
ISSN: 0976-9102 (ONLINE) ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, MAY 2021, VOLUME: 11, ISSUE: 04

DOI: 10.21917/ijivp.2021.0352

2475

CNN TRANSFER LEARNING FOR DETECTION, COUNTING AND SEGMENTATION

OF COCONUT PALMS FROM SATELLITE IMAGES

Niranjan D. Gholba1, Shefali Agrawal2 and Arun Babu3
Indian Institute of Remote Sensing, Indian Space Research Organisation - Dehradun, India

Abstract

Several Free and Open Source (FOSS) tools use Neural Networks for

detection of objects from images and videos captured from hand-held

imaging devices. Satellite based Remote Sensing images offer wide area

coverage and hold potential for detecting, counting and mapping

manmade objects, trees, etc., but, have embedded geospatial

information and often have more than three bands. Hence, the existing

FOSS tools are not able to directly process Remote Sensing images for

Computer Vision (CV) applications. This research aims to devise a

methodology to adapt a FOSS CV tool, namely the TensorFlow Object

Detection (TFOD) API, for detection, counting and segmentation of

coconut palms from satellite images and ascertain if the technique can

facilitate automated census of coconut palms. Dataset of coconut palm

crowns was custom-created using multi-band images from World View-

3 satellite. The images were pan-sharpened, cropped and labelled.

SSDLite MobileNet V2 CNN, which was pre-trained on COCO dataset,

was subjected to transfer learning using coconut data on Tesla K80x

GPU. This re-trained CNN could successfully detect and count coconut

palms with F-1 score more than 96 %. Histogram thresholds were used

to segment and delineate each detected coconut palm crown with 87 %

accuracy. Assessment of relative health status of coconut palms was

mapped using the Normalised Difference Red-Edge Index derived from

satellite images. This study demonstrated that TFOD API can indeed

be adapted for object detection and segmentation from Remote Sensing

images, albeit with some limitations.

Keywords:

Computer Vision, Object Detection, Segmentation, TensorFlow Object

Detection API, Satellite Image

1. INTRODUCTION

Artificial Intelligence (AI) aims to create systems that mimic

human intelligence. AI includes robotics, cognitive modeling,

expert systems, heuristic problem solving, knowledge

representation, machine learning, etc. [1]. Computer Vision (CV)

is a field that combines expertise from Computer Science and

Artificial Intelligence and enables a computer to use algorithms

for detection, classification, identification, labeling, segmentation

of different objects from images and videos.

Object Detection is an important function of CV, which is

achieved using a set of algorithms called as Convolutional Neural

Networks (CNNs) [2], often classified under the sub-section

named Deep Learning [3]. There are several open-source as well

as commercial tools for Object Detection. TensorFlow Object

Detection Application Programming Interface (TFOD API) [4] is

one such open source compendium of algorithms, hosted by

Google Inc. It is based on Python backbone and uses the Deep

Learning libraries like TensorFlow and Keras. It provides a

convenient and modular approach for object detection of 3-band

or single band (grayscale) images. TFOD API includes CNNs pre-

trained on image datasets like PASCAL VOC, COCO, ImageNet,

etc. which comprise of open-source image collections of ‘.jpg’,

‘.png’, ‘.bmp’ class of 3-layered images captured from hand-held

or ground-based recording devices. TFOD API has been

successfully used to detect dogs using SSD MobileNet V2 CNN

from a custom set of image data [5], to detect animal movements

from video cameras and initiate alerts signals on Raspberry Pi [6],

to detect and count humans [7], to detect vehicle number plates

from images using RetinaNet[8], to detect anomalies in medical

images using SSD MobileNet V1[9], to detect hand-written

mathematical digits and operators [10], to detect playing

cards[11], etc.

Object detection using Computer Vision has the potential to

detect specific objects like trees, buildings, vehicles, etc, from

airborne or satellite images. Though the principles of Computer

Vision can be applied for Remote Sensing (RS) applications, there

are certain challenges as the RS data is quite different from the

conventional images [2]. The Table.1 highlights the differences

and also suggests solutions to use conventional CV tools for RS

images. Owing to these differences in the image data, TFOD API

or any other CV based application cannot directly process RS

images for training CNNs, without deliberate customization.

Table.1. Challenges for Object Detection from Remote Sensing

images compared to normal images.

