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Abstract 

Convolutional Neural Network (CNN), a particular type of forwarding 

feed network composed of convolutional, pooling, and fully connected 

layers, has become the dominant and most widely used deep learning 

architecture. Significantly enhanced effectiveness of ConvNets has 

made CNNs the go-to architecture model for almost every image 

processing-based application. CNNs automatically and adaptively 

learn spatial hierarchies of features with high accuracy, precision, and 

efficiency. This paper proposes three CNN models with 5, 6, and 7 

layers with two types of classification layers at the top of the model, 

resulting in six kinds of models. Each model is trained on apple leaf 

diseases obtained with augmentation deployed on the PlantVillage 

dataset containing images of healthy and three types of leaf diseases. 

The trained models are compared on training time, testing accuracy, 

testing time. The best performing model (6-layer based model with fully 

connected layer as a classifier (6FC) in our case) yields 99.14% 

accuracy. This best-performing model is also compared with the state-

of-art models such as VGG-16, InceptionV3, and MobileNetV2, trained 

using the transfer learning approach. After model comparison, we 

found our best model (6FC) outperformed the other models based on 

evaluated performance metrics with improvements as 3.94% gain in 

accuracy, 25.97% reduced parameters, and less training time (0.51hr) 

and testing time (20.5 sec) compared to VGG-16. Comparing precision, 

recall, and f1-score values are also found high (between 0.98 to 1) with 

our proposed model. The weighted gradient class activation map (Grad-

CAM) technique generates a visualization of class predictions on the 

test dataset. The Grad-Cam visualization of results validates the 

prediction score attained by the proposed model. 
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1. INTRODUCTION 

In recent years a surge of deep learning models in the field of 

computer vision is being witnessed, considerably due to their 

significant capabilities, accuracies, and other improved 

performance parameters in a variety of visual processing and 

understanding applications such as object detection and 

recognition, human activity recognition, image segmentation, and 

activity classification. The deep learning approaches explore the 

unknown structures in the input data and discover with high 

confidence good representations, often at multiple levels. These 

methods learn pattern hierarchies in which higher-level features 

are described in terms of the composition of lower-level features. 

One of the core research areas in image processing-based learning 

is artificial neural networks, i.e., convolutional neural networks 

(CNN).  

With CNN in deep learning, it can analyze large dataset sizes 

to conclude based on the patterns (features) learned. Thus, 

everything is done without any human intervention while learning 

features from images. Mainly it is used for two purposes: 1. 

Object detection in the image (presence or absence of object) and 

2. Localization of objects detected in the image. Earlier, these 

were done with the help of hand-crafted feature extraction with 

pattern recognition algorithms, but now these tasks are done 

readily with various proposed models based on CNNs. Multiple 

factors affect deep learning methods, but a large amount of 

required data is a must; otherwise, overfitting (responsible for low 

performance) is the biggest issue. However, the data 

augmentation technique when data size is small can handle this. 

However, even with an impressive performance in image 

classification tasks, it is not easy to interpret the CNN model 

decisions. In this way, we can assume neural networks as black 

boxes [1]. To understand these model predictions, we need to dive 

into the field of explainable CNN. There are various methods [2]-

[6] that help us to understand the insight into the decision making 

of such CNN models. These methods are a visual interpretation of 

model predictions. The oldest and frequently used method, called 

saliency map, is used for model interpretation in deep learning. 

The saliency map of an input image provided to the network 

specifies parts or regions of the image. It contributes most to the 

activity of a specific layer in the network or as a whole network 

decision. There are mainly three approaches to get the saliency 

map of an input image. The first approach is using 

deconvolutional networks [7]. In this method, a deconvolutional 

network is used that reconstructs the input from the activation of 

that layer. Along with deconvolution (transformed version of 

convolutional filter) operation, un-pooling (inverse of pooling) 

and ReLU (inverse of itself) are used. Although pooling operation 

is non-invertible, a module called switch is used in the 

deconvolutional network to recover maxima positions in the 

forward pass. The second method [5] is the most straightforward 

approach of getting a saliency map. In this method, the 

backpropagation algorithm computes the gradients of logits w.r.t. 

to the networks input. In addition, this backpropagation method 

can highlight pixels of the input image based on the gradient they 

receive, which shows their contribution to the final score. The 

author of the paper [6] combined these approaches and proposed 

the third method called a guided backpropagation algorithm. 

Although saliency maps are used to interpret CNNs, a couple of 

papers have shown that saliency maps are not always reliable [4]. 

B. Zhou et al. (2016) introduced another approach, class 

activation map (CAM), which explains CNNs [3]. The papers 

authors replaced the stack of fully connected layers at the end of 

the CNN model with a layer named Global Average Pooling 

(GAP). GAP averages the activations of each feature map along 

with depth and concatenates these averaged values. It results in 

output as a vector which is fed to the final softmax loss layer. 

Using this architecture, we can highlight the critical regions of the 

image by projecting back the weights of the output on the 

convolutional feature maps using heatmap visualization. A more 

versatile version of CAM is Grad-CAM method by Selvaraju et 
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al. [2], producing visual explanations for any arbitrary CNN, even 

if the network contains fully connected layers as a classification 

layer. The approach to obtain Grad-CAM of an image is quite a 

similar approach as for obtaining saliency maps. In this method, 

the gradients of any target concept score (logits for any class of 

interest such as cat or dog) flow into the final convolutional layer. 

