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Abstract 

Driven by the advancement in technology that can facilitate 

implementation of deep neural networks (DNNs), and due to the 

availability of large scale datasets, automatic recognition performance 

of the machines has increased by leaps and bounds. This is also true 

with regard to facial expression recognition (FER) wherein the 

machine automatically classifies a given facial image in to one of the 

basic expressions. However, annotations of large scale datasets in FER 

suffer from noise due to various factors like crowd sourcing, automatic 

labelling based on key word search etc. Such noisy annotations impede 

the performance of FER due to the memorization ability of DNNs. To 

address it, this paper proposes a learning algorithm called Co-curing: 

peer training of two joint networks using a supervision loss and a 

mimicry loss that are balanced dynamically, and supplemented with a 

relabeling module to correct the noisy annotations. Specifically, peer 

networks are trained independently using supervision loss during early 

part of the training. As training progresses, mimicry loss is given higher 

weightage to bring consensus between the two networks. Our Co-

curing does not need to know the noise rate. Samples with wrong 

annotations are relabeled based on the agreement of peer networks. 

Experiments on synthetic as well real world noisy datasets validate the 

effectiveness of our method. State-of-the-art (SOTA) results on 

benchmark in-the-wild FER datasets like RAF-DB (89.70%), FERPlus 

(89.6%) and AffectNet (61.7%) are reported. 
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1. INTRODUCTION 

. It is said that face is the index of mind. It expresses different 

human emotions in our everyday life. Recognizing such 

expressions plays an important role in social interaction and 

communication [1], [2]. Ekman and Friesen [3], [4] defined six 

basic emotions based on a cross-culture study. These prototypical 

facial expressions are classified as neutral, anger, fear, disgust, 

happiness, surprise and sadness. Contempt was later added among 

basic set of emotions [5].  

Traditional FER systems were built using handcrafted features 

[7]-[10] from facial images collected in a controlled lab 

environment. Examples of such datasets include CK+ [11], [12], 

Oulucasia [13] and Jaffe [14]. However, in reality, facial images 

exhibit uncontrollable factors like variations in illumination, 

variations in pose, presence of occlusions etc. This scenario is 

called as in-the-wild scenario. Traditional FER systems badly fail 

in in-the-wild scenario. Fortunately, due to the recent success of 

DNNs, and due to the availability of large scale in-the-wild 

datasets like RAFDB [17], [18], AffectNet [15] and FERPlus 

[16], FER performance has enhanced. Nevertheless, there is still 

a wide scope for improvement in in-the-wild scenario due to the 

fact that annotations of facial images in in-the-wild scenario 

contains noise, and most of the FER systems turn a blind eye to 

the influence of these noisy labels. The noisy annotations arise 

due to the following reasons:  

i) Manual annotation is costly, laborious and requires 

expertise; so crowdsourcing and online key searching 

methods are used, resulting in noisy annotations,  

ii) Facial expression images are ambiguous and may express 

compound emotions, for e.g. face may be happily 

surprised or fearfully sad,  

iii) Occlusions, lighting and pose variations cause uncertainty 

in getting true expression,  

iv) Prototypic expressions vary across cultures, situations, and 

across individuals under same situation [6] [19].  

It has been observed that DNNs memorize noisy annotations 

[20]-[22] which affect the performance of modern DNN based 

FER methods. So, it is important to eliminate the influence of 

noisy samples during training. 

To handle noisy annotations, this paper proposes a novel peer 

learning framework called Co-curing. It has two components: i) 

peer training of two networks using only clean samples, and ii) 

relabeling of noisy samples based on the agreement of both the 

networks. By clean samples, we identify those samples 

(implicitly) from the dataset that guide the learning of DNN in the 

early part of the training. This is because it has been observed that 

DNNs fit clean labels in the early part of the training, and 

subsequently memorize the noisy labels in the later part of the 

training [40]. Specifically, inspired by peer learning [31], we train 

two networks simultaneously for learning discriminative features 

based on clean samples as well as identifying the noisy samples. 