Parameter

Ground-

based

Image

Remote

Sensing Image

Suggested

Modifications

in CV Tools

File size
Small (Kb

to Mb)

Very Large

(Mb to Gb)

Crop RS image

into small pieces

Spectral

Information

Generally

RGB (3-

layer) or

grayscale

(1-layer)

Panchromatic,

LiDAR,

Microwave,

Multispectral,

Thermal,

Hyperspectral

Use

combinations of

any 3 layers at a

time and Image

Fusion

Common File

Formats

jpg/ jpeg,

png, bmp,

tiff

GeoTiff, img,

jp2

2-way

conversion

between formats

Number of

objects per

image

Less /

limited

High to Very

high

Use robust

CNNs

No of images

available for

training

Very high

(in

millions)

Few (hundreds

or lesser)

Data

Augmentation

Size of object

relative to image

dimensions

Large
Small to very

small

Zoom-in to

create training

data

CV techniques hold tremendous potential to use multi-band

satellite images to detect, count and segment objects like coconut

palm crowns.

NIRANJAN D GHOLBA et al.: CNN TRANSFER LEARNING FOR DETECTION, COUNTING AND SEGMENTATION OF COCONUT PALMS FROM SATELLITE IMAGES

2476

Coconut (Cocos nucifera Linnaeus) is a major plantation crop.

India ranks among the top three nations in global statistics of

acreage, production and productivity of coconut [12]. In India,

livelihood of around 12 million people depends on coconut palms

[13]. However, there is a vast scope to improve productivity. For

knowing the areas requiring attention, a detailed census of

coconut palms is essential, that would provide count of the

number of palms, area under coconut palms and map of their

health status. Manual census is costly, time consuming and prone

to human biases and errors. Contrary to this, remote sensing

images provide undisputed truth of large areas in short time.

Therefore, this study explores the feasibility of modifying the

TensorFlow Object Detection API for aiding object detection and

segmentation from satellite images achieving all the above-

mentioned facets of the census.

2. MATERIALS AND METHODS

2.1 RESOURCES AND TOOLS

The study area was selected in Shivamogga district in

Karnataka state, India measuring 10 square km size. This area is

predominant in plantations of coconut as well as arecanut, in

addition to a few fruit plantations. Coconut plantations are

available in sparse as well as dense spacing. Ground Truth (GT)

was collected by visiting the coconut plantations, recording the

GPS co-ordinates, ground photos and counting the number of

palms. This data was uploaded in Android based forms in ODK

Collect App. Using the QRealTime plugin in QGIS software, this

data was collated and converted into shapefiles for subsequent use

during validation.

High resolution cloud-free images of date 05.01.2018 were

obtained from World View-3 commercial satellite of Digital

Globe Inc. [14]. They contained a Panchromatic image (01 band

with 0.4 m spatial resolution) and a Multispectral image (8 bands

each with 1.2 m spatial resolution) covering the visible and Near-

Infra Red (NIR) region of the Electro-Magnetic spectrum.

This study was undertaken in Python 3.6 through Anaconda-3

interface. Annotation of coconut palms was done on images using

labelImg GUI. TFOD API (models ver 1.12.0) was cloned from

GitHub and was activated [5]. CNN training was undertaken on

nVIDIA Tesla K80x GPU. The progress of training and validation

was monitored real-time using TensorBoard graphical web-based

interface [15]. Testing of the CNN was done using the Evaluation

Metrics, namely, Precision, Recall and F-1 score [16], [17].

2.2 METHODOLOGY

Pictorial depiction of the methodology devised for this

research is depicted in Figures 1 and 2.The training and testing

samples have to be essentially separate when dealing with CNNs.

If there is an overlap then the testing results depict unnaturally

high accuracy. Therefore, water-tight compartments were created

out of the study area. The western 65 % of the study area was used

to generate training and validation images, while eastern 35 %

area was used for test images [18].

Basic Image Processing was undertaken in ERDAS Imagine

software. The Panchromatic (Pan) and Multispectral (MX)

satellite images were fused using Subtractive Resolution Merge

technique to generate Pan-sharpened 8-band MX images giving

an output of 0.4 m spatial resolution. The Pan-sharpened images

were cropped into square images of 386 x 386 pixel size to ensure

feeding a square image into the CNN. They were then converted

into ‘.jpg’ format with nil compression. The Pan images were 1-

layered, while the pan-sharpened MX images were 3-layered

colour-composites with combinations of band numbers 7, 5, 3

(False Colour Composite: NIR, Red, Green) and 5, 3, 2 (Natural

Colour Composite: Red, Green, Blue).

The ‘.jpg’ images were opened in ‘labelImg’ tool, which is a

Python based GUI for annotating objects [19] and rectangular

boxes were marked on coconut palm crowns on the images. It was

ensured that the annotation boxes were compact and covered only

the coconut palm crown. Conscious effort was made to minimize

the inclusion of adjacent features like background soil or crown

shadow inside the annotation box. This would assist the CNN in

correctly identifying the coconut palms [18]. The bounding co-

ordinates of these annotations were saved as ‘.xml’ files in the

PASCAL VOC format.

