Table.12. Thus, the training

process works quite well in comparison to the related works’

models trained without data augmentation.

4.9 ANALYSIS OF OBTAINED RESULTS

The training process of each of the independent models was

broken down into several steps of some epochs so that the loss

and evaluation metrics of both training and validation data could

be checked periodically and training of that model could be

stopped when it started overfitting.

After each step of training, “f1-score v/s epochs” and “loss v/s

epochs” graphs for both training and validation data were plotted

to easily check whether the model needs to be trained further.

Although in few cases, the training could not be stopped at the

optimal epoch (since interrupting execution of the statement

would result in a KeyboardInterrupt Error which could result in

losing the data acquired from the previous epochs), the results

obtained at the end was quite satisfactory in terms of validation

f1-score and validation categorical accuracy.

The “f1-score v/s epochs” plot was mainly used to check

rather than categorical accuracy because to get a higher f1-score,

the model needs to perform well both in terms of precision and

recall.

The ensembled model performs well on most of the images

with some errors. Most of the errors by the ensembled model were

mainly due to two reasons: low resolution of the images and,

incapability to detect the primary object in an image where there

are multiple entities present. For example, an image containing a

cup of ice-cream and a wooden spoon, the model predicts it to

belong to the class ‘wooden spoon’.

The model works well otherwise. So, this model would work

very well if it was deployed as an application which predicts the

class an image belongs to by checking any content of that image.

Table.12. Comparison of performances of ensembled model with

related works

Epochs and

performance

vs. Models

Number

of epochs

Training

categorical

accuracy

Validation

categorical

accuracy

LeNet-5 40 0.4555 0.1200

AlexNet 80 0.8943 0.3616

VGG16 27 0.6647 0.2349

GoogLeNet 75 0.7826 0.3987

ResNet-50 12 0.7098 0.3041

Ensembled

Model

Kaggle Best Categorization

Accuracy Score = 0.71300

5. CONCLUSION

Most of the research work mentioned in this paper was done

using Keras [35] library. The primary goal was to achieve a top-1

test categorical accuracy of 60%. Submitting the results at Kaggle,

the model earned a categorization accuracy score of 0.71300, that

is 71.3%.

5.1 REASONS FOR USING THE PROPOSED

MODELS

The models which were trained here are a VGG16 inspired

model (trained from scratch), Xception, InceptionResNetV2,

MobileNetV2 and DenseNet201. These models were selected

specifically keeping in mind that the number of parameters to be

trained does not increase too much and at the same time, we get a

good performance from the ensembled model (both in terms of

f1-score and categorical accuracy) on the test/unseen data. It is

basically a trade-off between the number of parameters to be

trained and the performance of the model (in terms of time

required to train the model and produce the output).

5.2 ADVANTAGES OF USING THE ENSEMBLED

MODEL FOR CLASSIFICATION

The final model here is the ensembled model of five models

(weak learners), which are very efficient models themselves. That

ISSN: 0976-9102 (ONLINE) ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, MAY 2022, VOLUME: 12, ISSUE: 04

2691

is why it has achieved an accuracy of 71.3% on unseen data. This

model can be used as the backend for any mobile or web

application to classify images among the 200 classes.

5.3 DISADVANTAGES OF USING THE

ENSEMBLED MODEL FOR CLASSIFICATION

Although the model has achieved its primary goal of attaining

at least 60% accuracy, it still has room for improvement. The final

ensembled model has 147.6 million parameters, which is huge and

takes some time to produce the output. Also, the model sometimes

fails to detect the primary object in an image and classifies the

image based on any object present in the image due to which this

model sometimes fails to perform its work efficiently.

5.4 FURTHER IMPROVEMENTS

The main motive in the future would be to get a better f1-score

and categorical accuracy, and at the same time make the model a

light-weight one (with smaller number of parameters). Once this

has been achieved, deploying this model into an application

would be more fruitful since it would then take lesser time in

providing the result to the end user. For more improvement, the

model could be trained on other datasets containing more classes

as well.

The models using which transfer learning was done here were

attempted to be fine-tuned only on the last convolution blocks of

the respective models. In the future, other combinations of

convolution blocks could be tried to be fine-tuned hoping for a

better result.

The models here were trained on scarce computation resources

(due to usage limits on Google Colaboratory [36] GPU). In the

future, it would be better if further training is done on a GPU as

powerful as the ones Google Colaboratory offer but with more

lenient usage limits.

REFERENCES

[1] D.H. Ballard and C.M. Brown, “Computer Vision”, Prentice

Hall, 1982.

[2] Github, “Convolution Neural Networks for Visual

Recognition”, Available at:

https://cs231n.github.io/classification/, Accessed at 2020.

[3] Y. Le Cun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-

Based Learning Applied to Document Recognition”,

Proceedings of the IEEE, Vol. 86, pp. 1-13, 1998.

[4] Y. Le Cun, Y. Bengio and G. Hinton, “Deep Learning”,

Nature, pp. 436-444, 2015.

[5] A. Krizhevsky, I. Sutskever and G. Hinton, “ImageNet

Classification with Deep Convolutional Neural Networks”,

Neural Information Processing Systems, Vol. 23, No. 1, pp.

1-14, 2000.

[6] J. Deng, W. Dong, R. Socher, L. Li, Kai Li and Li Fei Fei,

“ImageNet: A Large-Scale Hierarchical Image Database”,

Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition, pp. 248-255, 2009.

[7] Image Net, “Image Net”, Available at:http://www.image-

net.org/. Accessed at 2020.

[8] F. Sultana, A. Sufian and P. Dutta, “Advancements in Image

Classification using Convolutional Neural Network”,

Proceedings of International Conference on Research in

Computational Intelligence and Communication Networks,

pp. 122-129, 2018.