Training is guided by two losses: a supervision loss that uses only 

clean labels, and a mimicry loss [31] that aligns the probability 

distribution of two networks. Supervision loss is given higher 

weightage during early part of the learning, and subsequently, as 

training progresses, mimicry loss gets higher weightage [40]. 

Transition from supervision loss to mimicry loss happens using a 

dynamic balancing rule that does not require knowledge of noise 

rate. Further, peer networks also correct the labels of wrongly 

annotated samples if the predicted probability of both the 

networks is greater that of the ground truth probability by a certain 

threshold. Co-curing is a simple but effective framework for peer 

learning as well as curing noisy annotations. 

In short, our contributions can be summarized as follows: 

• A novel learning framework called Co-curing for FER in the 

presence of noisy annotations. 

• Peer learning aided by a dynamic transition between 

supervision loss and mimicry loss 

• Correction of noisy annotations guided by joint agreement. 

• Validation of Co-curing on both synthetic as well as real 

noisy FER datasets. Co-curing attains state-of-the-art 

performance on benchmark in-the-wild FER datasets like 

RAF-DB (89.7%), FERPlus (89.6%) and AffectNet 

(61.7%). 

Rest of the paper is organized as follows: section 2 presents 

related work. Our proposed method Co-curing is described in 
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section 3. Experimental set up is detailed in section 4. Results and 

discussions are reported in section 5. Section 6 elicits the 

expression discrimination ability of Co-curing, and also presents 

few ablation studies. Comparison with recent SOTA methods is 

reported in section 7. Finally, conclusions are listed in section 8. 

 

Fig.1. The pipeline of Co-curing framework. Face images are 

input to two identical peer networks to obtain prediction 

probabilities. Peer training module dynamically transitions from 

supervision loss to mimicry loss. Relabeling module corrects the 

noisy samples based on comparison of predicted probabilities 

with the ground truth label probability. Mislabeled sample is 

marked in red dotted rectangle in the input 

2. RELATED WORK 

2.1 DEEP LEARNING (DL) BASED NOISY 

METHODS 

Presence of noisy labels in real-world datasets has led to 

development of many DL based approaches. These approaches 

could be summarized as below: 

2.1.1 Noise Rate Estimation: 

Some methods depend on the estimation of noise transition 

matrix [23]-[24] which encodes the probability of mislabeling 

between classes. For e.g. F-correction [24] estimates the noise 

transition matrix by using a deep network trained on the noisy 

dataset. The method in [23] introduces a noise adaption layer 

using softmax to estimate the noise transition matrix. However, 

success of these methods depend on quality of noise rate 

estimation, which is quite challenging as it requires either the 

prior knowledge or a subset of clean data. So, these methods may 

not be feasible in real-world environment. 

2.1.2 Robust Loss Functions: 

Many noise robust loss functions [29], [30], [32]-33] have 

been designed. For e.g. bootstrapping loss [33] extends the usual 

cross-entropy loss with a perceptual term. GCE [32] combines 

mean absolute loss and cross-entropy loss. But these methods do 

not perform well on real noisy datasets.  

2.1.3 Small Loss Sample Selection 

A vast collection of methods train on small loss samples as 

these are more likely to be associated with clean samples [20]. 

These methods use peer/co/joint learning by training two 

networks on low loss samples using cross entropy loss. The 

percentage of high loss samples to be dropped (depending upon 

noise rate) keeps increasing as a function of training epoch. In 

Decoupling [38], both networks are trained using small loss 

samples on which they disagree in their predictions. In Co-

teaching [25], each model is trained using loss corresponding to 

other network’s small loss samples whereas in Co-teaching+ [28], 

an extension of Co-teaching, the small loss samples are chosen 

among the ones where both the networks disagree in their 

predictions. JoCoR [39] uses the same idea of Co-teaching+ but 

uses agreement instead of disagreement, and computes joint loss 

using co-regularization. NCT [40] uses independent training of 

joint networks using convex combination of a supervision loss 

and a mimicry loss combined with a dynamic balancing scheme. 