The images and corresponding ‘.xml’ files were randomly split

into training data (65 %) and validation data (35 %). The TFOD

API requires the annotation data to be in a customized format

called as ‘TF Record’. The code for this conversion was adopted

from Raccoon Dataset Detector [20]. The ‘.xml’ files were first

combined and converted into Comma Separated Value (‘.csv’)

files, namely ‘train_labels.csv’ and ‘val_labels.csv’. Further on,

they were converted to TF Records with names, ‘train.record’ and

‘val.record’ respectively. Since the object to be detected was

coconut crown, the label name was fed as ‘coco’ in the

‘label.pbtxt’ file. All the above mentioned files were then stored

in a specific directory structure [21] to facilitate TFOD API to

access it during training and validation.

The main focus of this study was to develop a workable

methodology to address the objectives of this study. Therefore,

the amended code and the modified methodology hereafter are

explained in the next section along with the corresponding results

and discussion.

3. RESULTS AND DISCUSSION

3.1 ALGORITHM TRAINING

Model Zoo [22] of the TensorFlow Object Detection API has

pre-trained algorithms. From this, SSDLite MobileNet V2

algorithm was selected due to its better performance [18] and was

subjected to Transfer Learning (also known as Fine Tuning) with

coconut data from satellite images. Contents of the ‘.config’ file

were amended to cater to image dimensions, include data

augmentations and activate dropout and L-2regularization

(weight: 0.00004) and increase the maximum detections to 500

per image.

During training, it is important to select and save those

checkpoints with lowest loss and highest values of evaluation

metrics. By default, TFOD API records loss values every 100

epochs, but saves checkpoints every 600 seconds. Also, only last

five checkpoints are retained, and all earlier ones are erased from

the memory. This created problems in finding the best checkpoint.

HIRAL A PATEL AND DIPTI B SHAH: SEMI-FRAGILE BLIND WATERMARKING MECHANISM FOR COLOR IMAGE AUTHENTICATION AND TAMPERING

2477

Fig.1. Flow chart of steps followed during Data Preparation, Training and Validation of the CNN

Fig.2. Flow chart of steps followed during testing of algorithm. Output comprises of Coconut Crown Detection, Counting of palms,

Segmentation of Crown Cover and computation of Area and generation of Map of Health Variations

World View-3 Satellite Image (Pan + MX)

Resolution Merge of Pan and MX

Crop image for Training and

Validation

Convert to ‘.jpg’ with band

combinations of
7, 5, 3 (NIR, R, G),

5, 3, 2 (R, G, B) and Pan

Split Dataset

 Training (65%)

 Validation (35%)

Annotation of coconut palms to

generate .xml files in PASCAL_VOC

format

Convert to CSV and then to TF

Record

Create

“class_label.pbtxt” file

TensorFlow Model
Zoo

(SSDLite MobileNet
V2)

Amend Hyper-

Parameters in config file.

Add Augmentation,

Dropout and L2

Regularization

CNN

Training in

GPU

Monitor Trg progress
(mAP, Eval Loss,

Training Loss)

Select Epochs with

least Loss values

Convert to Frozen

Inference Graph

Evaluate on test Images:
 Bounding Boxes

 Count of Detections

 Class labels

 Prediction Scores

Compare with Ground

Truth to compute

Precision, Recall, OA

and F-1

Select CheckPoint with

highest F-1 Score

Training and Validation
Data Preparation

WV-3 Pan Sharpened

Image

Crop images for Testing

Convert to ‘.jpg’ with

band combinations of

7,5,3 (NIR, R, G), 5,3,2

(R,G,B) and Pan

Best CheckPoint used on

test Images:
 Bounding Boxes

 Count of Detections

 Class labels

 Prediction Scores

Compare with Ground

Truth to compute

evaluation Metrics

Precision, Recall, OA

and F-1

Detection and counting

Create Binary Mask-

Image to separate valid

Detections

 Dot Multiply: (Test

image)*(Mask Array)

 Blur Image

 Convert to HSV

Plot Histogram and select

values unique to

Coconuts

Segment to retain only

coconut palm crown

shapes

Calculate Area under

Coconut Crown Cover

WV-3 NDRE Image

 Dot Multiply: (NDRE

image)*(Mask Array)

 Pseudo_colour

Crop images and convert

to’.jpg’

Map with Health

Variations

Segmentation Health Map

HIRAL A PATEL AND DIPTI B SHAH: SEMI-FRAGILE BLIND WATERMARKING MECHANISM FOR COLOR IMAGE AUTHENTICATION AND TAMPERING

2478

From the graph, epoch with lowest loss could be found, but

that particular checkpoint was very often not saved. To ensure

synchronization between recording of parameters and saving of

checkpoints, the code was modified in ‘model_main.py’ file to

enable recording and saving of checkpoints every 100 epochs and

all the epochs were saved without overwriting

(save_summary_steps=100, save_checkpoints_steps = 100,

keep_checkpoint_max = None).The algorithm was trained for

1,00,000 epochs. Several parameters like Mean Average

Precision (mAP), Training Loss, Evaluation Loss, Average

Recall, etc. were monitored real-time. Checkpoints with low

values of training loss were selected and were converted into

Frozen Inference Graphs for validation.

