# AN IMPROVED CNN MODEL FOR CLASSIFICATION OF APPLE LEAF DISEASE AND VISUALIZATION USING WEIGHTED GRADIENT CLASS ACTIVATION MAP

#### Dharmendra Kumar Mahato<sup>1</sup>, Amit Pundir<sup>2</sup> and Geetika Jain Saxena<sup>3</sup>

<sup>1</sup>Department of Electronic Science, Babasaheb Bhimrao Ambedkar Bihar University, India <sup>2,3</sup>Department of Electronics, Maharaja Agrasen College, India

#### Abstract

Convolutional Neural Network (CNN), a particular type of forwarding feed network composed of convolutional, pooling, and fully connected layers, has become the dominant and most widely used deep learning architecture. Significantly enhanced effectiveness of ConvNets has made CNNs the go-to architecture model for almost every image processing-based application. CNNs automatically and adaptively learn spatial hierarchies of features with high accuracy, precision, and efficiency. This paper proposes three CNN models with 5, 6, and 7 layers with two types of classification layers at the top of the model, resulting in six kinds of models. Each model is trained on apple leaf diseases obtained with augmentation deployed on the PlantVillage dataset containing images of healthy and three types of leaf diseases. The trained models are compared on training time, testing accuracy, testing time. The best performing model (6-layer based model with fully connected layer as a classifier (6FC) in our case) yields 99.14% accuracy. This best-performing model is also compared with the stateof-art models such as VGG-16, InceptionV3, and MobileNetV2, trained using the transfer learning approach. After model comparison, we found our best model (6FC) outperformed the other models based on evaluated performance metrics with improvements as 3.94% gain in accuracy, 25.97% reduced parameters, and less training time (0.51hr) and testing time (20.5 sec) compared to VGG-16. Comparing precision, recall, and f1-score values are also found high (between 0.98 to 1) with our proposed model. The weighted gradient class activation map (Grad-CAM) technique generates a visualization of class predictions on the test dataset. The Grad-Cam visualization of results validates the prediction score attained by the proposed model.

#### Keywords:

Convolutional Neural Network, Grad-CAM, Deep Learning, Data Augmentation, Transfer Learning

## **1. INTRODUCTION**

In recent years a surge of deep learning models in the field of computer vision is being witnessed, considerably due to their significant capabilities, accuracies, and other improved performance parameters in a variety of visual processing and understanding applications such as object detection and recognition, human activity recognition, image segmentation, and activity classification. The deep learning approaches explore the unknown structures in the input data and discover with high confidence good representations, often at multiple levels. These methods learn pattern hierarchies in which higher-level features are described in terms of the composition of lower-level features. One of the core research areas in image processing-based learning is artificial neural networks, i.e., convolutional neural networks (CNN).

With CNN in deep learning, it can analyze large dataset sizes to conclude based on the patterns (features) learned. Thus, everything is done without any human intervention while learning features from images. Mainly it is used for two purposes: 1. Object detection in the image (presence or absence of object) and 2. Localization of objects detected in the image. Earlier, these were done with the help of hand-crafted feature extraction with pattern recognition algorithms, but now these tasks are done readily with various proposed models based on CNNs. Multiple factors affect deep learning methods, but a large amount of required data is a must; otherwise, overfitting (responsible for low performance) is the biggest issue. However, the data augmentation technique when data size is small can handle this.

However, even with an impressive performance in image classification tasks, it is not easy to interpret the CNN model decisions. In this way, we can assume neural networks as black boxes [1]. To understand these model predictions, we need to dive into the field of explainable CNN. There are various methods [2]-[6] that help us to understand the insight into the decision making of such CNN models. These methods are a visual interpretation of model predictions. The oldest and frequently used method, called saliency map, is used for model interpretation in deep learning. The saliency map of an input image provided to the network specifies parts or regions of the image. It contributes most to the activity of a specific layer in the network or as a whole network decision. There are mainly three approaches to get the saliency map of an input image. The first approach is using deconvolutional networks [7]. In this method, a deconvolutional network is used that reconstructs the input from the activation of that layer. Along with deconvolution (transformed version of convolutional filter) operation, un-pooling (inverse of pooling) and ReLU (inverse of itself) are used. Although pooling operation is non-invertible, a module called switch is used in the deconvolutional network to recover maxima positions in the forward pass. The second method [5] is the most straightforward approach of getting a saliency map. In this method, the backpropagation algorithm computes the gradients of logits w.r.t. to the networks input. In addition, this backpropagation method can highlight pixels of the input image based on the gradient they receive, which shows their contribution to the final score. The author of the paper [6] combined these approaches and proposed the third method called a guided backpropagation algorithm. Although saliency maps are used to interpret CNNs, a couple of papers have shown that saliency maps are not always reliable [4]. B. Zhou et al. (2016) introduced another approach, class activation map (CAM), which explains CNNs [3]. The papers authors replaced the stack of fully connected layers at the end of the CNN model with a layer named Global Average Pooling (GAP). GAP averages the activations of each feature map along with depth and concatenates these averaged values. It results in output as a vector which is fed to the final softmax loss layer. Using this architecture, we can highlight the critical regions of the image by projecting back the weights of the output on the convolutional feature maps using heatmap visualization. A more versatile version of CAM is Grad-CAM method by Selvaraju et al. [2], producing visual explanations for any arbitrary CNN, even if the network contains fully connected layers as a classification layer. The approach to obtain Grad-CAM of an image is quite a similar approach as for obtaining saliency maps. In this method, the gradients of any target concept score (logits for any class of interest such as cat or dog) flow into the final convolutional layer. Then the importance score based on the gradients is computed, and a coarse localization map highlighting the critical regions in the image is produced for predicting that concept.

This paper proposes using the CNN model to classify plant disease associated with apple leaves. The features learned from the image of the apple leaf are used for enhanced classification accuracy. We propose three models for feature learning (by varying depth of model) and two types of layers: fully connected (FC) dense layer and GAP layer. A total of six architectures models results for feature learning and classification tasks. Performance evaluation of all the proposed models is done based on overall accuracy, confusion matrix, and ROC curves. The bestproposed model is compared with state-of-art models such as VGG-16, InceptionV3 and MobileNetV2, trained, tested, and evaluated on the same dataset. The proposed model was found to be performing better than the three standard models on the selected dataset. The visualization of the classification process in the proposed CNN model is done by generating the heat map using the Grad-CAM technique. These activation maps highlight the regions and provide visualization of the area in the leaf image having a class of disease based on features learned. These regions are similar to the actual visual characteristic in the leaf of a particular disease and help in the evaluation of weakly supervised object localization as proposed in the papers [8]-[10].

The paper is organized as follows: Section 2 deals with literature survey reporting related work. Then, in section 3, the methodology of network architecture design and Grad-CAM visualization technique is presented. In section 4, the experimental results of the training, testing, and validation of the models are given. Finally, in section 5, the papers conclusion detailing the results establishes the proposed model as the best-performing model for the selected dataset.