It also uses target variability regularization to keep models 

diverged during training. Main limitation of most of above 

methods are: (i) They depend on accurate estimation of noise 

distribution in data, (ii) Hard samples are also perceived as noisy, 

and hence the model is biased towards easy samples which hurts 

the generalization capability of the model. 

2.2 FER NOISY METHODS THAT TACKLE NOISY 

ANNOTATIONS 

Very few FER methods have been developed to tackle noisy 

annotated labels. IPA2LT framework [41] is proposed to handle 

inconsistent annotations present in different FER databases. In 

IPA2LT, each sample is assigned multiple inconsistent human 

and machine predicted labels, and subsequently a network is 

trained to discover the true label by maximizing log-likelihood of 

inconsistent annotations by estimating multiple noise transition 

matrices. Self-cure network (SCN) [19] learns the importance of 

each sample using a self-attention module for loss re-weighting. 

Low weight samples are treated as noisy and also relabeled if 

predicted probability is above a certain threshold. These methods 

focus on correcting noisy labels. In [6], Rayleigh loss function is 

proposed to learn discriminative features which explicitly 

increases inter-class separation and intra-class compactness at 

feature level. Rayleigh loss is insensitive to label noises. In 

addition, weighted Softmax (w-Softmax) loss is also proposed to 

reduce the loss weight of uncertain samples based on their 

distances to class centers. A class specific threshold is used for 

reweighing loss depending upon distance between class center 

and nearest class center. Limitation of IPA2LT is that it is difficult 

to estimate noise transition matrices accurately. SCN uses single 

network to distinguish the uncertain samples from certain which 

leads to confirmation bias. Rayleigh loss and w-Softmax loss are 

robust only for low noise datasets. 
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3. PROPOSED METHOD 

In this section, we describe the main components of the 

proposed method Co-curing, including motivation, structure, loss 

function and training algorithm. In addition, we discuss the 

relations between Co-curing and other existing approaches. 

3.1 OVERVIEW  

The proposed Co-curing follows the principle of peer learning 

[31]. It involves mutual training of two networks to tackle the 

issue of noisy annotations. During early part of the training, both 

peer networks are trained independently using supervision loss 

because it has been observed that DNNs fit clean samples during 

early part of the training [20]-[21]. Further, since DNNs tend to 

memorize noisy samples as training progresses, mimicry loss [31] 

is used in the later part of the training to build consensus among 

predictions of both the networks. Naturally, seeking consensus 

between both the networks would avoid influence of noisy labels, 

since on samples with noisy labels, the networks will not agree. 

The transition between the losses is balanced dynamically [40]. 

Specifically, a sigmoid like ramp-up function [27] [40] is used to 

transition from supervision loss to mimicry loss. Label correction 

of noisy annotations is done if both networks prediction 

probabilities are greater than the ground truth probability by a 

certain threshold. 

3.2 STRUCTURE 

The proposed Co-curing framework is shown in Fig.1. It has 

two modules: i) peer training module and ii) relabeling module.  

Given C expression categories, let   
1

,
N

i iD x y be the 

dataset of N training samples where yi ∈ {1,2,..,C}. Let the 

parameters of both the networks be denoted as θ1 and θ2, 

respectively. Let the prediction probabilities of both the networks 

be denoted as p1 and p2, respectively. 

3.2.1 Peer Training Module: 

Supervision loss is standard cross-entropy loss (LCE) based on 

the predictions and true labels. Mimicry loss [31] is the Kullback 

Leibler (KL) Divergence between network predictions denoted as 

DKL. Prediction (p2) from second network (θ2) is used to provide 

supervision to first network (θ1) and vice versa.  

