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Abstract 

Classifying images efficiently using various algorithms is very useful 

now-a-days given that the field of computer vision is growing rapidly. 

The research work highlighted in this paper focuses on the independent 

use of various models to classify images and then combining them 

together to form a better model in terms of performance than each of 

the individual models. The dataset used consists of 200 classes with 

90,000 training images, 10,000 validation images and 10,000 test 

images. The data preparation step in this work involves resizing the 

images (data), shuffling them and transforming them into a data 

generator to provide input to the models. The images were also 

augmented using two different sets of image transformation effects to 

get more data for the models to train on. These data were then used to 

train five different models (one model trained from scratch and four 

other models using pre-trained weights and transfer learning) 

independently. The performance of each model was judged by checking 

two evaluation metrics – f1-score and categorical accuracy. The models 

were also tried to be fine-tuned to get a better performance, and finally 

the models were ensembled together to get a better categorical accuracy 

and f1-score on unseen (validation and test) data. 
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1. INTRODUCTION 

Computer Vision is a field of study that requires collective 

knowledge from various scientific branches, focusing on training 

computers to learn from electronic videos or images. This field of 

artificial intelligence can be used to help humans by replicating 

the work done by the human visual system, or even obtain better 

results such as in low resolution images or videos [1]. 

Image Classification is one of the most widely used and 

studied sub-domains of computer vision. It is the task of 

predicting the class (label) an image belongs to by examining it 

using various algorithms [2]. Image Classification is difficult 

because what we see as an image, the computer sees it as an array 

of binary numbers, which are actually the pixel values (either 

RGB or Black and White) converted to binary. The pixel values 

of a colored image are represented as RGB values. So, a colored 

image is represented as a huge 3-dimensional array. And, this 

array changes with changing the size of the image or, changing 

the position of an object in the image or, even changing the 

brightness and contrast of the image. This means that we may 

have many different huge 3-dimensional arrays belonging to the 

same class. Thus, what seems very trivial to us, is actually not a 

very easy task to do while training the computer to do the same. 

The method followed in this paper focuses on training 

multiple models (using different algorithms) independently and 

then joining them together to get a better result. 

There were five models used here: a VGG16 inspired model 

trained from scratch; Xception, InceptionResNetV2, 

MobileNetV2 and DenseNet201 (all using ImageNet weights) for 

transfer learning. These models are then ensembled together to get 

the final model on which classification was done on unseen data. 

The method described in this paper can be used to develop a 

web application or a mobile application and if developed further, 

can be applied in medical fields such as detection of pneumonia 

and cancer or in military uses such as classifying enemies in the 

battlefield. 

2. RELATED WORK 

The work of image classification generally starts off with 

getting a uniform size and shape of the input images (data). This 

is done for two reasons: firstly, the model to which the images are 

to be fed, needs a fixed size of the input; and secondly, the original 

data may be so small (size of the images are very small in 

dimensions), that it becomes difficult for the model to extract 

sufficient information from them. 

Due to the large amount of data contained in each image, every 

method related to machine learning cannot be applied to the 

problem of image classification. Input images are made to go 

through various series of convolution layers so that the vastness 

of the data is reduced and a feasible amount of data can be 

obtained to perform the classification task. 

The quest to classify images and proposing various algorithms 

to do that is not a very recent topic. It goes way back to the year 

1998 when LeCun et al. [3] used convolutional neural networks 

to classify images. Their model named LeNet-5, contains 7 layers 

(other than the input layer), all of which contain trainable 

parameters (weights). 

LeNet-5 is one of the oldest networks for image classification. 

In LeNet-5, deep neural networks were trained and optimized 

using gradient-descent algorithm and it showed how independent 

convolutional neural networks (CNNs) could be combined to get 

interdependent layers of the model to obtain outputs with a better 

accuracy [4]. 

Krizhevsky et al., in 2012, designed a network model called 

AlexNet [5], to classify ImageNet [6] [7] data [8]. The AlexNet 

architecture is famous because it focuses on the distribution of 

work between two different GPUs. This network is one of the 

pioneer networks able to achieve a significantly high 

classification accuracy on a standard image classification task. 

The fact that this network uses concepts like convolution layers, 

pooling and GPUs (for parallel computing) makes it a significant 

contribution to the image classification domain. It was the first 

CNN-based award winner at ILSVRC 2012 with a top-5 error rate 

of 16.4% [9]. 
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Out of the five models trained and ensembled together in the 

research work mentioned in this paper, one of them was trained 

from scratch. It is based on the VGGNet architecture. VGG16 

architecture was developed by Simonyan and Zisserman [10]. 

The VGG16 model uses many but small convolutional filters 

to extract information from the images [11]. This model was the 

winner in localization at ILSVRC 2014 with a top-5 error rate of 

7.3% [12]. 

The problem with AlexNet and VGG16 was that they had too 

many parameters and VGG16 used too much of memory for 

training (almost 96 MB per image). Szegedy et al. [13] proposed 

the GoogLeNet architecture which solved these problems to a 

great extent. It uses an Inception module, which is not simply a 

convolutional layer but many different kinds of layers 

concatenated together and arranged in a way that reduces the 

number of computations. 

The Inception module is based on the strategy to form a stack 

of well-designed local network topology modules (a network 

inside another network). The naïve version of the Inception 

module [13] has three convolution layers which intuitively allows 

one to see an image in different resolutions with respect to 

zooming in or out the image. The filters (three convolutions and 

one pooling operation) are applied parallelly and then the outputs 

of these filters are concatenated depth-wise. But, the number of 

operations in doing this is too high because along with the large 

number of computations in the convolution layers, the pooling 

layer also preserves feature depth. So, the images are never down 

sampled, which could result in an increase (but never decrease) in 

the total depth after filter concatenation is done at each layer. 

To overcome this problem, an Inception module with 

dimension reduction strategy involved was introduced [13]. In 

that, there are several 1×1 convolution layers which serve as 

bottleneck layers. They reduce the feature depth of the output at 

that layer and as a result reduce the number of operations 

significantly. 

In GoogLeNet, Inception modules are stacked one upon the 

other for dimension reduction. In such deep networks, one major 

problem is with the costly backpropagation. For that, GoogLeNet 

uses a trick to have auxiliary outputs in the middle of the network 

so that the backpropagation is made faster. The same output which 

is there at the final fully connected layer is also available as some 

intermediate Inception module’s auxiliary output. These auxiliary 

outputs serve as additional gradients at lower layers. 

GoogLeNet has almost 12 times lesser number of parameters 

than AlexNet and it was classification winner at ILSVRC 2014 

with a top-5 error of 6.7% [12]. 

He et al. [14] proposed another model, called ResNet, which 

uses very deep network with residual connections. Generally, in 

very deep networks, there is a disadvantage that the gradients are 

not backpropagated properly. ResNet kind of bypasses certain 

layers to solve this. There is a parallel path in the model which 

intuitively helps in bypassing the weight layers. This path helps 

in both forward and backward passes. 

ResNet was the classification winner at ILSVRC 2015 with a 

top-5 error rate of 3.57% (better than human performance) [15]. 

As days go by, the fields of computer vision and image 

classification are developing more and more. 