[9] Image Net, “ImageNet Large Scale Visual Recognition

Challenge 2012”. Available at: http://image-

net.org/challenges/LSVRC/2012/, Accessed at 2020.

[10] K. Simonyan and A. Zisserman, “Very Deep Convolutional

Networks for Large-Scale Image Recognition”, Proceedings

of IEEE Conference on Computer Vision and Pattern

Recognition, pp. 1-14, 2014.

[11] VGG16, Available at: https://neurohive.io/en/popular-

networks/vgg16/.Accessed at 2020.

[12] ImageNet Large Scale Visual Recognition Challenge 2014,

Available at: http://image-

net.org/challenges/LSVRC/2014/.Accessed at 2020.

[13] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D.

Anguelov, D. Erhan, V. Vanhoucke and A. Rabinovich,

“Going Deeper with Convolutions”, Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition,

pp. 1-9, 2015.

[14] K. He, X. Zhang, S. Ren and J. Sun, “Deep Residual

Learning for Image Recognition”, Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition,

pp. 770-778, 2016.

[15] ImageNet Large Scale Visual Recognition Challenge 2015,

Available at: http://image-

net.org/challenges/LSVRC/2015/, Accessed at 2020.

[16] S. Albawi, T.A. Mohammed and S. Al Zawi,

“Understanding of a Convolutional Neural Network”,

Proceedings of International Conference on Engineering

and Technology, pp. 1-6, 2017.

[17] A. Mikołajczyk and M. Grochowski, “Data Augmentation

for Improving Deep Learning in Image Classification

Problem”, Proceedings of International Conference on

Engineering and Technology, pp. 117-122, 2018.

[18] W.H. Beluch, T. Genewein, A. Nurnberger and J.M. Kohler,

“The Power of Ensembles for Active Learning in Image

Classification”, Proceedings of International Conference on

Computer Vision and Pattern Recognition, pp. 9368-9377,

2018.

[19] V. Thakkar, S. Tewary and C. Chakraborty, “Batch

Normalization in Convolutional Neural Networks - A

Comparative Study with CIFAR-10 Data”, Proceedings of

International Conference on Emerging Applications of

Information Technology, pp. 1-5, 2018.

[20] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R.

Salakhutdinov, “Dropout: A Simple Way to Prevent Neural

Networks from Overfitting”, Journal of Machine Learning

Research, Vol. 12, No. 1, pp. 1929-1958, 2014.

[21] E.M. Dogo, O.J. Afolabi, N.I. Nwulu, B. Twala and C.O.

Aigbavboa, “A Comparative Analysis of Gradient Descent-

Based Optimization Algorithms on Convolutional Neural

Networks”, Proceedings of International Conference on

Computational Techniques, Electronics and Mechanical

Systems, pp. 92-99, 2018.

[22] Data Science, “Vanishing Gradient Problem”. Available at:

https://towardsdatascience.com/the-vanishing-gradient-

problem-69bf08b15484. Accessed at 2020.

[23] SGD Optimizer, Available at:

https://keras.io/api/optimizers/sgd/. Accessed at 2020.

https://archive.org/details/computervision0000ball
https://cs231n.github.io/classification/
http://www.image-net.org/
http://www.image-net.org/
https://neurohive.io/en/popular-networks/vgg16/
https://neurohive.io/en/popular-networks/vgg16/

DEBABRATA DATTA et al.: IMAGE CLASSIFICATION USING MODEL ENSEMBLING

2692

[24] Reduce LR on Plateau Callback, Available at:

https://keras.io/api/callbacks/reduce_lr_on_plateau/,

Accessed at 2020.

[25] Categorical Cross-Entropy Loss, Available at:

https://keras.io/api/losses/probabilistic_losses/#categoricalc

rossentropy-class, Accessed at 2020.

[26] Image Data Generator Class, Available at:

https://keras.io/api/preprocessing/image/#imagedatagenerat

or-class, Accessed at 2020.

[27] Image Augmentation, Available at

https://imgaug.readthedocs.io/en/latest/, Accessed at 2020.

[28] F. Chollet, “Xception: Deep Learning with Depthwise

Separable Convolutions”, Proceedings of International

Conference on Computer Vision and Pattern Recognition,

pp. 1800-1807, 2017.

[29] Image-Net Data, Available at: http://www.image-net.org/,

Accessed at 2020.

[30] Ada Delta Optimizer, Available at

https://keras.io/api/optimizers/adadelta/. Accessed at 2020.

[31] C. Szegedy,S. Ioffe,V. Vanhoucke andA. Alemi, “Inception-

V4, Inception-ResNet and the Impact of Residual

Connections on Learning”, Proceedings of International

Conference on Artificial Intelligence, pp. 1-7, 2016.

[32] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov and L.

Chen, “MobileNetV2: Inverted Residuals and Linear

Bottlenecks”, Proceedings of International Conference on

Computer Vision and Pattern Recognition, pp. 4510-4520,

2018.

[33] G. Huang, Z. Liu, L. Van Der Maaten and K.Q. Weinberger,

“Densely Connected Convolutional Networks”,

Proceedings of International Conference on Computer

Vision and Pattern Recognition, pp. 2261-2269, 2017.

[34] Kaggle Leaderboard, Available at:

https://www.kaggle.com/c/image-detect/leaderboard,

Accessed at 2020.

[35] Keras Library, Available at: https://keras.io/, Accessed at

2020.

[36] Google Colaboratory, Available at:

https://colab.research.google.com/, Accessed at 2020.

[37] Image Dataset, Available

at:https://www.kaggle.com/c/image-detect/data, Accessed

at 2020.

https://www.kaggle.com/c/image-detect/leaderboard
https://www.kaggle.com/c/image-detect/data