The overall loss functions Lθ1 and Lθ2 for both the networks θ1 

and θ2, respectively can be written as follows: 

The overall loss functions 𝐿𝜃1
and 𝐿𝜃2

for both the networks θ1 

and θ2, respectively can be written as follows:  

 Lθ1 = (1-λ)*LCE(p1,y)+λ*DKL(p2||p1) (1) 

 Lθ2 = (1-λ)*LCE(p2,y)+λ*DKL(p1||p2) (2) 

Here, λ  [0,1] is dynamic balancing factor, which is a sigmoid 

like ramp-up function [27] defined as follows: 

 

2

1

max * r

t

t
e



 

 
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   (3) 

where  λmax is maximum lambda value, t is the current epoch, tr is 

the ramp-up length (the epoch at which λ attains its maximum 

value λmax. Here β controls the shape of the ramp-up function. 

Smaller the value of β, faster it transitions to mimicry loss. We 

choose β = 0.65 based on the experimental study in section 6.2.2. 

3.2.2 Relabeling Module: 

Noisy annotations are relabeled based on difference between 

maximum predicted probabilities of both the networks and the 

probability of ground truth label. If the maximum prediction 

probabilities of both the networks for a sample are greater than 

the given label probability by a certain threshold, then it is 

relabeled using pseudo label. Formally, relabeling module is 

defined as: 
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 (4) 

Here, y denotes new pseudo label, max

1p and max

2p  represent 

the maximum probabilities of the two networks respectively, and 
max

1l and max

2l  represent the index of maximum probabilities. 

Further, 
1

gtp and 
2

gtp  denote the probabilities of ground truth label 

of the sample from networks θ1 and θ2 respectively. lorg denotes 

the original label of the sample. 

3.2.3 Inference: 

Average of predictions from both the networks is used to infer 

the label at the test time. 

3.3 TRAINING ALGORITHM 

Algorithm 1: Co-curing training algorithm 

Input: Network f with parameters {θ1,θ2}, dataset (D), number of 

classes (C), batch size (b), number of epochs (tmax), maximum λ 

value (λmax), learning rate (η), warm up epoch for relabeling 

(twarm). 

Step 1: Initialize θ1 and θ2 randomly 

Step 2: For t = 1, 2,…, tmax epochs do 

Step 3: Sample a minimatch Dn from D 

Step 4: Compute p1=f(x,θ1)and p2=f(x,θ2) using two networks 

Step 5: Compute dynamic weighting factor λ using Eq.(3) 

Step 6: Compute individual losses (Lθ1) and (Lθ2) using Eq.(1) 

and Eq.(2) respectively 

Step 7: Update θ1 = θ1-θ1 and θ2 = θ2-θ2 

Step 8: If t > twarm, then obtain new pseudo label using Eq.(4) 

Step 9: End for 

Step 10: Output: Return θ1 and θ2 

3.4 COMPARISON WITH OTHER APPROACHES 

    Our algorithm Co-curing is compared with other related 

approaches in Table.1 across various strategies used in the 

literature. Decoupling [38] is based on disagreement. Co-teaching 

[25] uses small-loss samples and updates network parameters 

using cross update criteria. Co-teaching+ [28] combines cross-

update along with disagreement on small loss samples to improve 

the performance. Limitation of disagreement strategy is that very 

few clean samples may be selected. So, JoCoR [39] selects small 

low samples using agreement between joint networks. But they 

may converge to consensus and fail to perform in the presence of 

high noise. Further, these methods need to know noise rate. Our 
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Co-curing does supervised training based on small loss samples 

implicitly and using agreement between two networks predictions 

in the later stage without depending upon noise rate like NCT 

[40]. Further, it also carefully corrects noisy annotated samples 

based on the agreement confidence. Both of these help to improve 

training using more number of clean samples. 