3. PROPOSED METHODOLOGY 

The methodology proposed in this paper consists of training 

five different models (one from scratch and four others by transfer 

learning) and then ensembling them together for final 

classification. 

3.1 DATA PREPARATION 

The data (images) were initially kept at 64×64 dimensions but 

it was getting harder to extract sufficient information from them 

and the validation categorical accuracy was stuck at around 53%. 

For this reason, the input data dimension was changed to 

128×128, which provided much better results. The pixel values 

of each image were also rescaled to 1/255 so as to make the 

computations easier. The images were then shuffled and 

transformed into a data generator for providing input. 

3.2 TRAINING THE VGG16 INSPIRED MODEL 

FROM SCRATCH 

The first model which was trained from scratch, was inspired 

by the VGG16 architecture [11]. The model takes as input RGB 

images of dimensions 128×128. The model has two convolution 

layers with 64 kernels, two with 128 kernels, three with 256 

kernels, and six with 512 kernels. The kernel size in each 

convolution layer was 3×3. Each convolution layer has batch 

normalization integrated to let the network train faster [19]. ReLU 

activation has also been used in each convolution layer. Any two 

successive convolution blocks were separated from each other by 

a max-pooling layer of pool size 2×2 and a stride of 2 to reduce 

computational complexity. 

The result of the final max-pooling layer was flattened to be 

passed through dense layers for classification. There were three 

dense layers with 4096 units, 512 units and 200 units respectively. 

The first dense layer (with 4096 units) had adropout of 50% 

following it to prevent overfitting [20]. The first two dense layers 

have ReLU activation while the final dense layer has softmax 

activation. 

The final dense layer had given the output in the form of a 

vector which served as the probabilities of each of the 200 classes 

and thus enabled the model to perform soft classification. 

3.2.1 Reasons for using Convolution Neural Networks: 

There might be some images which were essentially the same 

but differed from each other drastically with respect to the pixel 

values. This happened because some images might be zoomed in 

or out; or the objects in the images were at different positions in 

different images. Due to this huge variability in data, it was not 

possible to use a dense neural network having so many parameters 

and still be able to classify the data efficiently [16]. 

To tackle this problem, convolutional neural networks were 

used which, intuitively, extracted some features or attributes from 

an image and made the work of classification much easier. For 

example, if a classifier has been given three images of a tiger as 

input, the attributes such as having a tail, black and yellow stripes 

on body and having two eyes will be the same for all images. So, 

if the classifier could extract these features, it would be able to 

easily classify that the images belong to the class ‘tiger’, though 
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in one image the tiger could be running, while in the other images 

the tiger could be eating or sleeping. 

For scanning the images for attributes or features, a kernel is 

used. A hop size (or, stride size) was selected which is the shift in 

kernel’s position for scanning. 

3.2.2 Reasons for using Max Pooling: 

Pooling was done to down-sample the data (image) and thus 

reduce computational complexity of the succeeding operations 

[16]. For example, if an image of a tiger is being scanned with the 

kernel of its tail, the convoluted matrix would be almost 0’s 

everywhere and 1 only at the specific pixel values where the tail 

has been found. These insignificant values make the data sparse 

and increase the computational complexity since the dimension of 

the data gradually increases. 

To overcome this, max pooling was done, which is actually 

selecting a group of elements from the convoluted matrix and 

selecting the maximum of them to be considered as an element of 

max-pooled convoluted matrix. 

3.2.3 Reasons for using Softmax and ReLU Non-Linearity: 

The gradient descent algorithm [21] follows Eq.(1) for 

updating the weights. 
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where, w are the parameters; η is the learning rate and L is the loss 

function. 

Thus, the non-linearity needs to be differentiable, which both 

Softmax and ReLU is. Using ReLU also tackled the problem of 

vanishing gradients [22]. Using Softmax, provided a vector asthe 

output, in which each element belonged to the interval [0, 1]; and, 

the sum of all these elements equal to 1. Thus, these values could 

be considered to be probability values for each class – allowing 

the model to perform soft classification. 

The different hyperparameters used are: 

• Optimizer: Stochastic Gradient Descent (SGD) [23] with a 

learning rate of 0.001 and momentum of 0.9 

• Callback: ReduceLROnPlateau [24] with factor of 0.2, 

patience of 3 and minimum learning rate of 10-7 was made 

to monitor the validation loss. This was used to facilitate 

faster training when the model did not show any more 

improvement. 

• Loss function: Categorical Cross-entropy [25] 

• Evaluation Metrics: F1-Score and Categorical Accuracy 

3.2.4 Stage 1 (Training on Original Data): 

In this stage, the model was trained on original training data. 

Stochastic gradient descent with a learning rate of 0.001 and 

momentum of 0.9 was initially used as the optimizer. 

ReduceLROnPlateau callback was incorporated in the training 

process to prevent overfitting. This callback was made to monitor 

the validation loss and it reduced the learning rate by a factor of 

0.2 whenever the model did not show any improvement for 3 

consecutive epochs (patience = 3). However, a minimum learning 

rate was fixed at 10-7, below which the callback could no longer 

reduce the learning rate. Categorical-cross entropy was used as 

the loss function. The evaluation metrics used were f1-score and 

categorical accuracy. 

 

Fig.1. Model Architecture 

The input images were shuffled to ensure that each image 

creates a unique and independent change in the model weights 

without being biased by the previous input data. 

3.2.5 Stage 2 (Training on Augmented Data 1): 

One of the most prioritized objectives in image classification 

is to get more and more data for training the model. Using image 
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augmentation, more training data can be generated from the 

already existing data. It is very useful in applications where data 

is not so easily available [17]. 

For performing image augmentation, the already available 

data were made to undergo several transformations such as 

rotation, re-scaling of images and so on. These transformations 

were done keeping in mind the application that the model is being 

trained for and at the same time prevent overfitting of the model. 

This was because getting too much of data for one class might 

make the model biased towards that class and could provide not 

very satisfactory results for images belonging to other classes. 

In this stage, the training data were augmented using a list of 

transformations as: 

• Rescaling each pixel of the image by 1/255 

• Rotating each image randomly within a range of 40° 

• Shifting width of each image by a range of 0.2 

• Shifting height of each image by a range of 0.2 

• Shearing each image by a range of 0.2° 

• Zooming each image by a range of 0.2 

• Randomly flipping some images horizontally 

After these transformations were done, the images were 

shuffled and fed to the model as input. All of these 

transformations were applied using ImageDataGenerator [26] 

class of keras.preprocessing. 

 

Original Data 

 

    

Augmented Data 

Fig.2. Images after applying Image Augmentation 1 

The optimizer and the callback used in this stage was same as 

that in Stage 1 other than the initial learning rate which was 

reduced to 10-4 for stochastic gradient descent optimizer; and the 

patience and the minimum learning rate was changed to 4 and 10-

14 respectively for the ReduceLROnPlateau callback. 

3.2.6 Stage 3 (Training on Augmented Data 2): 

In this stage, the input data were augmented using a different 

set of transformations from the ones in stage 1. 

The transformations applied were: 

• Horizontally flipping 50% of the images. 

• Cropping images from each side by 0 to 4px (randomly 

chosen). 

• Applying Gaussian blur with sigma between 0 and 2.5. 

• Increasing or decreasing the contrast in each image by 

varying the linear contrast between 0.75 and 1.25. 