Then the importance score based on the gradients is computed, 

and a coarse localization map highlighting the critical regions in 

the image is produced for predicting that concept. 

This paper proposes using the CNN model to classify plant 

disease associated with apple leaves. The features learned from 

the image of the apple leaf are used for enhanced classification 

accuracy. We propose three models for feature learning (by 

varying depth of model) and two types of layers: fully connected 

(FC) dense layer and GAP layer. A total of six architectures 

models results for feature learning and classification tasks. 

Performance evaluation of all the proposed models is done based 

on overall accuracy, confusion matrix, and ROC curves. The best-

proposed model is compared with state-of-art models such as 

VGG-16, InceptionV3 and MobileNetV2, trained, tested, and 

evaluated on the same dataset. The proposed model was found to 

be performing better than the three standard models on the 

selected dataset. The visualization of the classification process in 

the proposed CNN model is done by generating the heat map 

using the Grad-CAM technique. These activation maps highlight 

the regions and provide visualization of the area in the leaf image 

having a class of disease based on features learned. These regions 

are similar to the actual visual characteristic in the leaf of a 

particular disease and help in the evaluation of weakly supervised 

object localization as proposed in the papers [8]-[10].  

The paper is organized as follows: Section 2 deals with 

literature survey reporting related work. Then, in section 3, the 

methodology of network architecture design and Grad-CAM 

visualization technique is presented. In section 4, the 

experimental results of the training, testing, and validation of the 

models are given. Finally, in section 5, the papers conclusion 

detailing the results establishes the proposed model as the best-

performing model for the selected dataset. 

2. RELATED WORK 

As per the literature survey, CNN based model is the most 

used method for image-based learning among various deep 

learning architectures. This is because it can analyze high-

dimensional, unstructured data such as image, text, and audio. 

However, classical Machine Learning (ML) is challenging to 

handle, i.e., non-deep-learning or hand-crafted (non-ML) 

algorithms. 

Much research is going into plant/crop disease detection using 

deep learning convolutional neural networks (DLCNN). The 

work mainly detects diseases using images of leaves in various 

conditions (laboratory and actual field of plant/crop). Mohanty et 

al. [11] analyses two CNN-based models (AlexNet [12] and 

GoogLeNet [13]) on the ability to detect 26 diseases, 14 crop 

species, 38 class labels in a dataset of 54,306 images. Three types 

of images (Color, Grayscale, Leaf Segmented), two approaches 

(transfer and training from scratch), and various train-validate 

data split ratio options were adopted while training these models. 

With this approach, they achieved the best accuracy of 99.35% 

using GoogLeNet transfer learning with color images. Liu et al. 

(2017) proposed a CNN model to identify the four common types 

of apple leaf diseases with a dataset containing 13,689 images 

[14]. Their experimental results show model achieving an overall 

accuracy of 97.62%. Compared with other standard models such 

as AlexNet, GoogLeNet, ResNet-20 [15], and VGG-16, their 

model achieved better accuracy with reduced parameter 

requirements. In a paper [16], five standard CNN models are 

presented for plant disease detection and diagnosis using deep 

learning methodologies. Models were trained on a database of 

87,848 images containing 25 different plants in a set of 58 distinct 

classes. The best performance of 99.53% success rate using the 

VGG model was achieved. However, the total training time for 

that model, on a single GPU was about 5.5 days. In another paper 

[17], a method based on region-of-interest-aware (ROI) deep 

convolutional neural networks (DCNN) is proposed to recognize 

apple leaf diseases on a dataset containing three classes of apple 

leaf with two diseases and one healthy class. The proposed ROI-

aware DCNN architecture consists of two subnetworks, i.e., ROI 

subnetwork and VGG-subnetwork. One predicts the ROI feature 

map for dividing the input images into the background, leaf area, 

and spot area, and the second (VGG-subnetwork) classifies the 

leaf diseases. The ROI-aware DCNN achieved better recognition 

accuracy (84.3%) than state-of-the-art methods such as the 

multiscale-based deep feature extraction and pooling (MDFEP) 

method, fisher vector encoding (FVE) with scale-invariant feature 

transform (SIFT), and DCNN-based bilinear model. In a paper 

[18], apple disease dataset of 8400 leaf images of five infected 

and healthy. Using 70% and 30% train validation split on a 

prepared dataset with a modification and training on a deep 

learning model named ResNet-34 achieved 97.18 % accuracy for 

automatic classification of apple diseases. Y. Guo et al. (2020) 

proposed a mathematical model of plant disease detection and 

recognition using a deep learning approach [19]. A region 

proposal network (RPN) with Chan–Vese (CV) algorithm was 

proposed to recognize and localize the leaves in the complex 

background. The segmented leaves were fed into the transfer 

learning model and trained by the dataset of diseased leaves with 

a simple background. Total 4714 images of four classes, including 

one healthy and three disease classes, were used for the 

experiment. The accuracy achieved was 83.57% compared to the 

traditional ResNet-101 model (42.5%). A DCNN based early 

diagnosis method for apple tree leaf diseases was proposed by X. 

Chao et al. [20]. They have used a dataset of five common 

diseases and healthy leaves, which contain images in both 

laboratories and cultivation field conditions. The DCNN model 

proposed is a combination of DenseNet and Xception, using 

global average pooling. They extracted features by the proposed 

DCNN model then used a support vector machine to classify the 

apple leaf diseases and achieved an overall accuracy of 98.82%, 

which is higher than some standard models.  