Table.1. Comparison of proposed method with related 

approaches 

Strategy 

Decoup- 

ling 

[38] 

Co- 

teaching 

[25] 

Co- 

teaching+ 

[28] 

JoCoR 

[39] 

NCT 

[40] 

Co- 

curing 

Small loss  ✓ ✓ ✓  

Cross  

Update 
 ✓ ✓ ✓  

Disagree- 

ment 
✓  ✓   

Agreement    ✓ ✓ ✓ 

Joint  

update 
   ✓  

Relabeling      ✓ 

Knowledge  

of noise rate 
✓ ✓ ✓ ✓  

4. EXPERIMENTAL SETUP 

4.1 DATASET 

Following in-the-wild FER datasets have been used in this 

study: 

• RAF-DB [17] [18] has 29762 facial images retrieved from 

internet. These are labelled for basic or compound 

expressions by 40 annotators. We use the subset with 7-basic 

emotions. This consists of total 15,339 images in which 

12,271 are used for training and 3068 for testing. 

• FERPlus [16] consists of 4848 resolution images collected 

from Google. These have been annotated for 8-basic 

emotions. It is divided into training (28,709 images), 

validation (3589 images) and testing (3589 images). 

• AffectNet [15] consists of 1M images obtained by querying 

web. 0.44M are manually annotated by 12 different 

annotators and remaining 0.46M images are automatically 

annotated for the presence of all eight facial expressions. 

AffectNet has 4000 images in the validation set. We use 

automatically annotated subset for training under real noisy 

conditions and manually annotated subset for training with 

synthetic noise. 

4.2 EXPERIMENTAL DETAILS 

In Co-curing, face images are detected and further aligned 

using MTCNN [42] and further resized to 224224. The 

individual networks in Co-curing are ResNet-18 [43] which are 

pre-trained on large scale face recognition dataset MS-Celeb-1M 

[44]. We implement our method in Pytorch. Batch size is set to 

128. Parameter updates are carried out by Adam optimizer. 

Learning rate (lr) is initialized to 0.001 for base networks and 0.01 

for the classification layer. Learning rate is decayed exponentially 

on every epoch with a factor of 0.95. Data is augmented by 

random horizontal flip and color jitter. λmax is set to 0.9 and β is se 

to 0.65 based on the ablation study presented in section 6. Class 

imbalance is overcome using oversampling on AffectNet dataset. 

Evaluation metric considered is overall accuracy.  

5. RESULTS 

5.1 EVALUATION ON SYNTHETIC NOISY 

DATASETS 

Synthetic symmetric noise of 10-40% is manually added on 

RAFDB, FERPlus and AffectNet datasets by randomly changing 

labels. Co-curing is compared with recent SOTA methods like 

Co-teaching [25], Co-teaching+ [28], NCT [40] and JoCoR [39]. 

It is to note that all of these methods employ joint networks for 

training to combat the influence of noisy labels but do not involve 

correction of noisy annotated samples. We also compare Co-

curing with FER methods SCN [19] and RR [6] that relabel noisy 

annotations. We also compare with a baseline wherein the two 

networks are independently trained using only supervision loss, 

without having any relabelling. The inference strategy in baseline 

is done using average of predictions, as mentioned earlier. 

Table.2. Performance comparison in the presence of synthetic 

noise 

Noise 

level 
Method RAF-DB FERPlus AffectNet 

10 

Baseline 85.07 86.48 59.4 

Coteaching [25] 80.18 86 58.93 

Coteaching+ [28] 81.84 83.33 53.73 

JoCR [39] 84.84 85.91 58.05 

NCT [40] 87.42  87.28 59.70 

SCN [19] 82.18 84.28 58.58 

RR [6] 82.43 83.93 60.04 

Co-curing  

(No relabeling) 
86.64 87.66 60.38 

Co-curing 88 87.85 60.58 

20 

Baseline 81.91 84.79 58.6 

Coteaching [25] 79.56 85.5 57 

Coteaching+ [28] 81.12 76.44 49.55 

JoCR [39] 82.79 83.71 57.28 

NCT [40] 85.29 86.42  59.28 

SCN [19] 80.01 83.17 57.25 

RR [6] 80.41 83.55 58.47 

Co-curing  

(No relabeling) 
84.16 86.9 59.65 

Co-curing 86.7 87.38 59.15 

30 

Baseline 81.55 84.02 56.37 

Coteaching [25] 75 83.48 54.22 

Coteaching+ [28] 80.05 75.83 44.9 

JoCR [39] 80.96 81.51 54.38 
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NCT [40] 82.66  83.93 56.23 