• Applying additive Gaussian noise within a scale of 0 to 

0.05×255. 

• Scaling each image within the range of (0.8, 1.2) for both x- 

and y-axes. 

• Rotating each image by some degree ranging from -20° to 

20°. 

• Dropping some pixels from each image, 2% to 5% of the 

original size, leading to large dropped rectangles. 

All of these transformations were applied using imgaug [27] 

library. Unlike image augmentation 1, image augmentation 2 did 

not use all the transformations mentioned. It was made to 

randomly select an integer from 0 to 6, and that many 

transformations were applied on the images. This was done so that 

the images were not heavily augmented which could result in 

underfitting the model. The optimizer and the callback used in this 

stage was the same as that in stage 2. 

 

Original Data 

 

    

Augmented Data 

Fig.3. Images after applying Image Augmentation 2 

3.3 TRANSFER LEARNING USING XCEPTION 

CONVOLUTION BASE AND IMAGENET 

WEIGHTS 

Transfer learning is a technique in machine learning where an 

algorithm or a model which has been already used for a task, is 

used for another task. This facilitates for a better performance on 

the second task since the model being used is already pre-trained. 

Xception [28] is a deep learning model for image 

classification that performs its task using point-wise convolution 

and depth-wise convolution. The convolution block for Xception 

is divided into 3 flows – entry flow, middle flow and exit flow. 

In the entry flow, images of size 299 × 299 × 3 are taken as 

input (default input) and they are made to pass through two 

convolution layers – one having 32 kernels, kernel size = 3×3 and 

stride = 2×2, and the other having 64 kernels of size 3×3. Two 

separable convolution networks of 128 kernels of size 3×3, two 

of 256 kernels of size 3×3 and two of 728 kernels of size 3×3 are 

also present. All of these have ReLU non-linearity attached. 

The entry flow also contains three max pooling layers of pool 

size 3×3 and stride 2×2. Three convolution layers with kernel size 

1×1 and stride 2×2 are present as linear residual connections to 

various points in the entry flow. For a default input of 299×299×3 

image, the entry flow outputs feature maps of dimension 

19×19×728. 

Image Augmentation 2 

Image Augmentation 2 
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The middle flow takes as input the 19×19×728 feature maps 

from the entry flow and passes it through three separable 

convolution layers of 728 kernels of size 3×3 having ReLU 

activation. The middle flow has a linear residual connection and 

is repeated 8 times to produce 19×19×728 feature maps for the 

default input. 

The exit flow takes as input 19×19×728 feature maps and is 

made to pass through four separable convolution layers of 728 

kernels, 1024 kernels, 1536 kernels and 2048 kernels respectively 

each of size 3×3 and ReLU non-linearity. A convolution layer 

with kernel size 1×1 and stride 2×2 is attached to the linear 

residual connection. For pooling, a max pooling layer with pool 

size 3×3 and stride 2×2 and a global average pooling layer is 

present as the final layer for the convolution block. All the blocks 

in all the three flows have batch normalization integrated. 

In the research work highlighted in this paper, the convolution 

block for Xception was imported with pre-trained weights 

obtained on feeding them the ImageNet [29] dataset. A dense 

layer of 200 units and softmax non-linearity was added on top for 

classification. The optimizer used was Adadelta [30] and the input 

images were rescaled to size 128×128 after undergoing image 

augmentation 2. ReduceLROnPlateau callback was not 

incorporated in the training process because the models were not 

trained for many epochs at a time due to their large size and usage 

limits on Google Colaboratory GPU. Reduction in learning rate, 

if required, was done manually. 

3.4 TRANSFER LEARNING USING 

INCEPTIONRESNETV2 CONVOLUTION BASE 

AND IMAGENET WEIGHTS 

InceptionResNetV2 [31] is a deep learning model which uses 

very deep convolution networks for image classification. It uses 

both residual connections and inception blocks for lesser 

computations and better training. 

The schema for InceptionResNetV2 is divided into several 

blocks/stages, namely ‘Input’, ‘Stem’, ‘Inception-resnet-A’, 

‘Reduction-A’, ‘Inception-resnet-B’, ‘Reduction-B’, ‘Inception-

resnet-C’, ‘Average Pooling’, ‘Dropout’ and ‘Softmax’. 

The default input in the Input layer is of size 229×229×3.The 

Stem layer takes this input and passes it through three convolution 

layers with 32, 32 and 64 kernels respectively, each of kernel size 

3×3. The path from this output is split, made to pass through a 

max pooling layer of pool size 3×3 and strides 2, and a 

convolution layer with 96 kernels of size 3×3 and strides 2. The 

outputs from these are concatenated together using a ‘Filter 

concat’ layer. 

The path from the Filter concat layer is again split into two 

paths: one with two convolution layers (one with 64 kernels of 

size 1×1 and another with 96 kernels of size 3×3), and another 

with four convolution layers (a 64 kernel of size 1×1, a 64 kernel 

of size 7×1, a 64 kernel of size 1×7, and a 96 kernel of size 3×3). 

The outputs from these paths are again concatenated and the paths 

are split: one to a convolution layer with 192 kernels of size 3×3 

and the other with a max pooling layer with stride = 2. 

The Stem layer is followed by five Inception-resnet-A layers. 

It is a 35×35 grid module consisting of three convolution layers 

of 32 kernels and size 1×1, three convolution layers with 32, 48 

and 64 kernels respectively each of size 3×3 and a convolution 

layer with 384 kernels of size 1×1 to the linear residual 

connection. This layer has ReLU activation both at the starting 

and at the end. 

The Reduction-A layer takes the filter concat version of the 

output from the Inception-resnet-A layer. The path is split into 

three ways: one with a max pooling layer of strides 2, one with a 

convolution layer with 284 kernels of kernel size 3×3, and the 

other with three convolution layers (one with 256 kernels of size 

1×1, one with 256 kernels of size 3×3, and the last one with 384 

kernels of size 3×3). The outputs from the three paths were again 

filter concatenated. 

The Reduction-A layer is followed by ten Inception-resnet-B 

layers. It is a 17×17 grid module consisting of two convolution 

layers with 128 kernels and 192 kernels respectively, each of size 

1×1, a convolution layer with 160 kernels of size 1×7, and a 

convolution layer with 192 kernels of size 7×1. A convolution 

layer with 1154 kernels of size 1×1 is also connected to the linear 

residual connection. Both the input to this layer and the output 

generated from this layer are ReLU activated. 

The Reduction-B module reduces a 17×17 grid to 8×8 grid. 

From the Inception-resnet-B layers, it gets divided into four paths. 

One path contains a max pooling layer with pool size 3×3 and 

strides 2. Another path contains two convolution layers: one with 

256 kernels of size 1×1 and another with 384 kernels of size 3×3. 

The third path also contains two convolution layers: one with 256 

kernels of size 1×1 and another with 288 kernels of size 3×3. And, 

the final path contains three convolution layers: one with 256 

kernels of size 1×1, one with 288 kernels of size 3×3, and one 

with 320 kernels of size 3×3. The outputs from all these paths 

were filter concatenated. 