Traditional and deep learning approaches and challenges are 

discussed to solve plant disease and pest disease problems in a 

paper by Liu & Wang (2021) [21]. Even with excellent 

performance, it is not easy to analyze the reason behind their 

work. Several approaches for understanding and visualizing CNN 

have been developed in the literature. The reported works 

suggested methods with which one can understand the outcomes 

from the CNN model. B. Zhou et al. (2014) suggested work to 

perform object localization without using any bounding box 
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annotations required by many other object detection algorithms. 

Instead, they used Class Activation Mapping (CAM), which 

provides them the highlighted discriminative object part upon 

which the CNN models prediction depends [22]. Jia and Shen 

(2017) applied a CAM-based approach in two-stage with only one 

network. A model is trained with an image in the first stage, and 

then image cropping at the maximum activation map area is 

performed in the input image. The cropped image is fed again to 

re-train the same model and conclude the final result in the second 

stage [23]. Similarly, Charuchinda et al. (2019) used CAM for 

land cover mapping where the high values indicated a high 

probability of the presence of a particular class [24]. There is no 

need for manual labelling with their approach, even though 

getting land cover mapping but with low accuracy. Sun et al. [25] 

proposed a deep learning approach with CAM for fault region 

diagnosis in the image to characterize the status of the machines. 

They can localize the fault in the machine image with the help of 

CAM. The work proposed a novel industrial application for 

automatic machine condition monitoring systems. Jiang et al. [26] 

proposed a Single Shot Detection (SSD) approach to locate an 

object in the image. Post classification, the real-time object 

detection of five types of apple leaf disease localization in images 

is done. The classification step obtained and reported feature 

activation results in different disease spots from the images 

background (leaf area). 

The activation mapping approach was applied in the present 

work at the image classification training step, and then predictions 

are made by the trained model with the activation map obtained 

for the proposed CNN models using Grad-CAM. 

3. METHODOLOGY 

In this paper, we have proposed CNN models with different 

numbers of layers for classification purposes. After model 

training and evaluation based on several parameters, the best 

model out of the proposed models was identified. Finally, this 

model was compared with various pre-trained models such as 

VGG-16, InceptionV3, and MobileNetV2. The results confirmed 

the better performance achieved by the proposed model among all 

the models. The prediction performance is visualized with the 

activation heat maps over the input image, and all the results 

support the prediction results. 

3.1 DATASET PREPARATION 

The dataset for the present work is taken from the PlantVillage 

dataset repository [11]. The dataset contains four classes of apple 

leaf diseases such as Apple Scab, Apple Cedar Rust, Apple Black 

Rot, and healthy leaves. The total number of images, 2536 

images, are taken, and the distribution of images among classes is 

given in Table.1. As the total number of images is insufficient for 

CNN model training and the models may result in overfitting, 

manual augmentation of images to generate new images from the 

available dataset was done. The augmentation process generated 

12 new images of each image using left-right flipping, brightness 

control, random rotation, horizontal flip, and noise addition such 

as gaussian, local var, Poisson, salt, pepper, salt, pepper, and 

speckle noise. Data augmentation, therefore, resulted in 32,968 

images, which were further split into train, validation, and test set 

as 70%, 15%, and 15%, respectively. As the data remained 

imbalanced, the number of images per class varied, class 

imbalance function in Keras package was applied to avoid class-

wise biasing. 

Table.1. Dataset distribution 

Apple Leaf 

Disease Class 

No. of Images 

(original dataset) 

No of Images (after 

augmentation) 

Apple Scab 504 6552 

Apple Cedar Rust 220 2860 

Apple Black Rot 496 6448 

Apple Healthy 1316 17108 

Total 2536 32968 

3.2 CNN BASED MODELS 

3.2.1 Proposed CNN Models: 

The proposed models have 5, 6, and 7 features extracting 

convolutional layers but different classification layers, one model 

having fully connected layers (FC) and other global average 

pooling (GAP) layers. The two architectures with three different 

feature extracting layers result in six different models proposed in 

this study. These models are named based on the number of layers 

and classifiers used. The GAP is a pooling operation designed to 

replace FC layers in classical CNNs models. The network 

generates one feature map at the last convolutional layer for each 

corresponding category of the classification task. The GAP layer 

takes an average of the feature map, and the resulting vector is fed 

directly into the softmax layer for classification probability. As 

there is no parameter to optimize the GAP layer, overfitting is 

avoided at this layer. Furthermore, GAP sums the spatial 

information and is more robust to spatial translations of the input 

image. 

The proposed models are deep learning convolutional neural 

networks; VGG-16 inspires the architecture with few 

modifications in the layers, the modification involves keeping a 

minimum number of layers and hence a reduced number of 

learnable parameters. The proposed model architecture with 

feature extracting and classification layers is shown in Fig.1 and 

Fig.2. Similarly, 6- and 7-layer models were designed containing 

6 and 7 feature extraction layers respectively. Hence these models 

had GAP and FC. 