SCN [19] 77.46 82.47 55.05 

RR [6] 76.77 82.75 55.82 

Co-curing  

(No relabeling) 
81.58 84.79 56.89 

Co-curing 84.84 86.64 56.98 

40 

Baseline 79.95 82.81 53.57 

Coteaching [25] 61.18 80.52 50.45 

Coteaching+ [28] 80.05 75.83 44.9 

JoCR [39] 80.96 81.51 54.38 

NCT [40] 79.01  81.86 52.25 

Co-curing  

(No relabeling) 
81.13 83.36 55.15 

Co-curing 82.06 84.41 55.35 

We also compare against Co-curing without including 

relabeling module. The Table.2 presents the results. Clearly, 

single network based methods fail to perform well compared to 

joint networks based methods. Co-curing outperforms all methods 

on all the datasets, and for all noise levels. The performance of 

Co-curing without relabelling module is comparable or superior 

to the SOTA method NCT. 

 
(a) 

 
(b) 

 
(c) 

Fig.2. Confusion plots for (a) RAF-DB, (b) FERPlus and (c) 

AffectNet (trained on manually annotated AffectNet) 

5.2 EVALUATION ON REAL NOISE DATASET 

To further validate the effectiveness of our Co-curing, we also 

do experiments on real-world noisy dataset. We train on 

automatically annotated AffectNet dataset and test the 

performance on clean validation set of AffectNet with 3500 

images as training set has only 7 expressions (except contempt). 

Results are presented in Table.3. Again, Co-curing outperforms 

all other methods. Coteaching, Coteaching+ and JoCoR fails to 

perform as these are heavily dependent upon the noise rate 

whereas our method is superior in robustness to real noise of 

unknown kind and type due to dynamic switch from supervision 

loss to mimicry loss. CC performs superior to NCT due to 

relabeling module. Compared to Baseline, there is a significant 

improvement of 2.9% using CC. 

Table.3. Performance comparison on automatically annotated 

noisy AffectNet dataset 

Method AffectNet 

Baseline 53.85 

Coteaching [25] 52.37 

Coteaching+ [28] 55.08 

JoCR [39] 55.00 

NCT [40] 56.46 

Co-curing (No relabeling) 56.02 

Co-curing 56.70 

6. ANALYSIS 

6.1 EXPRESSION DISCRIMINATION 

The performance comparison at the individual expression 

levels is done by plotting confusion plots for all datasets as shown 

in Fig.2 and Fig.3. Happiness is the easiest expression to 

recognize across all the datasets.  
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On RAF-DB, fear and disgust are most difficult whereas on 

FERPlus, it is contempt and fear. In manually annotated 

AffectNet, neutral and contempt are difficult to recognize whereas 

in automatically annotated AffectNet, disgust and anger cannot be 

recognized easily. Fear is generally confused with surprise on all 

datasets. 

 

Fig.3. Confusion plots for AffectNet (trained on automatically 

annotated AffectNet) 

6.2 ABLATION ANALYSIS 

6.2.1 Comparison with Supervision Loss Training: 

It is known that DNNs learn from clean samples in the early 

part of training, and subsequently memorize noise in the later part 

of the training [20]. Does our Co-curing method mitigate the 

memorizing effect of DNNs?  We validate this by plotting the test 

accuracy vs. epochs on RAF-DB and FERPlus datasets in the 

presence of 40% synthetic noise for our Co-curing method and the 

Baseline that uses only CE loss. These are shown in Fig.4 and 

Fig.5. When trained using only CE loss, performance improves 

steadily during early part of the training but falls down rapidly in 

the later stage due to the memorization of noise. In comparison, 

our method Co-curing effectively prevents memorizing noisy 

labels as performance curve is steadily superior even in the later 

stage of training. 