# 2. RELATED WORK

As per the literature survey, CNN based model is the most used method for image-based learning among various deep learning architectures. This is because it can analyze highdimensional, unstructured data such as image, text, and audio. However, classical Machine Learning (ML) is challenging to handle, i.e., non-deep-learning or hand-crafted (non-ML) algorithms.

Much research is going into plant/crop disease detection using deep learning convolutional neural networks (DLCNN). The work mainly detects diseases using images of leaves in various conditions (laboratory and actual field of plant/crop). Mohanty et al. [11] analyses two CNN-based models (AlexNet [12] and GoogLeNet [13]) on the ability to detect 26 diseases, 14 crop species, 38 class labels in a dataset of 54,306 images. Three types of images (Color, Grayscale, Leaf Segmented), two approaches (transfer and training from scratch), and various train-validate data split ratio options were adopted while training these models. With this approach, they achieved the best accuracy of 99.35% using GoogLeNet transfer learning with color images. Liu et al. (2017) proposed a CNN model to identify the four common types of apple leaf diseases with a dataset containing 13,689 images [14]. Their experimental results show model achieving an overall accuracy of 97.62%. Compared with other standard models such as AlexNet, GoogLeNet, ResNet-20 [15], and VGG-16, their model achieved better accuracy with reduced parameter requirements. In a paper [16], five standard CNN models are presented for plant disease detection and diagnosis using deep learning methodologies. Models were trained on a database of 87,848 images containing 25 different plants in a set of 58 distinct classes. The best performance of 99.53% success rate using the VGG model was achieved. However, the total training time for that model, on a single GPU was about 5.5 days. In another paper [17], a method based on region-of-interest-aware (ROI) deep convolutional neural networks (DCNN) is proposed to recognize apple leaf diseases on a dataset containing three classes of apple leaf with two diseases and one healthy class. The proposed ROIaware DCNN architecture consists of two subnetworks, i.e., ROI subnetwork and VGG-subnetwork. One predicts the ROI feature map for dividing the input images into the background, leaf area, and spot area, and the second (VGG-subnetwork) classifies the leaf diseases. The ROI-aware DCNN achieved better recognition accuracy (84.3%) than state-of-the-art methods such as the multiscale-based deep feature extraction and pooling (MDFEP) method, fisher vector encoding (FVE) with scale-invariant feature transform (SIFT), and DCNN-based bilinear model. In a paper [18], apple disease dataset of 8400 leaf images of five infected and healthy. Using 70% and 30% train validation split on a prepared dataset with a modification and training on a deep learning model named ResNet-34 achieved 97.18 % accuracy for automatic classification of apple diseases. Y. Guo et al. (2020) proposed a mathematical model of plant disease detection and recognition using a deep learning approach [19]. A region proposal network (RPN) with Chan-Vese (CV) algorithm was proposed to recognize and localize the leaves in the complex background. The segmented leaves were fed into the transfer learning model and trained by the dataset of diseased leaves with a simple background. Total 4714 images of four classes, including one healthy and three disease classes, were used for the experiment. The accuracy achieved was 83.57% compared to the traditional ResNet-101 model (42.5%). A DCNN based early diagnosis method for apple tree leaf diseases was proposed by X. Chao et al. [20]. They have used a dataset of five common diseases and healthy leaves, which contain images in both laboratories and cultivation field conditions. The DCNN model proposed is a combination of DenseNet and Xception, using global average pooling. They extracted features by the proposed DCNN model then used a support vector machine to classify the apple leaf diseases and achieved an overall accuracy of 98.82%, which is higher than some standard models.

Traditional and deep learning approaches and challenges are discussed to solve plant disease and pest disease problems in a paper by Liu & Wang (2021) [21]. Even with excellent performance, it is not easy to analyze the reason behind their work. Several approaches for understanding and visualizing CNN have been developed in the literature. The reported works suggested methods with which one can understand the outcomes from the CNN model. B. Zhou et al. (2014) suggested work to perform object localization without using any bounding box annotations required by many other object detection algorithms. Instead, they used Class Activation Mapping (CAM), which provides them the highlighted discriminative object part upon which the CNN models prediction depends [22]. Jia and Shen (2017) applied a CAM-based approach in two-stage with only one network. A model is trained with an image in the first stage, and then image cropping at the maximum activation map area is performed in the input image. The cropped image is fed again to re-train the same model and conclude the final result in the second stage [23]. Similarly, Charuchinda et al. (2019) used CAM for land cover mapping where the high values indicated a high probability of the presence of a particular class [24]. There is no need for manual labelling with their approach, even though getting land cover mapping but with low accuracy. Sun et al. [25] proposed a deep learning approach with CAM for fault region diagnosis in the image to characterize the status of the machines. They can localize the fault in the machine image with the help of CAM. The work proposed a novel industrial application for automatic machine condition monitoring systems. Jiang et al. [26] proposed a Single Shot Detection (SSD) approach to locate an object in the image. Post classification, the real-time object detection of five types of apple leaf disease localization in images is done. The classification step obtained and reported feature activation results in different disease spots from the images background (leaf area).

The activation mapping approach was applied in the present work at the image classification training step, and then predictions are made by the trained model with the activation map obtained for the proposed CNN models using Grad-CAM.

## **3. METHODOLOGY**

In this paper, we have proposed CNN models with different numbers of layers for classification purposes. After model training and evaluation based on several parameters, the best model out of the proposed models was identified. Finally, this model was compared with various pre-trained models such as VGG-16, InceptionV3, and MobileNetV2. The results confirmed the better performance achieved by the proposed model among all the models. The prediction performance is visualized with the activation heat maps over the input image, and all the results support the prediction results.

## **3.1 DATASET PREPARATION**

The dataset for the present work is taken from the PlantVillage dataset repository [11]. The dataset contains four classes of apple leaf diseases such as Apple Scab, Apple Cedar Rust, Apple Black Rot, and healthy leaves. The total number of images, 2536 images, are taken, and the distribution of images among classes is given in Table.1. As the total number of images is insufficient for CNN model training and the models may result in overfitting, manual augmentation of image to generate new images from the available dataset was done. The augmentation process generated 12 new images of each image using left-right flipping, brightness control, random rotation, horizontal flip, and noise addition such as gaussian, local var, Poisson, salt, pepper, salt, pepper, and speckle noise. Data augmentation, therefore, resulted in 32,968 images, which were further split into train, validation, and test set as 70%, 15%, and 15%, respectively. As the data remained

imbalanced, the number of images per class varied, class imbalance function in Keras package was applied to avoid classwise biasing.

| Table.1. | Dataset | distribution |
|----------|---------|--------------|
|----------|---------|--------------|

| Apple Leaf<br>Disease Class | No. of Images<br>(original dataset) | No of Images (after augmentation) |
|-----------------------------|-------------------------------------|-----------------------------------|
| Apple Scab                  | 504                                 | 6552                              |
| Apple Cedar Rust            | 220                                 | 2860                              |
| Apple Black Rot             | 496                                 | 6448                              |
| Apple Healthy               | 1316                                | 17108                             |
| Total                       | 2536                                | 32968                             |

### 3.2 CNN BASED MODELS

#### 3.2.1 Proposed CNN Models:

The proposed models have 5, 6, and 7 features extracting convolutional layers but different classification layers, one model having fully connected layers (FC) and other global average pooling (GAP) layers. The two architectures with three different feature extracting layers result in six different models proposed in this study. These models are named based on the number of layers and classifiers used. The GAP is a pooling operation designed to replace FC layers in classical CNNs models. The network generates one feature map at the last convolutional layer for each corresponding category of the classification task. The GAP layer takes an average of the feature map, and the resulting vector is fed directly into the softmax layer for classification probability. As there is no parameter to optimize the GAP layer, overfitting is avoided at this layer. Furthermore, GAP sums the spatial information and is more robust to spatial translations of the input image.