The output from the Reduction-B module is fed into five 

Inception-resnet-C modules. It is a 8×8 grid module consisting of 

two convolution layers with 192 kernels of size 1×1, one 

convolution layer with 224 kernels of size 1×3, one convolution 

layer with 256 kernels of size 3×1 and a convolution layer with 

2048 kernels of size 1×1 connected to the linear residual 

connection. Both the input to this layer and the output generated 

from this layer are ReLU activated. 

The output from Inception-resnet-C module is made to go 

through average pooling, dropout of 20% and finally a Softmax 

non-linearity. The 1×1 convolution layers are added to keep the 

dimension optimum since inception modules reduce dimensions. 

The convolution block for InceptionResNetV2 was imported 

with pre-trained weights obtained on feeding them the ImageNet 

[29] dataset. A dense layer of 200 units and softmax non-linearity 

was added on top for classification. The optimizer used was 

Adadelta [30] and the input images were rescaled to size 128×128 

after undergoing image augmentation 2. 

3.5 TRANSFER LEARNING USING 

MOBILENETV2 CONVOLUTION BASE AND 

IMAGENET WEIGHTS 

MobileNetV2 [32] is a deep learning model for image 

classification which is based on depth-wise separable 

convolutions and bottleneck layers. Depth-wise separable 

convolutions require much smaller number of computations than 

normal convolution layers. Generally, non-linearities tend to lose 

some information due to their behavior in certain intervals (for 



DEBABRATA DATTA et al.: IMAGE CLASSIFICATION USING MODEL ENSEMBLING 

2684 

example, ReLU non-linearity loses negative data). This could 

deteriorate the performance of the model. Instead, if a linear 

bottleneck is used such that the last convolution block produces a 

linear output before it undergoes the initial non-linearities, it 

would be very useful. 

In MobileNetV2 architecture, a default input of 224×224×3 is 

given to a convolution layer with 32 channels and strides 2. Seven 

bottleneck layers are used. The first bottleneck layer takes as input 

images of size 112×112×32, has 16 output channels, stride 1 and 

is not repeated. The second bottleneck layer takes as input images 

of size 112×112×16, has 24 output channels, strides 2 (for first 

layer only; 1 for the rest) and it repeated twice. The third 

bottleneck layer takes as input images of size 56×56×24, has 32 

output channels, strides 2 (for first layer only; 1 for the rest) and 

is repeated thrice. The fourth bottleneck layer takes as input 

images of size 28×28×32, has 64 output channels, strides 2 (for 

first layer only; 1 for the rest) and is repeated four times. The fifth 

bottleneck layer takes as input images of size 14×14×64, has 96 

output channels, strides 1 and is repeated thrice. The sixth 

bottleneck layer takes as input images of size 14×14×96, has 160 

output channels, strides 2 (for first layer only; 1 for the rest) and 

is repeated thrice. The seventh bottleneck layer takes as input 

images of size 7×7×160, has 320 output channels, strides 1 and is 

not repeated. All the bottleneck layers except the first one has the 

input expanded by a factor of 6. Another convolution layer 

accepting inputs of size 7×7×320, having 1280 output channels 

and stride 1 is also present. An average pooling layer having input 

size 7×7×1280 is present. A convolution layer accepting input of 

size 1×1×1280 is present at the end. 

In the research work mentioned in this paper, the convolution 

block for MobileNetV2 was imported with pre-trained weights 

obtained on feeding them the ImageNet [29] dataset. A dense 

layer of 200 units and softmax non-linearity was added on top for 

classification. The optimizer used was Adadelta [30] and the input 

images were rescaled to size 128×128 after undergoing image 

augmentation 2. 

3.6 TRANSFER LEARNING USING DENSENET201 

CONVOLUTION BASE AND IMAGENET 

WEIGHTS 

DenseNet201 [33] is a deep learning model used for image 

classification. It is based on dense convolutional networks where 

the layers close to the input layer and the output layer have shorter 

connections between them. The feature-maps of the previous 

layers are used as inputs to the current layer and the feature-maps 

of the current layer are used as inputs to all the succeeding layers. 

Due to this, the flow of features from one layer to another is 

increased which reduces the overall number of parameters. The 

problem of vanishing gradients is also solved to a great extent. 

The convolution block for DenseNet201 was imported with 

pre-trained weights obtained on feeding them the ImageNet [29] 

dataset. A dense layer of 200 units and softmax non-linearity was 

added on top for classification. The optimizer used was Adadelta 

[30] and the input images were rescaled to size 128×128 after 

undergoing image augmentation 2. 

3.7 MODEL ENSEMBLING 

Model ensembling is a type of regularization in machine 

learning where various models are trained independently to solve 

the same problem and then they are combined (taken average of 

the weights) to get better results [18]. The intuition behind this is 

that when several weak models are correctly combined, the result 

obtained is better (in terms of accuracy) than any of the combined 

models individually. 

In the research work mentioned in this paper, after all the 

models were trained independently, they were ensembled together 

to get the final model for classification on unseen/test data. 

These five models were ensembled together: 

• VGG16 inspired model (trained from scratch) 

• Xception (transfer learning) 

• InceptionResNetV2 (transfer learning) 

• MobileNetV2 (transfer learning) 

• DenseNet201 (transfer learning) 

3.7.1 Algorithm for Model Ensembling: 

models = [VGG16_inspired_model, Xception_model, Inception 

ResNetV2_model, MobileNetV2_model, DenseNet201_model] 

input = input layer of shape (128,128,3) 

yhat = [] 

function ensemble_models (models, input) 

{ 

for each model in models 

yhat = yhat, [model(input)] 

yavg = average(elements of yhat) 

model_ens = new_model(inputs = input, outputs = yavg) 

return model_ens 

} 

4. RESULTS AND ANALYSIS 

The various models were first trained individually and then 

they were ensembled together to get the final model. 

The Dataset used [37] consists of 200 classes with 90,000 

training images, 10,000 validation images and 10,000 test images. 

Size of each image is 64×64 pixels. The small dimension of each 

image made it harder to extract sufficient information from them. 

∴ Training set : Validation set : Testing set = 9:1:1 

4.1 TRAINING THE VGG16 INSPIRED MODEL 

FROM SCRATCH 

4.1.1 Stage 1: Training on Original Data: 

The model was trained for 24 epochs with a batch size of 64. 

After the 16th epoch, the learning rate was manually changed to 

10-6. This resulted in an improvement in both training and 

validation metrics. After stage 1, the model showed the results as 

given in Table.1. 

4.1.2 Stage 2: Training on Augmented Data 1: 

The model was trained for 24 epochs with a batch size of 64. 

Since the images used here were augmented, the overall 
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performance of the model was poorer than that in stage 1. As the 

training went further, the performance of the model gradually got 

improved. After stage 2, the model showed the results as shown 

in Table.2. 

4.1.3 Stage 3: Training on Augmented Data 2: 

The model was trained for 24 epochs with a batch size of 64. 

After the 16th epoch, the learning rate was manually reduced to 

10-5, which resulted in better performance of the model. After 

stage 3, the model showed the results as shown in Table.3. 

From Table.3, it can be seen that the model performed much 

better in stage 3 than in stage 2, both in terms of training and 

validation f1-score and categorical accuracy. 