 

Fig.1. 5 Layer-based proposed CNN model 

The FC layers contain two layers (dense 1 and dense 2) as a 

classifier with two dropouts post flattening after the 5th 

convolutional layer. The fully connected layers are prone to 

overfitting, thus hampering the generalization ability of the 

overall model. The dropout layer [27] acts as a regularizer that 

Feature Extracting Layer 

(Convolutional Neural Network 

Layer) – 5 Layers 

Classification Layer 

(Fully Connected Layer 

or 
Global Average Pooling) 

Softmax Output 
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randomly sets a few of the activations to the fully connected layer 

layers to zero during model training. It improves the 

generalization ability and mainly prevents overfitting problems 

[12]. Max-pooling layers after each convolutional filter reduce the 

feature maps front dimensions, which ensures a limited weight 

and better computational efficiency for the model. 

Model: “Sequential” 

Layer (type) Output Shape Total Parameters 

Conv 1 (224, 224, 64) 1792 

Conv 2 (224, 224, 64) 36928 

Max_pooling 1 (112, 112, 64) 0 

Conv 3 112, 112, 128) 73856 

Max_pooling 2 (56, 56, 128) 0 

Conv 4 (56, 56, 256) 295168 

Max_pooling 3 (28, 28, 256) 0 

Conv 5 (28, 28, 256) 590080 

Max_pooling 4 14, 14, 256) 0 

Flatten (1,50176) 0 

Dense 1 (1, 1024) 51381248 

Dropout 1 (1, 1024) 0 

Dense 2 (1, 1024) 1049600 

Dropout 2 (1, 1024) 0 

Dense 3 (1, 4) 4100 

Total parameters: 53,432,772 

Trainable parameters: 53,432,772 

Non-trainable parameters: 0 

(a) 

Model: “Sequential” 

Layer (type) Output Shape Total Parameters 

Conv 1 (224, 224, 64) 1792 

Conv 2 (224, 224, 64) 36928 

Max_pooling 1 (112, 112, 64) 0 

Conv 3 (112, 112, 128) 73856 

Max_pooling 2 (56, 56, 128) 0 

Conv 4 (56, 56, 256) 295168 

Max_pooling 3 (28, 28, 256) 0 

Conv 5 (28, 28, 256) 590080 

Max_pooling 4 (14, 14, 256) 0 

Global_average_pooling (1, 256) 0 

Dense 1 (1, 4) 1028 

Total parameters: 998,852 

Trainable parameters: 998,852 

Non-trainable parameters: 0 

(b) 

Fig.2. Model architecture (a) 5FC and (b) 5GAP 

The input image size is 224×224×3, and the kernel size is 3×3 

at all layers in all the proposed models. The parameter in each 

type of model is shown in Table.2, indicating the highest 

parameters (53,432,772) for 5FC. The actual apple leaf images in 

the selected dataset are of size 256×256×3, rescaled to model 

input of size 224×224×3 before feeding to the network in each 

model. 

3.2.2 VGG-16 Model: 

VGG-16 is a CNN model that achieved 92.7% top-5 test 

accuracy in ImageNet data of 1000 classes. This model introduced 

by Simonyan and Zisserman [28] is an improvement over 

AlexNet by replacing large kernel-sized filters (11 and 5 in the 

first and second convolutional layer, respectively) with multiple 

3×3 kernel-sized filters one after another.  

Input 

Conv_Block1 - 1 

Conv_Block1 - 2 

Max-Pooling 

Conv_Block2 - 1 

Conv_Block2 - 2 

Max-Pooling 

Conv_Block3 - 1 

Conv_Block3 - 2 

Conv_Block3 – 3 

Max-Pooling 

Conv_Block4 – 1 

Conv_Block4 – 2 

Conv_Block4 – 3 

Max-Pooling 

Conv_Block5 - 1 

Conv_Block5 - 2 

Conv_Block5 - 3 

Max-Pooling 

Dense1 

Dense2 

Dense3 

Softmax 

Fig.3. VGG-16 model 

The input is of fixed size 224×224 RGB image at the top of a 

stack of convolutional (Conv) layers, as shown in Fig.3. A tiny 

receptive field filter of size 3×3 is used in each layer of the 

architecture. In addition, five max-pooling layers are used for 

spatial pooling using a 2×2-pixel window with stride 2. There 

were three fully connected (FC) dense layers at the end of the 

architecture. The first two with 4096 channels each, and the third 

was 1000 for classification for 1000 classes with a softmax layer, 

as shown in Fig.3. 

3.2.3 InceptionV3 Model: 

The Inception deep convolutional architecture was first 

introduced as GoogLeNet in 2014 [13], and afterward, various 

versions of the architecture were developed. Variation includes 

batch normalization [29] named InceptionV3 and later 

factorization [30], referred to as InceptionV3. The idea of 

factorization of convolutions is to reduce the number of 

parameters without decreasing the network efficiency. It is 

achieved by replacing a 5×5 filter (25 parameters) with two 3×3 

filters having 18 parameters (3×3+3×3). It results in a 28% 
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reduction in a parameter named inception module A as shown in 

Fig.4. 

 

 Fig.4. Inception module using factorization 

Improvement in the inception layer, such as factorization into 

asymmetric convolutions, resulted in inception module B, and 

high dimensional representation using inception module C was 

introduced. It ensured less parameter requirement, and 

consequently, the network ability to go deeper. In InceptionV3, 

an auxiliary classifier with batch normalization is used as a 

regularizer. 