The proposed models are deep learning convolutional neural networks; VGG-16 inspires the architecture with few modifications in the layers, the modification involves keeping a minimum number of layers and hence a reduced number of learnable parameters. The proposed model architecture with feature extracting and classification layers is shown in Fig.1 and Fig.2. Similarly, 6- and 7-layer models were designed containing 6 and 7 feature extraction layers respectively. Hence these models had GAP and FC.



Fig.1. 5 Layer-based proposed CNN model

The FC layers contain two layers (dense 1 and dense 2) as a classifier with two dropouts post flattening after the 5th convolutional layer. The fully connected layers are prone to overfitting, thus hampering the generalization ability of the overall model. The dropout layer [27] acts as a regularizer that

randomly sets a few of the activations to the fully connected layer layers to zero during model training. It improves the generalization ability and mainly prevents overfitting problems [12]. Max-pooling layers after each convolutional filter reduce the feature maps front dimensions, which ensures a limited weight and better computational efficiency for the model.

|                                                                  | Model: "Sequentia | al"                     |
|------------------------------------------------------------------|-------------------|-------------------------|
| Layer (type)                                                     | Output Shape      | <b>Total Parameters</b> |
| Conv 1                                                           | (224, 224, 64)    | 1792                    |
| Conv 2                                                           | (224, 224, 64)    | 36928                   |
| Max_pooling 1                                                    | (112, 112, 64)    | 0                       |
| Conv 3                                                           | 112, 112, 128)    | 73856                   |
| Max_pooling 2                                                    | (56, 56, 128)     | 0                       |
| Conv 4                                                           | (56, 56, 256)     | 295168                  |
| Max_pooling 3                                                    | (28, 28, 256)     | 0                       |
| Conv 5                                                           | (28, 28, 256)     | 590080                  |
| Max_pooling 4                                                    | 14, 14, 256)      | 0                       |
| Flatten                                                          | (1,50176)         | 0                       |
| Dense 1                                                          | (1, 1024)         | 51381248                |
| Dropout 1                                                        | (1, 1024)         | 0                       |
| Dense 2                                                          | (1, 1024)         | 1049600                 |
| Dropout 2                                                        | (1, 1024)         | 0                       |
| Dense 3                                                          | (1, 4)            | 4100                    |
| Total parameters: 5<br>Trainable paramete<br>Non-trainable parar | rs: 53,432,772    |                         |

| M                                                                                       | odel: "Sequential"  |                         |
|-----------------------------------------------------------------------------------------|---------------------|-------------------------|
| Layer (type)                                                                            | <b>Output Shape</b> | <b>Total Parameters</b> |
| Conv 1                                                                                  | (224, 224, 64)      | 1792                    |
| Conv 2                                                                                  | (224, 224, 64)      | 36928                   |
| Max_pooling 1                                                                           | (112, 112, 64)      | 0                       |
| Conv 3                                                                                  | (112, 112, 128)     | 73856                   |
| Max_pooling 2                                                                           | (56, 56, 128)       | 0                       |
| Conv 4                                                                                  | (56, 56, 256)       | 295168                  |
| Max_pooling 3                                                                           | (28, 28, 256)       | 0                       |
| Conv 5                                                                                  | (28, 28, 256)       | 590080                  |
| Max_pooling 4                                                                           | (14, 14, 256)       | 0                       |
| Global_average_pooling                                                                  | (1, 256)            | 0                       |
| Dense 1                                                                                 | (1, 4)              | 1028                    |
| Total parameters: 998,852<br>Trainable parameters: 998,8<br>Non-trainable parameters: ( |                     |                         |

(a)

#### (b)

Fig.2. Model architecture (a) 5FC and (b) 5GAP

The input image size is  $224 \times 224 \times 3$ , and the kernel size is  $3 \times 3$  at all layers in all the proposed models. The parameter in each type of model is shown in Table.2, indicating the highest parameters (53,432,772) for 5FC. The actual apple leaf images in the selected dataset are of size  $256 \times 256 \times 3$ , rescaled to model input of size  $224 \times 224 \times 3$  before feeding to the network in each model.

### 3.2.2 VGG-16 Model:

VGG-16 is a CNN model that achieved 92.7% top-5 test accuracy in ImageNet data of 1000 classes. This model introduced by Simonyan and Zisserman [28] is an improvement over AlexNet by replacing large kernel-sized filters (11 and 5 in the first and second convolutional layer, respectively) with multiple  $3\times3$  kernel-sized filters one after another.

| Input           |
|-----------------|
| Conv_Block1 - 1 |
| Conv_Block1 - 2 |
| Max-Pooling     |
| Conv_Block2 - 1 |
| Conv_Block2 - 2 |
| Max-Pooling     |
| Conv_Block3 - 1 |
| Conv_Block3 - 2 |
| Conv_Block3-3   |
| Max-Pooling     |
| Conv_Block4 - 1 |
| Conv_Block4 - 2 |
| Conv_Block4-3   |
| Max-Pooling     |
| Conv_Block5 - 1 |
| Conv_Block5 - 2 |
| Conv_Block5 - 3 |
| Max-Pooling     |
| Dense1          |
| Dense2          |
| Dense3          |
| Softmax         |

Fig.3. VGG-16 model

The input is of fixed size  $224 \times 224$  RGB image at the top of a stack of convolutional (Conv) layers, as shown in Fig.3. A tiny receptive field filter of size  $3 \times 3$  is used in each layer of the architecture. In addition, five max-pooling layers are used for spatial pooling using a  $2 \times 2$ -pixel window with stride 2. There were three fully connected (FC) dense layers at the end of the architecture. The first two with 4096 channels each, and the third was 1000 for classification for 1000 classes with a softmax layer, as shown in Fig.3.

## 3.2.3 InceptionV3 Model:

The Inception deep convolutional architecture was first introduced as GoogLeNet in 2014 [13], and afterward, various versions of the architecture were developed. Variation includes batch normalization [29] named InceptionV3 and later factorization [30], referred to as InceptionV3. The idea of factorization of convolutions is to reduce the number of parameters without decreasing the network efficiency. It is achieved by replacing a  $5\times5$  filter (25 parameters) with two  $3\times3$ filters having 18 parameters ( $3\times3+3\times3$ ). It results in a 28% reduction in a parameter named inception module A as shown in Fig.4.