4.2 TRANSFER LEARNING USING XCEPTION 

CONVOLUTION BASE AND IMAGENET 

WEIGHTS 

The model was trained for 12 epochs. Till epoch 8, the 

learning rate was fixed at 10-3. After that, the learning rate was 

decreased to 10-4 for the model to be trained for 4 more epochs. 

Fine-tuning the last convolution block did not prove any 

improvement. Transfer learning the Xception model provided the 

results as shown in Table.4. 

4.3 TRANSFER LEARNING USING 

INCEPTIONRESNETV2 CONVOLUTION BASE 

AND IMAGENET WEIGHTS 

The model was trained for 16 epochs. Till epoch 8, the 

learning rate was fixed at 10-3. After that, the learning rate was 

decreased to 10-4 for the model to be trained for 8 more epochs. 

Fine-tuning the last convolution block did not provide any 

improvement. Transfer learning the InceptionResNetV2 model 

provided the results as shown in Table.5. 

4.4 TRANSFER LEARNING USING 

MOBILENETV2 CONVOLUTION BASE AND 

IMAGENET WEIGHTS 

The model was initially trained for 24 epochs. Till epoch 16, 

the learning rate was fixed at 10-3. After that, the learning rate was 

decreased to 10-4 for the model to be trained for 8 more epochs. 

Fine-tuning the last convolution block provided improvement in 

both training and validation loss and metrics. For fine-tuning the 

last convolution block, the learning rate was fixed at 10-4 and it 

was trained for 4 more epochs. 

Transfer learning the MobileNetV2 model provided the results 

as shown in Table.6 and the results after fine-tuning the last 

convolution block are shown in Table.7. 

4.5 TRANSFER LEARNING USING 

MOBILENETV2 CONVOLUTION BASE AND 

IMAGENET WEIGHTS 

The model was trained for 26 epochs. Till epoch 8, the 

learning rate was fixed at 10-3. After that, the learning rate was 

decreased to 10-4 for the model to be trained for 18 more epochs. 

Fine-tuning the last convolution block did not provide any 

improvement. Transfer learning the DenseNet201 model 

provided the results as shown in Table.8. 

Table.1. Results after training model 1 on original data 

Loss and 

Metrics vs 

Epochs 

Training Validation 

Loss 
F1-

Score 

Categorical 

Accuracy 
Loss 

F1-

Score 

Categorical 

Accuracy 

Epoch 1 4.9837 
8.2935 

×10-4 
0.0324 4.3599 0.0062 0.0782 

Epoch 2 4.2236 0.0175 0.1057 3.8721 0.0251 0.1319 

Epoch 3 3.7294 0.0576 0.1736 3.5868 0.0797 0.2021 

Epoch 4 3.3929 0.1088 0.2287 3.1137 0.1123 0.2407 

Epoch 5 3.1291 0.1606 0.2733 2.7731 0.1542 0.2661 

Epoch 6 2.8988 0.2130 0.3151 3.5337 0.2150 0.2969 

Epoch 7 2.6904 0.2665 0.3549 2.3900 0.2207 0.3027 

Epoch 8 2.4951 0.3179 0.3919 2.8664 0.2796 0.3428 

Epoch 9 2.3189 0.3631 0.4275 2.2265 0.2843 0.3384 

Epoch 10 2.1391 0.4100 0.4637 3.8136 0.3221 0.3636 

Epoch 11 1.9628 0.4574 0.5005 2.4065 0.3459 0.3776 

Epoch 12 1.7969 0.5001 0.5358 3.0625 0.3530 0.3653 

ReduceLROnPlateau reducing learning rate to 

0.00020000000949949026 

Epoch 13 1.2356 0.6488 0.6728 3.4637 0.4438 0.4503 

Epoch 14 1.0434 0.7020 0.7194 3.8950 0.4342 0.4271 

Epoch 15 0.9236 0.7327 0.7485 1.8921 0.4457 0.4313 

Epoch 16 0.8090 0.7631 0.7782 2.9619 0.4354 0.4234 

Manually reducing learning rate to 1e-6 

Epoch 17 0.6851 0.7972 0.8158 2.6833 0.4550 0.4451 

Epoch 18 0.6531 0.8074 0.8278 2.5127 0.4569 0.4508 

Epoch 19 0.6388 0.8121 0.8312 1.7470 0.4591 0.4524 

Epoch 20 0.6322 0.8154 0.8350 2.3139 0.4599 0.4541 

Epoch 21 0.6292 0.8159 0.8366 1.8152 0.4620 0.4553 

Epoch 22 0.6220 0.8175 0.8370 1.9120 0.4608 0.4542 

ReduceLROnPlateau reducing learning rate to  

1.9999999949504855e-07 

Epoch 23 0.6196 0.8176 0.8384 3.6468 0.4617 0.4544 

Epoch 24 0.6174 0.8190 0.8376 1.8759 0.4593 0.4533 

Table.2. Results after training model 1 on Image Augmentation 

1 data 

Loss and 

Metrics vs 

Epochs 

Training Validation 

Loss 
F1-

Score 

Categorical 

Accuracy 
Loss 

F1-

Score 

Categorical 

Accuracy 

Epoch 1 2.9792 0.2545 0.3137 2.1032 0.3017 0.3182 

Epoch 2 2.7904 0.2737 0.3412 2.9635 0.2854 0.2996 

Epoch 3 2.7272 0.2838 0.3523 3.1365 0.3072 0.3238 

Epoch 4 2.6693 0.2975 0.3642 3.0420 0.3159 0.3348 

Epoch 5 2.6313 0.3052 0.3698 2.9908 0.3264 0.3371 

ReduceLROnPlateau reducing learning rate to  

1.9999999494757503e-05 

Epoch 6 2.5801 0.3156 0.3804 3.3823 0.3437 0.3592 

Epoch 7 2.5648 0.3224 0.3839 3.0035 0.3507 0.3695 

Epoch 8 2.5521 0.3245 0.3862 3.1798 0.3440 0.3580 

Epoch 9 2.5427 0.3248 0.3851 3.1259 0.3483 0.3592 

Epoch 10 2.5309 0.3300 0.3897 4.2754 0.3479 0.3604 
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Epoch 11 2.5224 0.3306 0.3905 2.5517 0.3441 0.3588 