3.2.4 MobileNetV2: 

The MobileNet is the first mobile computer vision model to 

be used in mobile applications in which two-step separable 

convolutions (depthwise and pointwise) are used [31]. It 

significantly reduces the number of parameters compared to the 

other network with regular convolutions with the same depth in 

the architecture resulting in lightweight deep neural networks. 

MobileNetV2 [32] module has inverted residual structure 

improvement in the network. Non-linearity in thin layers is 

handled in this version yielding state-of-the-art performances for 

object detection and semantic segmentation. The model feature is 

shown in Fig.5. 

  

            (a)                                        (b) 

Fig.5. MobileNet Models: (a) MobileNetV1 and (b) 

MobileNetV2 

3.3 TRANSFER LEARNING 

The proposed CNN model are trained from scratch on the 

dataset of apple leaf disease. As the deep learning models (VGG-

16, InceptionV3) need extensive computational resources, pre-

trained models on vast collections of datasets such as ImageNet 

were fine-tuned on the dataset with few modifications in the last 

stages of the network. Using this transfer learning approach [33]-

[37] performance of standard models (VGG-16, InceptionV3, and 

MobileNetV2) were compared with the proposed models. 

3.4 GRAD-CAM 

After models training, weights with each model learned, the 

model evaluation is done. Finally, class activation maps using 

Grad-CAM were generated for the proposed model for 

understanding regions of interest of the image upon which models 

ability to predict depends.  

To obtain the class-discriminative localization map defined by 
c

Grad CAML −
∈ ℝu×v where width u and height v for given class c, we 

need to calculate the gradient of the score (yc, before softmax 

layer) for class c feature map activation (Ak) of a convolutional 

layer i.e. cy / k

i jA . The neuron significant weights, c

k obtained 

over the width and height (indexed by i and j respectively) during 

back propagation gradients concerning activations as:   

 
1 c

c

k k
i j ij

y

Z A
 =   (1) 

The alpha c

k  value for class c and feature map k is weighted 

with corresponding feature map and hence calculate a weighted 

sum of feature map as the final Grad-CAM heatmap using 

equation; 

 Re c k

k

k

c
Grad CAM

L LU A
−

 
=  

 
  (2) 

ReLU activation function operation is applied to emphasize 

only the positive values. In this way, a Grad-CAM heatmap of 

size u×v, which is the size of the final feature map, is obtained. As 

the size was smaller than the input image, an up-sampling of this 

heatmap was performed to match the size of the original image 

for final visualization [2]. 

4. RESULTS 

4.1 EXPERIMENTAL SETUP 

A fixed partitioning scheme has been chosen to train and 

evaluate the proposed models model performance and plot 

associated activation curves. The manually augmented apple leaf 

image dataset had 70%, 15%, and 15% training, validation, and 

test splits for all the models. The Windows 10 based Anaconda3 

environment with python3 language was chosen for the 

investigation. The system used had Intel i5, 9th generation 2.4 

GHz, and 8GB RAM, GPU-Nvidia GTX 1050 Ti, 4GB NVRAM 

with CUDA packages. All the proposed models were trained from 

scratch using stochastic gradient descent (SGD) with a learning 

rate of 0.001, momentum of 0.9, batch size 16, and 30 epochs. The 

standard models were trained using the transfer learning 

approach, and in the case of InceptionV3, the RMSprop optimizer 

was used to train the model. Library packages such as NumPy, 

Matplotlib, Sklearn, Keras, Tensorflow, etc., were used to model 

definition, training, evaluation, and plotting model performance. 

The Keras package was used to obtain and plot the activation and 

heat maps within various layers of the CNN model [38]. 

5x5 in 

GoogLeNet 

(InceptionV1) 

3×3 

3×3 

1×1 

3×3 

1×1 

1×1 

Pool 1×1 

Base 

Filter Concatenate 

Conv 1x1, Relu6 

Depth-wise 3×3, 
Stride =S, Relu6 

Input 

Conv 1×1, Linear 

Depth-wise 3×3, 

Stride =2, Relu6 

Conv 1x1, Relu6 

Input 

Stride = 2 Block 

Add 

Conv 1×1, Linear 

Depth-wise 3×3, 
Relu6 

Conv 1×1, Relu6 

Input 

Stride = 1 Block 
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4.2 EXPERIMENTAL RESULTS 

All the models were trained and tested on augmented images, 

and the model evaluation comparison was made in two steps. We 

studied the proposed models (5, 6, and 7 layer-based models with 

fully connected or GAP layers) for the performance analysis in 

the first step. In the second step, the best-identified model was 

compared with standard pre-trained models such as VGG-16, 

InceptionV3, and MobileNetV2 on the same dataset. The 

evaluation parameters, such as accuracies, training time, and test 

time obtained for all the models, are shown in Table.2. It shows 

the 6FC model attaining the highest training and testing accuracy 

(Fig.6) of 99.14% amongst all the proposed models. Although the 

training and testing time of 6FC model is relatively high, 

evaluation on other parameters such as training curve, confusion 

matrices, precision, recall, and F-1 score outperforms all the 

standard architectures considered in this study. An improvement 

of 3.76% accuracy is observed in the 6FC over the pre-trained 

VGG-16 model.  

 

Fig.6. Training curves of all the models: training accuracy vs. 

epoch 

Table.2. Experimental results and comparison for all models 

Model 
Total 

Parameters 

Training  

Time (Hrs.) 