Fig.4. Inception module using factorization

Improvement in the inception layer, such as factorization into asymmetric convolutions, resulted in inception module B, and high dimensional representation using inception module C was introduced. It ensured less parameter requirement, and consequently, the network ability to go deeper. In InceptionV3, an auxiliary classifier with batch normalization is used as a regularizer.

### 3.2.4 MobileNetV2:

The MobileNet is the first mobile computer vision model to be used in mobile applications in which two-step separable convolutions (depthwise and pointwise) are used [31]. It significantly reduces the number of parameters compared to the other network with regular convolutions with the same depth in the architecture resulting in lightweight deep neural networks. MobileNetV2 [32] module has inverted residual structure improvement in the network. Non-linearity in thin layers is handled in this version yielding state-of-the-art performances for object detection and semantic segmentation. The model feature is shown in Fig.5.



Fig.5. MobileNet Models: (a) MobileNetV1 and (b) MobileNetV2

# 3.3 TRANSFER LEARNING

The proposed CNN model are trained from scratch on the dataset of apple leaf disease. As the deep learning models (VGG-16, InceptionV3) need extensive computational resources, pre-trained models on vast collections of datasets such as ImageNet

were fine-tuned on the dataset with few modifications in the last stages of the network. Using this transfer learning approach [33]-[37] performance of standard models (VGG-16, InceptionV3, and MobileNetV2) were compared with the proposed models.

#### 3.4 GRAD-CAM

After models training, weights with each model learned, the model evaluation is done. Finally, class activation maps using Grad-CAM were generated for the proposed model for understanding regions of interest of the image upon which models ability to predict depends.

To obtain the class-discriminative localization map defined by  $L_{Grad-CAM}^{c} \in \mathbb{R}^{u \times v}$  where width *u* and height *v* for given class *c*, we need to calculate the gradient of the score (y<sub>c</sub>, before softmax layer) for class *c* feature map activation ( $A^{k}$ ) of a convolutional layer i.e.  $\partial y^{c} / \partial A_{ij}^{k}$ . The neuron significant weights,  $\alpha_{k}^{c}$  obtained over the width and height (indexed by *i* and *j* respectively) during back propagation gradients concerning activations as:

$$\alpha_k^c = \frac{1}{Z} \sum_i \sum_j \frac{y^c}{A_{ij}^k} \tag{1}$$

The alpha  $\alpha_k^c$  value for class *c* and feature map *k* is weighted with corresponding feature map and hence calculate a weighted sum of feature map as the final Grad-CAM heatmap using equation;

$$L_{Grad-CAM}^{c} = \operatorname{Re}LU\left(\sum_{k}\alpha_{k}^{c}A^{k}\right)$$
(2)

ReLU activation function operation is applied to emphasize only the positive values. In this way, a Grad-CAM heatmap of size  $u \times v$ , which is the size of the final feature map, is obtained. As the size was smaller than the input image, an up-sampling of this heatmap was performed to match the size of the original image for final visualization [2].

## 4. RESULTS

## 4.1 EXPERIMENTAL SETUP

A fixed partitioning scheme has been chosen to train and evaluate the proposed models model performance and plot associated activation curves. The manually augmented apple leaf image dataset had 70%, 15%, and 15% training, validation, and test splits for all the models. The Windows 10 based Anaconda3 environment with python3 language was chosen for the investigation. The system used had Intel i5, 9th generation 2.4 GHz, and 8GB RAM, GPU-Nvidia GTX 1050 Ti, 4GB NVRAM with CUDA packages. All the proposed models were trained from scratch using stochastic gradient descent (SGD) with a learning rate of 0.001, momentum of 0.9, batch size 16, and 30 epochs. The standard models were trained using the transfer learning approach, and in the case of InceptionV3, the RMSprop optimizer was used to train the model. Library packages such as NumPy, Matplotlib, Sklearn, Keras, Tensorflow, etc., were used to model definition, training, evaluation, and plotting model performance. The Keras package was used to obtain and plot the activation and heat maps within various layers of the CNN model [38].

DHARMENDRA KUMAR MAHATO et al.: AN IMPROVED CNN MODEL FOR CLASSIFICATION OF APPLE LEAF DISEASE AND VISUALIZATION USING WEIGHTED GRADIENT CLASS ACTIVATION MAP

#### 4.2 EXPERIMENTAL RESULTS

All the models were trained and tested on augmented images, and the model evaluation comparison was made in two steps. We studied the proposed models (5, 6, and 7 layer-based models with fully connected or GAP layers) for the performance analysis in the first step. In the second step, the best-identified model was compared with standard pre-trained models such as VGG-16, InceptionV3, and MobileNetV2 on the same dataset. The evaluation parameters, such as accuracies, training time, and test time obtained for all the models, are shown in Table.2. It shows the 6FC model attaining the highest training and testing accuracy (Fig.6) of 99.14% amongst all the proposed models. Although the training and testing time of 6FC model is relatively high, evaluation on other parameters such as training curve, confusion matrices, precision, recall, and F-1 score outperforms all the standard architectures considered in this study. An improvement of 3.76% accuracy is observed in the 6FC over the pre-trained VGG-16 model.



Fig.6. Training curves of all the models: training accuracy vs. epoch

| Model       | Total<br>Parameters | Training<br>Time (Hrs.) | Test<br>Accuracy (%) | Testing<br>time (s) |
|-------------|---------------------|-------------------------|----------------------|---------------------|
| 5FC         | 53,432,772          | 2.99                    | 98.94                | 17.14               |
| 5GAP        | 998,852             | 2.47                    | 97.69                | 16.22               |
| 6FC         | 30,692,548          | 3.37                    | 99.14                | 18.67               |
| 6GAP        | 3,949,764           | 3.26                    | 99.02                | 18.36               |
| 7FC         | 10,311,108          | 2.64                    | 98.88                | 17.75               |
| 7GAP        | 4,539,844           | 2.28                    | 98.63                | 17.75               |
| VGG-16      | 41,459,524          | 3.88                    | 95.38                | 39.17               |
| InceptionV3 | 21,810,980          | 2.19                    | 94.10                | 43.45               |
| MobileNetV2 | 2,257,984           | 0.79                    | 92.59                | 9.49                |

| Table.2. Experimental results and comparison for all models |
|-------------------------------------------------------------|
|-------------------------------------------------------------|