Epoch 12 2.5157 0.3327 0.3929 2.8440 0.3533 0.3673 

Epoch 13 2.5014 0.3361 0.3952 2.8635 0.3596 0.3737 

Epoch 14 2.4976 0.3362 0.3965 2.0916 0.3577 0.3716 

Epoch 15 2.5006 0.3386 0.3961 2.3885 0.3695 0.3843 

Epoch 16 2.4818 0.3433 0.3994 3.4623 0.3738 0.3894 

Epoch 17 2.4853 0.3407 0.3973 3.5315 0.3814 0.3964 

Epoch 18 2.4679 0.3454 0.4017 4.0982 0.3664 0.3777 

Epoch 19 2.4720 0.3429 0.4020 3.0072 0.3534 0.3643 

Epoch 20 2.4633 0.3467 0.4033 2.0370 0.3714 0.3831 

Epoch 21 2.4565 0.3480 0.4049 3.0719 0.3743 0.3898 

Epoch 22 2.4582 0.3457 0.4030 2.1521 0.3841 0.3994 

Epoch 23 2.4468 0.3489 0.4059 2.1513 0.3773 0.3901 

Epoch 24 2.4434 0.3497 0.4065 3.4570 0.3751 0.3847 

Table.3. Results after training model 1 on Image Augmentation 

2 data 

Loss and 

Metrics vs 

Epochs 

Training Validation 

Loss 
F1-

Score 

Categorical 

Accuracy 
Loss 

F1-

Score 

Categorical 

Accuracy 

Epoch 1 2.3762 0.3896 0.4380 3.0034 0.4498 0.4591 

Epoch 2 2.1614 0.4321 0.4748 3.4550 0.4563 0.4594 

Epoch 3 2.0806 0.4540 0.4928 2.0705 0.4654 0.4659 

Epoch 4 2.0270 0.4677 0.5012 2.6434 0.4689 0.4686 

Epoch 5 1.9907 0.4750 0.5078 3.4008 0.4713 0.4664 

Epoch 6 1.9565 0.4836 0.5149 2.5456 0.4745 0.4727 

Epoch 7 1.9340 0.4905 0.5200 2.6562 0.4770 0.4717 

ReduceLROnPlateau reducing learning rate to  

3.999999898951501e-06 

Epoch 8 1.9125 0.4962 0.5245 2.1752 0.4789 0.4749 

Epoch 9 1.9480 0.4875 0.5180 2.2418 0.4633 0.4578 

Epoch 10 1.8865 0.5057 0.5309 1.9330 0.4670 0.4626 

Epoch 11 1.8444 0.5142 0.5399 2.3276 0.4699 0.4613 

Epoch 12 1.8077 0.5230 0.5463 2.8729 0.4709 0.4622 

Epoch 13 1.7801 0.5318 0.5540 1.8726 0.4744 0.4681 

Epoch 14 1.7554 0.5364 0.5579 1.0774 0.4804 0.4703 

Epoch 15 1.7379 0.5424 0.5640 2.4314 0.4719 0.4654 

Epoch 16 1.7120 0.5492 0.5690 1.9042 0.4759 0.4726 

Manually changing learning rate to 1e-5 

Epoch 17 1.6420 0.5642 0.5832 2.2347 0.4945 0.4893 

Epoch 18 1.6195 0.5714 0.5914 1.7109 0.4987 0.4897 

Epoch 19 1.6093 0.5749 0.5924 2.1635 0.4979 0.4897 

Epoch 20 1.6080 0.5777 0.5934 2.6233 0.4975 0.4877 

Epoch 21 1.6051 0.5782 0.5946 2.4903 0.4983 0.4915 

Epoch 22 1.6010 0.5794 0.5966 1.9718 0.4978 0.4880 

Epoch 23 1.6039 0.5779 0.5941 1.8970 0.5008 0.4892 

Epoch 24 1.5897 0.5832 0.5976 2.1555 0.5017 0.4904 

 

Table.4. Results after transfer learning Xception convolution 

base with a dense layer fitted on top on Image Augmentation 2 

data 

Loss and 

Metrics vs 

Epochs 

Training Validation 

Loss 
F1-

Score 

Categorical 

Accuracy 
Loss 

F1-

Score 

Categorical 

Accuracy 

Epoch 1 2.3766 0.4194 0.4477 2.4278 0.5390 0.5319 

Epoch 2 1.6484 0.5906 0.5883 1.6726 0.5895 0.5799 

Epoch 3 1.3680 0.6580 0.6506 0.8879 0.6215 0.6070 

Epoch 4 1.1751 0.7017 0.6925 1.8066 0.6457 0.6236 

Epoch 5 1.0302 0.7352 0.7254 0.8405 0.6439 0.6225 

Epoch 6 0.9003 0.7649 0.7565 1.9879 0.6424 0.6185 

Epoch 7 0.7971 0.7887 0.7805 2.8998 0.6541 0.6314 

Epoch 8 0.7067 0.8110 0.8031 1.1810 0.6572 0.6345 

Manually changing learning rate to 1e-4 

Epoch 9 0.5428 0.8504 0.8480 1.2028 0.6906 0.6716 

Epoch 10 0.5397 0.8511 0.8493 0.5792 0.6916 0.6719 

Epoch 11 0.5404 0.8515 0.8492 1.8780 0.6915 0.6719 

Epoch 12 0.5362 0.8516 0.8509 1.4777 0.6921 0.6727 

Table.5. Results after transfer learning InceptionResNetV2 

convolution base with a dense layer fitted on top on Image 

Augmentation 2 data 

Loss and 

Metrics vs 

Epochs 

Training Validation 

Loss 
F1-

Score 

Categorical 

Accuracy 
Loss 

F1-

Score 

Categorical 

Accuracy 

Epoch 1 2.6320 0.3468 0.3902 2.6481 0.4794 0.4929 

Epoch 2 1.8931 0.5212 0.5320 2.6178 0.5086 0.5000 

Epoch 3 1.5905 0.5971 0.5974 2.0026 0.5548 0.5438 

Epoch 4 1.3528 0.6530 0.6496 0.8843 0.5875 0.5698 

Epoch 5 1.1756 0.6960 0.6894 1.0983 0.6012 0.5813 

Epoch 6 1.0143 0.7347 0.7267 2.8491 0.6053 0.5811 

Epoch 7 0.8827 0.7669 0.7584 3.3372 0.6147 0.5897 

Epoch 8 0.7671 0.7939 0.7870 1.8681 0.5997 0.5788 

Manually changing learning rate to 1e-4 

Epoch 9 0.6697 0.8193 0.8117 1.7691 0.6222 0.5993 

Epoch 10 0.5918 0.8398 0.8340 1.5458 0.6211 0.6001 

Epoch 11 0.5165 0.8581 0.8520 2.1342 0.5733 0.5535 

Epoch 12 0.4658 0.8718 0.8663 2.5184 0.6338 0.6148 

Epoch 13 0.3700 0.8966 0.8933 2.9483 0.6485 0.6291 

Epoch 14 0.3632 0.8983 0.8961 2.6975 0.6499 0.6299 

Epoch 15 0.3639 0.8990 0.8963 1.8291 0.6495 0.6307 

Epoch 16 0.3580 0.9001 0.8974 1.3072 0.6508 0.6319 

Table.6. Results after transfer learning MobileNetV2 

convolution base with a dense layer fitted on top on Image 

Augmentation 2 data 

Loss and 

Metrics 

vs 

Epochs 

Training Validation 

Loss 
F1-

Score 

Categorical 

Accuracy 
Loss 

F1-

Score 

Categorical 

Accuracy 

Epoch 1 3.0173 0.2406 0.3073 11.7397 0.0164 0.0169 
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Epoch 2 2.3245 0.3983 0.4359 9.1230 0.0536 0.0599 