Test 

Accuracy (%) 

Testing 

time (s) 

5FC 53,432,772 2.99 98.94 17.14 

5GAP 998,852 2.47 97.69 16.22 

6FC 30,692,548 3.37 99.14 18.67 

6GAP 3,949,764 3.26 99.02 18.36 

7FC 10,311,108 2.64 98.88 17.75 

7GAP 4,539,844 2.28 98.63 17.75 

VGG-16 41,459,524 3.88 95.38 39.17 

InceptionV3 21,810,980 2.19 94.10 43.45 

MobileNetV2 2,257,984 0.79 92.59 9.49 

Table.3. Confusion matrices, precision, recall, and f1-score of 

the best model and pre-trained models 

 

 

6FC Model 

 Actual Class 

P
re

d
ic

te
d

 

cl
a

ss
 

 

956 0 2 17 

2 931 0 3 

2 0 401 0 

10 1 5 2566 
 

Class Precision Recall F1-Score 

0 0.99 0.98 0.98 

1 1 0.99 1 

2 0.98 1 0.99 

3 0.99 0.99 0.99 
 

VGG-16 Model 

 Actual Class 

P
re

d
ic

te
d

 

cl
a

ss
 

 

852 19 52 52 

1 922 4 9 

0 0 397 6 

26 9 48 2499 
 

Class Precision Recall F1-Score 

0 0.97 0.87 0.92 

1 0.97 0.99 0.98 

2 0.79 0.99 0.88 

3 0.97 0.97 0.97 
 

InceptionV3 Model 

 Actual Class 
P

re
d

ic
te

d
 

cl
a

ss
 

 
822 19 57 77 

1 926 2 7 

1 1 399 2 

60 53 9 2460 
 

Class Precision Recall F1-Score 

0 0.93 0.84 0.88 

1 0.93 0.99 0.96 

2 0.85 0.99 0.92 

3 0.97 0.95 0.96 
 

MobileNetV2 Model 

 Actual Class 

P
re

d
ic

te
d

 

cl
a

ss
 

 

781 40 44 110 

6 905 14 11 

4 6 383 10 

44 66 8 2464 
 

Class Precision Recall F1-Score 

0 0.94 0.8 0.86 

1 0.89 0.97 0.93 

2 0.85 0.95 0.9 

3 0.95 0.95 0.95 
 

Also, the proposed model took 18.67 sec time to process and 

detect class disease in the 4896 total testing images, which is an 

improvement over VGG-16. 

The comparison of 6FC with VGG-16, InceptionV3, and 

MobileNetV2 architectures, in terms of training and validation 

accuracy, is shown in Fig.7. It is evident from the figure that the 

proposed 6FC model is the best in terms of training and testing 

accuracy convergence. The confusion matrix of performance metr 
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-ics of the proposed and the conventional architectures, showing 

the class-wise prediction, are reported in Table.3. The diagonal 

elements show the exactness between the actual class and the 

predicted class. For the 6FC model, the class-wise prediction, 

precision, recall, and F1 score are better than other architectures. 

In addition to the highest test accuracy of 99.14%, precision, 

recall, and F1 score ranges between 0.98 to 1 for all class 

predictions indicating better performance than the other standard 

models. Regarding the time taken to detect class disease, the 6FC 

model took 18.67 seconds than the other models, except 

MobileNetV2, to process 4896 test images. MobileNetV2 was the 

fastest model, which took only 9.49 seconds for the same test 

sample size, but its accuracy was the lowest. 

 

Fig.7. Training and validation accuracy of the 6FC and pre-

trained models 

Receiver Operating Characteristics (ROC) curves are plotted 

in Fig.8 for multi-classification problems using the one vs. all 

techniques in which each label is considered at a time, and all the 

others can be grouped as one label. Class-wise performance of the 

models with micro-averaged ROC curves is visualized. 6FC is 

observed to have the best class separation amongst the models by 

having the largest area under the curve. 

 

Fig.8. Micro-Averaged ROC curves of the 6FC and pre-trained 

models 

To further validate and visualize the results of the 6FC model, 

visualization techniques were used to understand better the 

prediction mechanism of CNN models for a particular class in the 

image. One such technique for image-based CNN visualization is 

Grad-CAM [2]. One test image of each class belonging to apple 

leaf disease and a healthy leaf was fed to the 6FC model, and the 

corresponding heat map generated at each layer is shown in Fig.9. 

Infected regions were highlighted in a leaf image at various 

convolution layers. When the heatmap of the last layer was 

superimposed on the original image, class- wise features of a 

particular class were clearly highlighted at the last layer. Using 

Grad-CAM, we can substantiate that the proposed model focuses 

on learning the features in the image for a particular class with 

adequate accuracy and precision. The regions highlighted at the 

end of the network indicate the region of interest and are specific 

to the class type. This method can also be helpful in object 

detection problems for highlighting diseased regions without the 

need for the annotation of images. 

Original Image 
Layer-wise Heatmap (6FC) Heatmap 

superimposed Conv1            Conv2            Conv3            Conv4             Conv5             Conv6 

Healthy  

   

Black Rot  
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Rust  

   

Scab  

   

Fig.9. 6FC model activation map plot at each layer and the last layer heatmap superimposed on the input image. First column: input 

images, row-wise: corresponding heatmap at each layer in each class, last column: corresponding heatmap of the last layer superimposed 

on the input image 

5. CONCLUSION 

The classification of apple leaf disease is performed with the 

standard VGG-16, InceptionV3, and MobileNetV2 models and 

the proposed models with two variants, i.e., fully connected and 

global average pooling layers. The proposed 6-layer model (6FC) 

with a fully connected layer as a classifying layer performed the 

best in terms of overall accuracy (99.14%), F1 score, precision, 

and ROC. In all performance metrics, the results are better than 

attained in the state-of-the-art standard models. 