|                                                                                                                                           | (                                                                                                                            |                                                                                                                                                          | Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                  |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                           |                                                                                                                              | A                                                                                                                                                        | ctual C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lass                                                                                                                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ed                                                                                                                                        | 956                                                                                                                          | 0                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17                                                                                                                                                                               | 1                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Predicte<br>class                                                                                                                         | 2                                                                                                                            | 931                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| red<br>clı                                                                                                                                | 2                                                                                                                            | 0                                                                                                                                                        | 401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| I                                                                                                                                         | 10                                                                                                                           | 1                                                                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 256                                                                                                                                                                              | 66                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Class                                                                                                                                     | Precis                                                                                                                       | ion                                                                                                                                                      | Recall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>F</b> 1                                                                                                                                                                       | l-Se                                                                     | core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0                                                                                                                                         | 0.99                                                                                                                         | )                                                                                                                                                        | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                  | 0.9                                                                      | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1                                                                                                                                         | 1                                                                                                                            |                                                                                                                                                          | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                  | 1                                                                        | Į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2                                                                                                                                         | 0.98                                                                                                                         | 3                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  | 0.9                                                                      | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3                                                                                                                                         | 0.99                                                                                                                         | •                                                                                                                                                        | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                  | 0.9                                                                      | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                           | V                                                                                                                            |                                                                                                                                                          | l6 Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                  |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                           | 0.50                                                                                                                         |                                                                                                                                                          | <u>ctual C</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                  |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>Predicted</b><br>class                                                                                                                 | 852                                                                                                                          | 19                                                                                                                                                       | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52                                                                                                                                                                               | 2                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| dici<br>lass                                                                                                                              | 1                                                                                                                            | 922                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| reı<br>cl                                                                                                                                 | 0                                                                                                                            | 0                                                                                                                                                        | 397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                                                                                                                                                                |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                           | 26                                                                                                                           | 9                                                                                                                                                        | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 249                                                                                                                                                                              | _                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Class                                                                                                                                     | Precis                                                                                                                       |                                                                                                                                                          | Recall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F                                                                                                                                                                                |                                                                          | core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0                                                                                                                                         | 0.97                                                                                                                         |                                                                                                                                                          | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                | 0.9                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1 1                                                                                                                                       | 0.97                                                                                                                         | 7                                                                                                                                                        | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                  | 0.9                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1                                                                                                                                         |                                                                                                                              |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                  | 0.88                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2                                                                                                                                         | 0.79                                                                                                                         |                                                                                                                                                          | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                  | 0.8                                                                      | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                           | 0.79<br>0.97                                                                                                                 | 7                                                                                                                                                        | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                  | 0.8                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2                                                                                                                                         | 0.79<br>0.97                                                                                                                 | 7<br>ptior                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                  |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2<br>3                                                                                                                                    | 0.79<br>0.97                                                                                                                 | 7<br>ptior                                                                                                                                               | 0.97<br>1 <b>V3 M</b> o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                  | 0.9                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2<br>3                                                                                                                                    | 0.79<br>0.97<br><b>Ince</b>                                                                                                  | 7<br>ption<br>A                                                                                                                                          | 0.97<br>nV3 Mo<br><i>ctual C</i><br>57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lass                                                                                                                                                                             | 0.9                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2<br>3                                                                                                                                    | 0.79<br>0.97<br>Ince<br>822                                                                                                  | 7<br><b>ption</b><br><i>A</i><br>19                                                                                                                      | 0.97<br>nV3 Mo<br><i>ctual C</i><br>57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>lass</b><br>77                                                                                                                                                                | 0.9                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2                                                                                                                                         | 0.79<br>0.97<br><b>Ince</b><br>822<br>1                                                                                      | 7<br><b>ption</b><br><i>A</i><br>19<br>926                                                                                                               | 0.97<br><b>nV3 Mo</b><br><i>ctual C</i><br>57<br>5 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>lass</b><br>77<br>7                                                                                                                                                           | 0.9                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2<br>3                                                                                                                                    | 0.79<br>0.97<br><b>Ince</b><br>822<br>1<br>1                                                                                 | 7<br><b>ption</b><br><b>A</b><br>19<br>926<br>1<br>53                                                                                                    | 0.97<br><b>iV3 Mo</b><br><i>ctual C</i><br>57<br>5 2<br>399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lass<br>77<br>7<br>2<br>246                                                                                                                                                      | 0.9                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Predicted 2                                                                                                                               | 0.79<br>0.97<br><b>Ince</b><br>822<br>1<br>1<br>60                                                                           | 7<br><b>ption</b><br><b>A</b><br>19<br>926<br>1<br>53<br><b>ion</b>                                                                                      | 0.97<br><b>1V3 Mo</b><br><i>ctual C</i><br>57<br>5 2<br>399<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lass<br>77<br>7<br>2<br>246                                                                                                                                                      | 0.9                                                                      | 97<br>core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2<br>3<br>class                                                                                                                           | 0.79<br>0.97<br><b>Ince</b><br>822<br>1<br>1<br>60<br><b>Precis</b>                                                          | 7<br><b>ption</b><br><b>A</b><br>19<br>926<br>1<br>53<br><b>ion</b><br>3                                                                                 | 0.97<br><b>iV3 Mo</b><br><i>ctual C</i><br>57<br>5 2<br>399<br>9<br><b>Recall</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lass<br>77<br>7<br>2<br>246                                                                                                                                                      | 0.9                                                                      | 97<br>core<br>88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2<br>3<br><i>Ledicted</i><br>Class<br>0                                                                                                   | 0.79<br>0.97<br><b>Ince</b><br>822<br>1<br>1<br>60<br><b>Precis</b><br>0.93                                                  | 7<br><b>ption</b><br>19<br>926<br>1<br>53<br><b>ion</b><br>3<br>3                                                                                        | 0.97<br><b>iV3 Mo</b><br><i>ctual C</i><br>57<br>2<br>399<br>9<br><b>Recall</b><br>0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lass<br>77<br>7<br>2<br>246                                                                                                                                                      | 0.9                                                                      | 97<br><b>core</b><br>88<br>96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2<br>3<br><i>Ledicted</i><br>Class<br>0<br>1                                                                                              | 0.79<br>0.97<br><b>Ince</b><br>822<br>1<br>1<br>60<br><b>Precis</b><br>0.93                                                  | 7<br><b>ption</b><br>19<br>926<br>1<br>53<br><b>ion</b><br>3<br>5<br>5                                                                                   | 0.97<br><b>iV3 Mo</b><br><i>ctual C</i><br>57<br>2<br>399<br>9<br><b>Recall</b><br>0.84<br>0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lass<br>77<br>7<br>2<br>246                                                                                                                                                      | 0.9<br>50<br>1-S<br>0.9                                                  | 97<br><b>core</b><br>88<br>96<br>92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2<br>3<br><b>Ledicted</b><br>Class<br>0<br>1<br>2                                                                                         | 0.79<br>0.97<br>Ince<br>822<br>1<br>1<br>60<br>Precis<br>0.93<br>0.93<br>0.93                                                | 7<br><b>ption</b><br>19<br>926<br>1<br>53<br><b>ion</b><br>3<br>5<br>7<br><b>ileNe</b>                                                                   | 0.97<br><b>iV3 Mo</b><br><i>ctual C</i><br>57<br>2<br>399<br>9<br><b>Recall</b><br>0.84<br>0.99<br>0.99<br>0.95<br>etV2 Mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lass<br>77<br>7<br>2<br>246<br>F                                                                                                                                                 | 0.9<br>50<br><b>1-S</b><br>0.9<br>0.9                                    | 97<br><b>core</b><br>88<br>96<br>92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2<br>3<br><b>Ledicted</b><br>Class<br>0<br>1<br>2                                                                                         | 0.79<br>0.97<br>Ince<br>822<br>1<br>1<br>60<br>Precis<br>0.93<br>0.93<br>0.93<br>0.85<br>0.97<br>Mob                         | 7<br><b>A</b><br>19<br>9266<br>1<br>53<br><b>ion</b><br>3<br>3<br>5<br>7<br>7<br><b>iileNe</b><br><b>A</b>                                               | 0.97<br><b>iV3 Mo</b><br><i>ctual C</i><br>57<br>2<br>399<br>9<br><b>Recall</b><br>0.84<br>0.99<br>0.99<br>0.95<br><b>etV2 Mo</b><br><i>ctual C</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lass<br>77<br>7<br>246<br>F<br>5<br>6<br>6<br>7<br>7<br>7<br>246<br>246<br>1<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7           | 0.9<br>50<br>1-S<br>0.9<br>0.9<br>0.9                                    | 97<br><b>core</b><br>88<br>96<br>92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2<br>3<br>Predicted<br>Class<br>0<br>1<br>2<br>3                                                                                          | 0.79<br>0.97<br>Ince<br>822<br>1<br>1<br>60<br>Precis<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>781                 | 7 ption A 19 926 1 53 ion 3 5 7 tileNe A 40                                                                                                              | 0.97<br><b>iV3 Mo</b><br><i>ctual C</i><br>57<br>2<br>399<br>9<br><b>Recall</b><br>0.84<br>0.99<br>0.99<br>0.99<br>0.95<br><b>etV2 Mo</b><br><i>ctual C</i><br>44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lass<br>77<br>7<br>246<br>F<br>5<br>6<br>7<br>7<br>246<br>7<br>7<br>7<br>2<br>246<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | 0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9                                   | 97<br><b>core</b><br>88<br>96<br>92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2<br>3<br>Predicted<br>Class<br>0<br>1<br>2<br>3                                                                                          | 0.79<br>0.97<br>Ince<br>822<br>1<br>1<br>60<br>Precis<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93        | 7 ption A 19 9266 1 53 ion 3 3 5 7 tileNe 40 905                                                                                                         | 0.97<br><b>iV3 Mo</b><br><i>ctual C</i><br>57<br>5 2<br>399<br>9<br><b>Recall</b><br>0.84<br>0.99<br>0.99<br>0.95<br><b>etV2 Mo</b><br><i>ctual C</i><br>44<br>5 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lass<br>77<br>2<br>246<br>F<br>5<br>6<br>6<br>7<br>7<br>2<br>4<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                    | 0.9<br>50<br>0.9<br>0.9<br>0.9<br>0.9                                    | 97<br><b>core</b><br>88<br>96<br>92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2<br>3<br>Predicted<br>Class<br>0<br>1<br>2<br>3                                                                                          | 0.79<br>0.97<br>Ince<br>822<br>1<br>1<br>60<br>Precis<br>0.93<br>0.93<br>0.93<br>0.93<br>0.95<br><b>Mob</b>                  | 7<br><b>ption</b><br>19<br>9266<br>1<br>53<br><b>ion</b><br>3<br>3<br>5<br>7<br>7<br><b>iuleNee</b><br><b>A</b><br>40<br>9055<br>6                       | 0.97<br><b>iV3 Mo</b><br><i>ctual C</i><br>57<br>5 2<br>399<br>9<br><b>Recall</b><br>0.84<br>0.99<br>0.99<br>0.99<br>0.95<br><b>etV2 Mo</b><br><i>ctual C</i><br>44<br>5 14<br>383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lass<br>77<br>2<br>246<br><b>F</b><br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0                                                     | 0.9<br>50<br>1-S<br>0.9<br>0.9<br>0.9                                    | 97<br><b>core</b><br>88<br>96<br>92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Tredicted33Class0123                                                                                                                      | 0.79<br>0.97<br>Ince<br>822<br>1<br>1<br>60<br>Precis<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.95<br>0.97<br>Mob | 7 ption A 19 926 1 53 ion 3 5 7 iileNe 40 905 6 66                                                                                                       | 0.97<br><b>NJ Mo</b><br><i>ctual C</i><br>57<br>5 2<br>399<br>9<br><b>Recall</b><br>0.84<br>0.99<br>0.99<br>0.95<br><b>etV2 Mo</b><br><i>ctual C</i><br>44<br>5 14<br>383<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lass<br>777<br>2<br>246<br><b>F</b><br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>11<br>11<br>10<br>246                                                                   | 0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9                     | <b>core</b><br>88<br>96<br>92<br>96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2<br>3<br><i>Ledicted</i><br><i>Class</i><br><i>class</i><br><i>Class</i><br><i>Class</i>                                                 | 0.79<br>0.97<br>Ince<br>822<br>1<br>1<br>60<br><b>Precis</b><br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93 | 7 ption A 19 926 1 53 ion 3 5 7 ileNc 40 9055 6 66 ion                                                                                                   | 0.97<br><b>iV3 Mo</b><br><i>ctual C</i><br>57<br>2<br>399<br>9<br><b>Recall</b><br>0.84<br>0.99<br>0.99<br>0.99<br>0.99<br>0.95<br><i>ctual C</i><br><i>ctual C</i><br>44<br>5<br>14<br>383<br>8<br><b>Recall</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lass<br>777<br>2<br>246<br><b>F</b><br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>11<br>11<br>10<br>246                                                                   | 0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9                     | <b>core</b> 88 96 92 96 <b>core</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2<br>3<br><i>Ledicted</i><br><i>Class</i><br><i>Class</i><br><i>Class</i><br><i>Class</i><br><i>Class</i><br><i>Class</i><br><i>Class</i> | 0.79<br>0.97<br>Ince<br>822<br>1<br>1<br>60<br>Precis<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.95<br>Mob                 | 7<br><b>ption</b><br>19<br>9266<br>1<br>53<br><b>ion</b><br>3<br>3<br>5<br>7<br><b>ideNet</b><br>40<br>9055<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>4 | 0.97<br><b>IV3 Mo</b><br><i>ctual C</i><br>57<br>5 2<br>399<br>9<br><b>Recall</b><br>0.84<br>0.99<br>0.99<br>0.99<br>0.95<br><i>ctual C</i><br><i>ctual C</i><br><i>ct</i> | lass<br>777<br>2<br>246<br><b>F</b><br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>11<br>11<br>10<br>246                                                                   | 0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9                     | <b>core</b><br><b>38</b><br><b>96</b><br><b>92</b><br><b>96</b><br><b>6</b><br><b>6</b><br><b>7</b><br><b>7</b><br><b>7</b><br><b>8</b><br><b>8</b><br><b>8</b><br><b>9</b><br><b>6</b><br><b>9</b><br><b>7</b><br><b>7</b><br><b>7</b><br><b>8</b><br><b>9</b><br><b>7</b><br><b>7</b><br><b>7</b><br><b>7</b><br><b>7</b><br><b>7</b><br><b>7</b><br><b>7</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2<br>3<br><i>Ledicted</i><br><i>Class</i><br><i>class</i><br><i>Class</i><br><i>Class</i>                                                 | 0.79<br>0.97<br>Ince<br>822<br>1<br>1<br>60<br>Precis<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93        | 7 ption A 19 926 1 53 ion 3 3 5 7 iileNe 4 905 6 666 ion 4 9                                                                                             | 0.97           NJ Mo           ctual C           57           2           399           9           Recall           0.84           0.99           0.99           0.99           0.95           ctual C           ctual C           44           383           8           Recall           0.8           0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lass<br>77<br>2<br>246<br>F<br>5<br>0<br>del<br>lass<br>110<br>11<br>10<br>246                                                                                                   | 0.9<br>50<br>1-S<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9 | <b>core</b><br><b>88</b><br><b>96</b><br><b>92</b><br><b>96</b><br><b>96</b><br><b>96</b><br><b>97</b><br><b>96</b><br><b>97</b><br><b>96</b><br><b>97</b><br><b>96</b><br><b>97</b><br><b>96</b><br><b>97</b><br><b>96</b><br><b>97</b><br><b>96</b><br><b>97</b><br><b>96</b><br><b>97</b><br><b>96</b><br><b>97</b><br><b>96</b><br><b>97</b><br><b>96</b><br><b>97</b><br><b>97</b><br><b>96</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b><br><b>97</b> |
| 2<br>3<br><i>Ledicted</i><br><i>Class</i><br><i>Class</i><br><i>Class</i><br><i>Class</i><br><i>Class</i><br><i>Class</i><br><i>Class</i> | 0.79<br>0.97<br>Ince<br>822<br>1<br>1<br>60<br>Precis<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.95<br>Mob                 | 7 ption A 19 926 1 53 ion 3 3 5 7 iileNe 4 9 5 5                                                                                                         | 0.97<br><b>IV3 Mo</b><br><i>ctual C</i><br>57<br>5 2<br>399<br>9<br><b>Recall</b><br>0.84<br>0.99<br>0.99<br>0.99<br>0.95<br><i>ctual C</i><br><i>ctual C</i><br><i>ct</i> | lass<br>77<br>2<br>246<br>F<br>5<br>0<br>del<br>lass<br>110<br>11<br>10<br>246                                                                                                   | 0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9                     | <b>core</b><br>88<br>96<br>92<br>96<br>96<br>97<br><b>core</b><br>86<br>93<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Also, the proposed model took 18.67 sec time to process and detect class disease in the 4896 total testing images, which is an improvement over VGG-16.