Epoch 3 2.0484 0.4710 0.4925 6.6012 0.1549 0.1512 

Epoch 4 1.8744 0.5173 0.5293 5.1103 0.1634 0.1751 

Epoch 5 1.7313 0.5553 0.5614 3.4618 0.3020 0.2963 

Epoch 6 1.6110 0.5839 0.5863 5.6468 0.3184 0.3081 

Epoch 7 1.5177 0.6068 0.6082 3.6592 0.3964 0.3816 

Epoch 8 1.4328 0.6276 0.6258 2.4346 0.4355 0.4183 

Epoch 9 1.3580 0.6483 0.6424 2.7962 0.4705 0.4542 

Epoch 10 1.2763 0.6669 0.6623 2.6735 0.4589 0.4440 

Epoch 11 1.2154 0.6789 0.6743 2.0015 0.4586 0.4425 

Epoch 12 1.1602 0.6941 0.6868 2.4261 0.4804 0.4631 

Epoch 13 1.1024 0.7059 0.6999 1.8106 0.4948 0.4777 

Epoch 14 1.0518 0.7207 0.7145 1.8682 0.4655 0.4498 

Epoch 15 1.0013 0.7314 0.7258 4.2774 0.5110 0.4861 

Epoch 16 0.9638 0.7418 0.7344 1.5714 0.4687 0.4511 

Manually changing learning rate to 1e-4 

Epoch 17 0.8031 0.7788 0.7757 1.3163 0.6307 0.6117 

Epoch 18 0.8118 0.7772 0.7741 1.6644 0.6390 0.6174 

Epoch 19 0.8039 0.7786 0.7758 1.3992 0.6406 0.6195 

Epoch 20 0.8018 0.7795 0.7777 2.0463 0.6394 0.6197 

Epoch 21 0.8024 0.7788 0.7757 2.0415 0.6401 0.6206 

Epoch 22 0.7992 0.7803 0.7777 1.3196 0.6409 0.6215 

Epoch 23 0.7967 0.7804 0.7776 1.7722 0.6406 0.6218 

Epoch 24 0.7938 0.7822 0.7786 2.5375 0.6407 0.6204 

Table.7. Results after fine-tuning the last convolution block of 

MobileNetV2 

Loss and 

Metrics vs 

Epochs 

Training Validation 

Loss 
F1-

Score 

Categorical 

Accuracy 
Loss 

F1-

Score 

Categorical 

Accuracy 

Epoch 1 0.7048 0.8073 0.8015 1.3346 0.6553 0.6364 

Epoch 2 0.7043 0.8096 0.8038 2.3650 0.6546 0.6354 

Epoch 3 0.7106 0.8063 0.8002 1.9359 0.6551 0.6366 

Epoch 4 0.7103 0.8061 0.7995 1.9308 0.6552 0.6356 

Table.8. Results after transfer learning DenseNet201 

convolution base with a dense layer fitted on top on Image 

Augmentation 2 data 

Loss and 

Metrics vs 

Epochs 

Training Validation 

Loss 
F1-

Score 

Categorical 

Accuracy 
Loss 

F1-

Score 

Categorical 

Accuracy 

Epoch 1 3.8564 0.1024 0.1747 3.2780 0.2292 0.2605 

Epoch 2 2.8137 0.2742 0.3395 4.9444 0.2934 0.3098 

Epoch 3 2.5553 0.3422 0.3912 2.9525 0.2958 0.3148 

Epoch 4 2.2713 0.4119 0.4493 2.9322 0.3883 0.3864 

Epoch 5 2.0819 0.4630 0.4874 1.9389 0.4762 0.4675 

Epoch 6 2.0425 0.4791 0.4955 2.1287 0.4653 0.4626 

Epoch 7 2.0010 0.4874 0.5031 2.7383 0.4826 0.4732 

Epoch 8 1.8498 0.5293 0.5354 1.9524 0.5104 0.5111 

Manually changing learning rate to 1e-4 

Epoch 9 1.6537 0.5712 0.5769 1.4003 0.5718 0.5675 

Epoch 10 1.6433 0.5711 0.5807 1.3074 0.5745 0.5698 

Epoch 11 1.6200 0.5768 0.5882 2.4057 0.5742 0.5693 

Epoch 12 1.6488 0.5711 0.5834 1.7445 0.5731 0.5686 

Epoch 13 1.6376 0.5725 0.5826 1.3678 0.5777 0.5714 

Epoch 14 1.6261 0.5770 0.5845 1.5088 0.5794 0.5750 

Epoch 15 1.5915 0.5851 0.5942 1.7061 0.5940 0.5879 

Epoch 16 1.5390 0.6002 0.6080 1.6332 0.6043 0.5972 

Epoch 17 1.5311 0.6045 0.6125 1.9447 0.6041 0.5980 

Epoch 18 1.5191 0.6055 0.6137 1.7622 0.6056 0.5993 

Epoch 19 1.4819 0.6135 0.6214 1.9073 0.6128 0.6049 

Epoch 20 1.4336 0.6226 0.6352 1.7370 0.6188 0.6093 

Epoch 21 1.4276 0.6279 0.6351 1.3144 0.6216 0.6154 

Epoch 22 1.4094 0.6332 0.6376 2.0288 0.6268 0.6198 

Epoch 23 1.4000 0.6353 0.6419 1.0301 0.6276 0.6204 

Epoch 24 1.4001 0.6366 0.6418 1.3012 0.6290 0.6198 

Epoch 25 1.3961 0.6367 0.6427 1.7881 0.6287 0.6212 

Epoch 26 1.3959 0.6362 0.6428 1.6528 0.6292 0.6200 

4.6 FINAL RESULTS OF ALL THE MODELS 

The VGG16 inspired model was trained with 50.4 million 

parameters for 72 epochs (24 epochs for each of the three stages). 

After this, the model started overfitting. 

The Xception model was trained with 21.2 million parameters 

(pre-trained ImageNet weights) for 12 epochs. The training had to 

be stopped after that since the validation metrics stopped 

improving further. 

The InceptionResNetV2 model was trained with 54.6 million 

parameters (pre-trained ImageNet weights) for 16 epochs after 

which the model started overfitting. 

The MobileNetV2 model was trained with 2.5 million 

parameters (pre-trained ImageNet weights) for 28 epochs 

(including 4 epochs for fine-tuning). It is the only model that 

showed improvement on fine-tuning. 

The DenseNet201 model was trained with 18.7 million 

parameters (pre-trained ImageNet weights) for 26 epochs. The 

training was stopped after this since it started overfitting. 

The ensembled model has 147.6 million parameters. It scored 

a categorization accuracy of 0.71300 on Kaggle [34], which 

means a categorical accuracy of 71.3%.  

Thus, ensembling these models have provided better results 

than any of the above-mentioned models individually. The final 

results of the models have been compiled in Table.9 and the final 

plots of “f1-score v/s epochs” and “loss v/s epochs” for each 

model is given in Table.10. 
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Table.9. Final results of all the models after training them on Image Augmentation 2 data 

Loss and  

Metrics vs  

Models 

Training Validation 

Loss F1-Score Categorical Accuracy Loss F1-Score Categorical Accuracy 

VGG16 inspired model 1.5897 0.5832 0.5976 2.1555 0.5017 0.4904 

Xception 0.5362 0.8516 0.8509 1.4777 0.6921 0.6727 

InceptionResNetV2 0.3580 0.9001 0.8974 1.3072 0.6508 0.6319 

MobileNetV2 0.7103 0.8061 0.7995 1.9308 0.6552 0.6356 

DenseNet201 1.3959 0.6362 0.6428 1.6528 0.6292 0.6200 

Ensembled Model Kaggle Best Categorization Accuracy Score = 0.71300 

Table.10. Final performance plots for each model 

Performance plots  

vs. Models 
F1-Score v/s Epochs Loss v/s Epochs 

VGG16 inspired model 

  

Xception 

  

InceptionResNetV2 
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MobileNetV2 

 
 

DenseNet201 

  

4.7 FINAL RESULTS OF ALL THE MODELS 

The ensembled model was tested on other data as well to 

check its performance, as shown in Table.11. During testing, 

images of different dimensions were given as input. The model 

was programmed to first convert each image to 128×128 size and 

then start the classification process. 