Grad-CAM visualization of activation map w.r.t. the class 

over the input image with and without the disease were obtained 

to support the prediction score by the proposed model. The 

activation maps for different classes indicate the region in the 

input image to predict that class quite accurately. The results 

further validate and confirm the accuracy and efficiency of the 

proposed model in identifying and classifying the disease 

correctly. 

REFERENCES 

[1] V. Buhrmester, D. Munch and M. Arens, “Analysis of 

Explainers of Black Box Deep Neural Networks for 

Computer Vision: A Survey”, Proceedings of IEEE 

Conference on Computer Vision and Pattern Recognition, 

pp. 232-239, 2019. 

[2] R.R Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. 

Parikh and D. Batra, “Gradcam: Visual Explanations from 

Deep Networks via Gradient-Based Localization”, 

Proceedings of IEEE Conference on Computer Vision and 

Pattern Recognition, pp. 618-626, 2017. 

[3] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva and A. Torralba, 

“Learning Deep Features for Discriminative Localization”, 

Proceedings of IEEE Conference on Computer Vision and 

Pattern Recognition, pp. 2921-2929, 2016. 

[4] P.J. Kindermans, S. Hooker, J. Adebayo, M. Alber, K.T 

Schutt, S. Dahne, D. Erhan and B. Kim, “The (Un)reliability 

of Saliency Methods”, Proceedings of IEEE Conference on 

Computer Vision and Pattern Recognition, pp. 415-449, 

2017. 

[5] K. Simonyan, A. Vedaldi and A. Zisserman, “Deep Inside 

Convolutional Networks: Visualising Image Classification 

Models and Saliency Maps”, Proceedings of IEEE 

Conference on Computer Vision and Pattern Recognition, 

pp. 2221-2228, 2013. 

[6] J.T. Springenberg, A. Dosovitskiy, T. Brox and M. 

Riedmiller, “Striving for Simplicity: The All Convolutional 

Net”, Proceedings of IEEE Conference on Computer Vision 

and Pattern Recognition, pp. 1189-1197, 2015. 

[7] M.D. Zeiler, and R. Fergus, “Visualizing and Understanding 

Convolutional Networks”, Proceedings of IEEE Conference 

on Computer Vision, pp. 818-833, 2014. 

[8] R.G. Cinbis, J. Verbeek and C. Schmid, “Weakly Supervised 

Object Localization with Multi-Fold Multiple Instance 

Learning”, IEEE Transactions on Pattern Analysis and 

Machine Intelligence, Vol. 39, No. 1, pp. 189-203, 2017. 

[9] M. Oquab, L. Bottou, I. Laptev and J. Sivic, “Learning and 

Transferring Mid-Level Image Representations using 

Convolutional Neural Networks”, Proceedings of IEEE 

Conference on Computer Vision and Pattern Recognition, 

pp. 1717-1724, 2014. 

[10] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Is Object 

Localization for Free? Weakly-Supervised Learning with 

Convolutional Neural Networks”, Proceedings of IEEE 

Conference on Computer Vision and Pattern Recognition, 

pp. 685-694, 2015. 

[11] S.P. Mohanty, D.P. Hughes and M. Salathe, “Using Deep 

Learning for Image-Based Plant Disease Detection”, 

Frontiers in Plant Science, Vol. 7, pp. 1419-1427, 2016. 

[12] A. Krizhevsky, I. Sutskever and G. Hinton, “Imagenet 

Classification with Deep Convolutional Neural Networks”, 

Advances in Neural Information Processing Systems, Vol. 

25, pp. 1106-1114, 2012. 

[13] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. 

Anguelov, D. Erhan, V. Vanhoucke and A. Rabinovich, 

“Going Deeper with Convolutions”, Proceedings of IEEE 

Conference on Computer Vision and Pattern Recognition, 

pp. 1-14, 2014. 

[14] B. Liu, Y. Zhang, D. He and X. Li, “Identification of Apple 

Leaf Diseases Based on Deep Convolutional Neural 

Networks”, Symmetry, Vol. 10, No. 1, pp.1-18, 2017. 

[15] K. He, X. Zhang, S. Ren and J. Sun, “Deep Residual 

Learning for Image Recognition”, Proceedings of IEEE 

Conference on Computer Vision and Pattern Recognition, 

pp. 330-345, 2015. 

[16] K.P. Ferentinos, “Deep Learning Models for Plant Disease 

Detection and Diagnosis”, Computers and Electronics in 

Agriculture, Vol. 145, pp. 311-318. 2018. 

[17] H. Yu and C. Son, “Apple Leaf Disease Identification 

through Region-of-Interest-Aware Deep Convolutional 



ISSN: 0976-9102 (ONLINE)                                                                                       ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, FEBRUARY 2022, VOLUME: 12, ISSUE: 03 

2623 

Neural Network”, Proceedings of IEEE Conference on 

Computer Vision and Pattern Recognition, pp. 1-19, 2019. 