The comparison of 6FC with VGG-16, InceptionV3, and MobileNetV2 architectures, in terms of training and validation accuracy, is shown in Fig.7. It is evident from the figure that the proposed 6FC model is the best in terms of training and testing accuracy convergence. The confusion matrix of performance metr

Table.3. Confusion matrices, precision, recall, and f1-score of the best model and pre-trained models

-ics of the proposed and the conventional architectures, showing the class-wise prediction, are reported in Table.3. The diagonal elements show the exactness between the actual class and the predicted class. For the 6FC model, the class-wise prediction, precision, recall, and F1 score are better than other architectures. In addition to the highest test accuracy of 99.14%, precision, recall, and F1 score ranges between 0.98 to 1 for all class predictions indicating better performance than the other standard models. Regarding the time taken to detect class disease, the 6FC model took 18.67 seconds than the other models, except MobileNetV2, to process 4896 test images. MobileNetV2 was the fastest model, which took only 9.49 seconds for the same test sample size, but its accuracy was the lowest.



Fig.7. Training and validation accuracy of the 6FC and pretrained models

Receiver Operating Characteristics (ROC) curves are plotted in Fig.8 for multi-classification problems using the one vs. all techniques in which each label is considered at a time, and all the others can be grouped as one label. Class-wise performance of the models with micro-averaged ROC curves is visualized. 6FC is observed to have the best class separation amongst the models by having the largest area under the curve.



Fig.8. Micro-Averaged ROC curves of the 6FC and pre-trained models

To further validate and visualize the results of the 6FC model, visualization techniques were used to understand better the prediction mechanism of CNN models for a particular class in the image. One such technique for image-based CNN visualization is Grad-CAM [2]. One test image of each class belonging to apple leaf disease and a healthy leaf was fed to the 6FC model, and the corresponding heat map generated at each layer is shown in Fig.9. Infected regions were highlighted in a leaf image at various convolution layers. When the heatmap of the last layer was superimposed on the original image, class- wise features of a particular class were clearly highlighted at the last layer. Using Grad-CAM, we can substantiate that the proposed model focuses on learning the features in the image for a particular class with adequate accuracy and precision. The regions highlighted at the end of the network indicate the region of interest and are specific to the class type. This method can also be helpful in object detection problems for highlighting diseased regions without the need for the annotation of images.



DHARMENDRA KUMAR MAHATO et al.: AN IMPROVED CNN MODEL FOR CLASSIFICATION OF APPLE LEAF DISEASE AND VISUALIZATION USING WEIGHTED GRADIENT CLASS ACTIVATION MAP



Fig.9. 6FC model activation map plot at each layer and the last layer heatmap superimposed on the input image. First column: input images, row-wise: corresponding heatmap at each layer in each class, last column: corresponding heatmap of the last layer superimposed on the input image

# 5. CONCLUSION

The classification of apple leaf disease is performed with the standard VGG-16, InceptionV3, and MobileNetV2 models and the proposed models with two variants, i.e., fully connected and global average pooling layers. The proposed 6-layer model (6FC) with a fully connected layer as a classifying layer performed the best in terms of overall accuracy (99.14%), F1 score, precision, and ROC. In all performance metrics, the results are better than attained in the state-of-the-art standard models.

Grad-CAM visualization of activation map w.r.t. the class over the input image with and without the disease were obtained to support the prediction score by the proposed model. The activation maps for different classes indicate the region in the input image to predict that class quite accurately. The results further validate and confirm the accuracy and efficiency of the proposed model in identifying and classifying the disease correctly.

# REFERENCES

- [1] V. Buhrmester, D. Munch and M. Arens, "Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey", *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition*, pp. 232-239, 2019.
- [2] R.R Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh and D. Batra, "Gradcam: Visual Explanations from Deep Networks via Gradient-Based Localization", *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition*, pp. 618-626, 2017.
- [3] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva and A. Torralba, "Learning Deep Features for Discriminative Localization", *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition*, pp. 2921-2929, 2016.
- [4] P.J. Kindermans, S. Hooker, J. Adebayo, M. Alber, K.T Schutt, S. Dahne, D. Erhan and B. Kim, "The (Un)reliability of Saliency Methods", *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition*, pp. 415-449, 2017.
- [5] K. Simonyan, A. Vedaldi and A. Zisserman, "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps", *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition*, pp. 2221-2228, 2013.