Table.11. Testing the Ensembled Model on Various Data 

Image Predicted class Result 

 

Grasshopper,  

Hopper 
✓ 

 

Syringe × 

 

Parking Meter ✓ 

 

Brown Bear ✓ 

 

Wooden Spoon 

✓ 

(Could be  

“ice-cream”  

as well) 

 

Goose ✓ 

 

Golden Retriever ✓ 

 

Grasshopper,  

Hopper 
✓ 
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4.8 COMPARISON OF RESULTS OBTAINED 

WITH RELATED WORK 

The related works’ models were trained on the same dataset to 

check where the final ensembled model’s algorithm and training 

process stands with respect to other models. The related models 

which were trained were: LeNet-5 [3], AlexNet [5], VGG16 [10], 

GoogLeNet [13] and ResNet50 [14]. 

All these models were trained with the following properties: 

• Every model was trained from scratch (no pre-trained 

weights were incorporated in the learning process) 

• No image augmentation was done 

• Each input image was rescaled to 1/255 

• Each input image was resized to 128×128. Thus, input size 

of each image was 128×128×3 (due to RGB values) 

• Batch size = 64 

• An additional Dense (Fully Connected) Layer with 200 units 

and softmax non-linearity was attached at the top of each 

model for classification 

• Optimizer used: Stochastic Gradient Descent (SGD) with 

learning rate = 0.001 and momentum = 0.9 

• Callback used: ReduceLROnPlateau callback with factor of 

0.2, patience of 3 and minimum           learning rate of 10-7 

was made to monitor the validation loss 

• Loss Function used: Categorical Cross-entropy 

• Evaluation Metrics: F1-Score, Categorical Accuracy 

AlexNet model was trained on one GPU (Google 

Colaboratory GPU) only. The original model was trained on two 

GPUs simultaneously. 

All of the training process was done till the respective models 

started overfitting. No image augmentation, manual change in 

learning rate or inspection on which optimizer works the best was 

done in training the related works’ models. 

This comparison was done only to check whether the 

procedure of the research work described in this paper provides 

more fruitful results than the results given by already established 

models when they are trained without any type of data 

augmentation. The results given by the above-mentioned models 

and their comparison are given in Table.12. Thus, the training 

process works quite well in comparison to the related works’ 

models trained without data augmentation. 

4.9 ANALYSIS OF OBTAINED RESULTS 

The training process of each of the independent models was 

broken down into several steps of some epochs so that the loss 

and evaluation metrics of both training and validation data could 

be checked periodically and training of that model could be 

stopped when it started overfitting. 

After each step of training, “f1-score v/s epochs” and “loss v/s 

epochs” graphs for both training and validation data were plotted 

to easily check whether the model needs to be trained further. 

Although in few cases, the training could not be stopped at the 

optimal epoch (since interrupting execution of the statement 

would result in a KeyboardInterrupt Error which could result in 

losing the data acquired from the previous epochs), the results 

obtained at the end was quite satisfactory in terms of validation 

f1-score and validation categorical accuracy. 

The “f1-score v/s epochs” plot was mainly used to check 

rather than categorical accuracy because to get a higher f1-score, 

the model needs to perform well both in terms of precision and 

recall. 

The ensembled model performs well on most of the images 

with some errors. Most of the errors by the ensembled model were 

mainly due to two reasons: low resolution of the images and, 

incapability to detect the primary object in an image where there 

are multiple entities present. For example, an image containing a 

cup of ice-cream and a wooden spoon, the model predicts it to 

belong to the class ‘wooden spoon’. 

The model works well otherwise. So, this model would work 

very well if it was deployed as an application which predicts the 

class an image belongs to by checking any content of that image. 

Table.12. Comparison of performances of ensembled model with 

related works 

Epochs and 

performance  

vs. Models 

Number 

of epochs 

Training 

categorical 

accuracy 

Validation 

categorical 

accuracy 

LeNet-5 40 0.4555 0.1200 

AlexNet 80 0.8943 0.3616 

VGG16 27 0.6647 0.2349 

GoogLeNet 75 0.7826 0.3987 

ResNet-50 12 0.7098 0.3041 

Ensembled  

Model 

Kaggle Best Categorization  

Accuracy Score = 0.71300 

5. CONCLUSION 

Most of the research work mentioned in this paper was done 

using Keras [35] library. The primary goal was to achieve a top-1 

test categorical accuracy of 60%. Submitting the results at Kaggle, 

the model earned a categorization accuracy score of 0.71300, that 

is 71.3%. 

5.1 REASONS FOR USING THE PROPOSED 

MODELS 

The models which were trained here are a VGG16 inspired 

model (trained from scratch), Xception, InceptionResNetV2, 

MobileNetV2 and DenseNet201. These models were selected 

specifically keeping in mind that the number of parameters to be 

trained does not increase too much and at the same time, we get a 

good performance from the ensembled model (both in terms of 

f1-score and categorical accuracy) on the test/unseen data. It is 

basically a trade-off between the number of parameters to be 

trained and the performance of the model (in terms of time 

required to train the model and produce the output). 

5.2 ADVANTAGES OF USING THE ENSEMBLED 

MODEL FOR CLASSIFICATION 

The final model here is the ensembled model of five models 

(weak learners), which are very efficient models themselves. That 
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is why it has achieved an accuracy of 71.3% on unseen data. This 

model can be used as the backend for any mobile or web 

application to classify images among the 200 classes. 

5.3 DISADVANTAGES OF USING THE 

ENSEMBLED MODEL FOR CLASSIFICATION 

Although the model has achieved its primary goal of attaining 

at least 60% accuracy, it still has room for improvement. The final 

ensembled model has 147.6 million parameters, which is huge and 

takes some time to produce the output. Also, the model sometimes 

fails to detect the primary object in an image and classifies the 

image based on any object present in the image due to which this 

model sometimes fails to perform its work efficiently. 

5.4 FURTHER IMPROVEMENTS 

The main motive in the future would be to get a better f1-score 

and categorical accuracy, and at the same time make the model a 

light-weight one (with smaller number of parameters). Once this 

has been achieved, deploying this model into an application 

would be more fruitful since it would then take lesser time in 

providing the result to the end user. For more improvement, the 

model could be trained on other datasets containing more classes 

as well. 

The models using which transfer learning was done here were 

attempted to be fine-tuned only on the last convolution blocks of 

the respective models. In the future, other combinations of 

convolution blocks could be tried to be fine-tuned hoping for a 

better result. 

The models here were trained on scarce computation resources 

(due to usage limits on Google Colaboratory [36] GPU). In the 

future, it would be better if further training is done on a GPU as 

powerful as the ones Google Colaboratory offer but with more 

lenient usage limits. 
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