[18] A.I. Khan, S.M.K. Quadri and S. Banday, “Deep Learning 

for Apple Diseases: Classification and Identification”, 

Proceedings of IEEE Conference on Computer Vision and 

Pattern Recognition, pp. 1-13, 2020. 

[19] Y. Guo, J. Zhang, C. Yin, X. Hu, Y. Zou, Z. Xue and W. 

Wang, “Plant Disease Identification Based on Deep 

Learning Algorithm in Smart Farming”, Discrete Dynamics 

in Nature and Society, Vol. 2020, pp. 1-11, 2020.  

[20] X. Chao, G. Sun, H. Zhao, M. Li and D. He, “Identification 

of Apple Tree Leaf Diseases Based on Deep Learning 

Models”, Symmetry, Vol. 12, No. 7, pp. 1-17, 2020. 

[21] J. Liu and X. Wang, “Plant Diseases and Pests Detection 

based on Deep Learning: A Review”, Plant Methods, Vol. 

17, No. 22, pp. 1-18, 2021.  

[22] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva and A. Torralba, 

“Object Detectors Emerge in Deep Scene CNNs”, 

Proceedings of IEEE Conference on Computer Vision and 

Pattern Recognition, pp. 1-12, 2014. 

[23] X. Jia and L. Shen, “Skin Lesion Classification using Class 

Activation Map”, Proceedings of IEEE Conference on 

Computer Vision and Pattern Recognition, pp. 441-448, 

2017. 

[24] P. Charuchinda, T. Kasetkasem, I. Kumazawa and T. 

Chanwimaluang, “On the Use of Class Activation Map for 

Land Cover Mapping”, Proceedings of IEEE International 

Conference on Electrical Engineering Electronics, 

Computer, Telecommunications and Information 

Technology, pp. 653-656, 2019. 

[25] K.H. Sun, H. Huh, B.A. Tama, S.Y. Lee, J.H. Jung and S. 

Lee, “Vision-Based Fault Diagnostics using Explainable 

Deep Learning with Class Activation Maps”, IEEE Access, 

Vol. 8, pp. 129169-129179, 2020. 

[26] P. Jiang, Y. Chen, B. Liu, D. He and C. Liang, “Real-Time 

Detection of Apple Leaf Diseases using Deep Learning 

Approach Based on Improved Convolutional Neural 

Networks”, IEEE Access, Vol. 7, pp. 59069-59080, 2019. 

[27] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever and 

R.R. Salakhutdinov, “Improving Neural Networks by 

Preventing Co-Adaptation of Feature Detectors”, 

Proceedings of IEEE Conference on Computer Vision and 

Pattern Recognition, pp. 666-678, 2012. 

[28] K. Simonyan and A. Zisserman, “Very Deep Convolutional 

Networks for Large-Scale Image Recognition”, Proceedings 

of IEEE Conference on Computer Vision and Pattern 

Recognition, pp. 441-449, 2014. 

[29] S. Ioffe and C. Szegedy, “Batch Normalization: 

Accelerating Deep Network Training by Reducing Internal 

Covariate Shift”, Proceedings of IEEE Conference on 

Computer Vision and Pattern Recognition, pp. 881-889, 

2015. 

[30] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, 

“Rethinking the Inception Architecture for Computer 

Vision”, Proceedings of IEEE Conference on Computer 

Vision and Pattern Recognition, pp. 771-776, 2015. 

[31] A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. 

Wang, T. Weyand, M. Andreetto and H. Adam, 

“MobileNets: Efficient Convolutional Neural Networks for 

Mobile Vision Applications”, Proceedings of IEEE 

Conference on Computer Vision, pp. 1-12, 2017. 

[32] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov and L. 

Chen, “MobileNetV2: Inverted Residuals and Linear 

Bottlenecks”, Proceedings of IEEE Conference on 

Computer Vision and Pattern Recognition, pp. 45-58, 2018. 

[33] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang and C. Liu, “A 

Survey on Deep Transfer Learning”, Proceedings of IEEE 

Conference on Computer Vision and Pattern Recognition, 

pp. 89-98, 2018. K 

[34] . Weiss, T.M. Khoshgoftaar and D. Wang, “A Survey of 

Transfer Learning”, Journal of Big Data, Vol. 3, No. 9, pp. 

1-13, 2016.  

[35] Y. Nagaraju, Venkatesh, S. Swetha and S. Stalin, “Apple 

and Grape Leaf Diseases Classification using Transfer 

Learning via Fine-tuned Classifier”, Proceedings of IEEE 

International Conference on Machine Learning and Applied 

Network Technologies, pp. 1-6, 2020. 

[36] N.K. Hebbar and A.S. Kunte, “Transfer Learning Approach 

for Splicing and Copy-Move Image Tampering Detection”, 

ICTACT Journal on Image and Video Processing, Vol. 11, 

No. 4, pp. 2447-2452, 2021. 

[37] V.C. Burkapalli and P.C. Patil, “Transfer Learning: 

Inception-V3 Based Custom Classification Approach for 

Food Images”, ICTACT Journal on Image and Video 

Processing, Vol. 11, No. 1, pp. 2261-2267, 2020. 

[38] Keras.io, “Grad-CAM Class Activation Visualization, Code 

Example by Fchollet”. Available at: 

https://keras.io/examples/vision/grad_cam/#lets-try-

another-image, Accessed at 2020.

 

 