- [6] J.T. Springenberg, A. Dosovitskiy, T. Brox and M. Riedmiller, "Striving for Simplicity: The All Convolutional Net", *Proceedings of IEEE Conference on Computer Vision* and Pattern Recognition, pp. 1189-1197, 2015.
- [7] M.D. Zeiler, and R. Fergus, "Visualizing and Understanding Convolutional Networks", *Proceedings of IEEE Conference* on Computer Vision, pp. 818-833, 2014.
- [8] R.G. Cinbis, J. Verbeek and C. Schmid, "Weakly Supervised Object Localization with Multi-Fold Multiple Instance Learning", *IEEE Transactions on Pattern Analysis and Machine Intelligence*, Vol. 39, No. 1, pp. 189-203, 2017.
- [9] M. Oquab, L. Bottou, I. Laptev and J. Sivic, "Learning and Transferring Mid-Level Image Representations using Convolutional Neural Networks", *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition*, pp. 1717-1724, 2014.
- [10] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, "Is Object Localization for Free? Weakly-Supervised Learning with Convolutional Neural Networks", *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition*, pp. 685-694, 2015.
- [11] S.P. Mohanty, D.P. Hughes and M. Salathe, "Using Deep Learning for Image-Based Plant Disease Detection", *Frontiers in Plant Science*, Vol. 7, pp. 1419-1427, 2016.
- [12] A. Krizhevsky, I. Sutskever and G. Hinton, "Imagenet Classification with Deep Convolutional Neural Networks", *Advances in Neural Information Processing Systems*, Vol. 25, pp. 1106-1114, 2012.
- [13] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke and A. Rabinovich, "Going Deeper with Convolutions", *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition*, pp. 1-14, 2014.
- [14] B. Liu, Y. Zhang, D. He and X. Li, "Identification of Apple Leaf Diseases Based on Deep Convolutional Neural Networks", *Symmetry*, Vol. 10, No. 1, pp.1-18, 2017.
- [15] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition", *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition*, pp. 330-345, 2015.
- [16] K.P. Ferentinos, "Deep Learning Models for Plant Disease Detection and Diagnosis", *Computers and Electronics in Agriculture*, Vol. 145, pp. 311-318. 2018.
- [17] H. Yu and C. Son, "Apple Leaf Disease Identification through Region-of-Interest-Aware Deep Convolutional

Neural Network", *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition*, pp. 1-19, 2019.

- [18] A.I. Khan, S.M.K. Quadri and S. Banday, "Deep Learning for Apple Diseases: Classification and Identification", *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition*, pp. 1-13, 2020.
- [19] Y. Guo, J. Zhang, C. Yin, X. Hu, Y. Zou, Z. Xue and W. Wang, "Plant Disease Identification Based on Deep Learning Algorithm in Smart Farming", *Discrete Dynamics in Nature and Society*, Vol. 2020, pp. 1-11, 2020.
- [20] X. Chao, G. Sun, H. Zhao, M. Li and D. He, "Identification of Apple Tree Leaf Diseases Based on Deep Learning Models", *Symmetry*, Vol. 12, No. 7, pp. 1-17, 2020.
- [21] J. Liu and X. Wang, "Plant Diseases and Pests Detection based on Deep Learning: A Review", *Plant Methods*, Vol. 17, No. 22, pp. 1-18, 2021.
- [22] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva and A. Torralba, "Object Detectors Emerge in Deep Scene CNNs", *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition*, pp. 1-12, 2014.
- [23] X. Jia and L. Shen, "Skin Lesion Classification using Class Activation Map", Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 441-448, 2017.
- [24] P. Charuchinda, T. Kasetkasem, I. Kumazawa and T. Chanwimaluang, "On the Use of Class Activation Map for Land Cover Mapping", Proceedings of IEEE International Conference on Electrical Engineering Electronics, Computer, Telecommunications and Information Technology, pp. 653-656, 2019.
- [25] K.H. Sun, H. Huh, B.A. Tama, S.Y. Lee, J.H. Jung and S. Lee, "Vision-Based Fault Diagnostics using Explainable Deep Learning with Class Activation Maps", *IEEE Access*, Vol. 8, pp. 129169-129179, 2020.
- [26] P. Jiang, Y. Chen, B. Liu, D. He and C. Liang, "Real-Time Detection of Apple Leaf Diseases using Deep Learning Approach Based on Improved Convolutional Neural Networks", *IEEE Access*, Vol. 7, pp. 59069-59080, 2019.
- [27] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever and R.R. Salakhutdinov, "Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors", *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition*, pp. 666-678, 2012.
- [28] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition", *Proceedings*

of IEEE Conference on Computer Vision and Pattern Recognition, pp. 441-449, 2014.

- [29] S. Ioffe and C. Szegedy, "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition*, pp. 881-889, 2015.
- [30] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, "Rethinking the Inception Architecture for Computer Vision", *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition*, pp. 771-776, 2015.
- [31] A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto and H. Adam, "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications", *Proceedings of IEEE Conference on Computer Vision*, pp. 1-12, 2017.
- [32] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov and L. Chen, "MobileNetV2: Inverted Residuals and Linear Bottlenecks", *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition*, pp. 45-58, 2018.
- [33] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang and C. Liu, "A Survey on Deep Transfer Learning", *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition*, pp. 89-98, 2018. K
- [34] . Weiss, T.M. Khoshgoftaar and D. Wang, "A Survey of Transfer Learning", *Journal of Big Data*, Vol. 3, No. 9, pp. 1-13, 2016.
- [35] Y. Nagaraju, Venkatesh, S. Swetha and S. Stalin, "Apple and Grape Leaf Diseases Classification using Transfer Learning via Fine-tuned Classifier", *Proceedings of IEEE International Conference on Machine Learning and Applied Network Technologies*, pp. 1-6, 2020.
- [36] N.K. Hebbar and A.S. Kunte, "Transfer Learning Approach for Splicing and Copy-Move Image Tampering Detection", *ICTACT Journal on Image and Video Processing*, Vol. 11, No. 4, pp. 2447-2452, 2021.
- [37] V.C. Burkapalli and P.C. Patil, "Transfer Learning: Inception-V3 Based Custom Classification Approach for Food Images", *ICTACT Journal on Image and Video Processing*, Vol. 11, No. 1, pp. 2261-2267, 2020.
- [38] Keras.io, "Grad-CAM Class Activation Visualization, Code Example by Fchollet". Available at: https://keras.io/examples/vision/grad\_cam/#lets-tryanother-image, Accessed at 2020.