 

Fig.4. Accuracy vs. epoch plot on RAF-DB in the presence of 

40% noise 

 

Fig.5. Accuracy vs. epoch plot on FERPlus in the presence of 

40% noise 

6.2.2 Influence of Dynamic Balancing Factor: 

Since, as per Eq. 3, if the best β is determined, automatically 

the best λ gets fixed. So, we determine the best β as follows. We 

plot in Fig.6 the test accuracy for 0-40% noise on RAFDB dataset 

for different values of β. Here, β = 0 corresponds to the training 

dominated by mimicry loss while β = 6 corresponds to the training 

dominated by supervision loss. Smaller the value of β, faster it 

transitions from supervision to mimicry loss. Clearly, on clean 

(noisy) dataset, larger (smaller) β will give better performance and 

vice versa. But it is difficult to know beforehand whether dataset 

is clean or noisy. In our experiments, we found that β = 0.25 and 

β = 1 reported superior performance on high and low noisy 

datasets, respectively. We choose the intermediate β = 0.65 as it 

works across all noise levels and on all the datasets. 

 

Fig.6. Influence of dynamic balancing factor (β) (refer Eq.(3)) 

7. COMPARISION WITH STATE-OF-THE-ART 

Tables 4, 5 and 6 compare Co-curing with recent state-of-the-

art methods like GACNN [37], DLP-CNN [46], IPA2LT [41], 

RAN [45], OADN [36], SCN [17], GCN [35] and SCAN [26] on 

RAF-DB, FERPlus and AffectNet datasets, respectively. Our 

method obtains comparable performance on RAFDB (89.70% 

which is lower by margin of 0.13 compared to the best performing 

method). It outperforms other methods on FERPlus (89.7%). 
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Further, it reports SOTA performance on AffectNet (61.7%). All 

these results demonstrate that Co-curing is a general purpose 

robust FER training method. 

Table.4. Performance comparison with state-of-the-art on RAF-

DB dataset 

Method Year RAF-DB 

GACNN [37] 2018 85.07 

DLP-CNN [46] 2019 84.22 

IPA2LT [41] 2020 86.77 

RAN [45] 2020 86.9 

OADN [36] 2020 89.83 

SCN [17] 2020 88.14 

GCN [35] 2020 89.41 

SCAN [26] 2021 89.02 

Co-curing 2021 89.70 

Table.5. Performance comparison with state-of-the-art on 

FERPlus dataset (* denotes our implementation) 

 Method Year FERPlus 

 GACNN [37]  2018 84.86* 

 RAN [45]  2020 89.26 

 OADN [36] 2020 88.71* 

 SCN [17] 2020 89.35 

 GCN [35] 2020 89.39 

 ESR [34] 2020 87.15 

 SCAN [26] 2021 89.42 

 Co-curing 2021 89.70 

Table.6. Performance comparison with state-of-the-art on 

AffectNet dataset (* denotes our implementation) 

Method Year AffectNet 

GACNN [37]  2018 55.05* 

RAN [45]  2020 59.5 

OADN [36] 2020 58.92 

SCN [17] 2020 60.23 

GCN [35] 2020 60.58 

ESR [34] 2020 59.3 

SCAN [26] 2021 61.7 

Co-curing 2021 61.7 

8. CONCLUSION 

In this paper, we propose a simple and effective method for 

combating noisy annotations in FER datasets called Co-curing. 

Our method trains two joint network using peer learning aided by 

a dynamic transition between supervision loss and mimicry loss. 

Further, it carefully corrects the noisy annotations based on joint 

agreement. Robustness of Co-curing is demonstrated on both 

synthetic as well as real noisy FER datasets. SOTA performance 

on benchmark in-the-wild FER datasets validates the utility of Co-

curing as a general purpose FER training framework. In the 

future, we would like to test this method on real-world noisy 

datasets from other domains.  
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