3.2 VISUALIZATION AND TESTING OF

ALGORITHM

The “object_detection_tutorial.ipynb” notebook in TFOD API

was used for visualization of the detected objects.

But, TFOD output has default bounding boxes with thick

borders and the large sized labels. Since, coconut palms are

closely spaced, such labels caused cluttering (Fig.3 (a)). In order

to de-clutter the detections, the line thickness was reduced from 8

to 1. Code was amended to enable the algorithm to draw up to

maximum 500 boxes (default value is 100). Also, the default class

labels and prediction scores were deactivated to improve the

visualization (Fig.3 (b)).

(a) (b)

Fig.3. Visualization of detections. (a) Detections with default

settings caused overlapping of labels. (b) De-cluttered detection

boxes

Default detections are on 3 layered colour images. (Natural

and False Color Composite images). To test the 1-layered

Panchromatic images, the code was modified by reshaping the

image numpy array [23].

In TFOD API, the output in form of ‘detection boxes’ gets

saved in the memory as an output dictionary referred to as

output_dict[‘detection_boxes’] in the notebook. The

corresponding scores of these detections got stored as ‘detection

scores’ in float format in the range of 0 to 1. The number of boxes

equal the number of scores. Hence, the total number of boxes

generated by the CNN was computed from the number of scores

as below.

total_no_of_boxes=output_dict['detection_scores'].size

Jaccard Index, also called as Intersection over Union (IoU)

was used to decide whether the detection boxes were valid. The

ratio of the common part (intersection) between the ground truth

and detection box to the total part (union) is IoU. Its value varies

between 0 and 1. When there is no overlap, IoU equals zero. When

the overlap is complete and exact, then IoU is 1. Though it is

desirable to have IoU values closer to 1, practically, detection

boxes having IoU0.5 were considered valid. To count the

number of valid detections, a counter was used in a loop as below.

count=0

for j in range(total_no_of_boxes):

if output_dict['detection_scores'][j] 0.5:

count = count +1

End

End

Each detection box was stored in the dictionary as a row with

four values corresponding to the pixel locations of top-left corner

and bottom-right corner. The sequence was ymin, xmin, ymax and xmax

with respect to the origin of the image at the top-left corner. The

default values were normalized between 0 and 1 and hence were

difficult to perceive. They had to be converted to the actual scale

of the image using the image dimensions. The images used in this

study were square images. Hence the image width and height were

same. The bounding-box coordinates were converted into the

pixel-based values by multiplying them with the image width

(number of pixels).

convert_to_image_coord=output_dict['detection_boxes']*im_hei

ght

The output_dict['detection_boxes'] was a numpy array which

contained vertical stack of individual arrays for all the boxes. To

extract the valid detections from this array, it was spilt into arrays

of individual detection boxes[24].

split_image_coord=np.vsplit(convert_image_coord_to_int,

total_no_of_boxes)

From the spilt array, those having detection_scores>= 0.5

(IoU) were selected and then stacked into a new numpy array and

concatenated to get one final array as below[25].

array1 = []

j = 0

for j in range(total_no_of_boxes):

if detection_scores_array[j] 0.5:

array1.append(split_image_coord[j])

j+=1

output = np.vstack(array1)

k = 0

concat_valid_boxes=

np.concatenate(array1[:k+1]+array1[k+1:], axis=0)

End

End

3.3 EVALUATION METRICS

Testing of the algorithm’s performance was undertaken using

the Evaluation Metrics [16], [17] described by the formulae

shown in Equations 1-3. The predicted detection boxes were

checked for correctness as per the Ground Truth data. Only those

detections, which correctly covered the coconut palm crowns

were counted manually and its value was fed to find Precision,

Recall and F-1 Score.

ISSN: 0976-9102 (ONLINE) ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, MAY 2021, VOLUME: 11, ISSUE: 04

2479

Precision=(No of boxes containing coconut palms)/(Total number

 of bounding boxes) (1)

 Recall= (No of boxes containing coconut palms)/(Total number

 of coconut palms in image) (2)

 F1-Score= 2*(Precision*Recall)/(Precision+Recall) (3)

3.4 SEGMENTATION BASED ON HISTOGRAM

THRESHOLDS

Segmentation is used in CV for delineating the shape (outer

form) of objects. This is useful in gaming applications, self-driven

vehicles, sorting fruits, etc. Segmentation can be achieved using

CNNs like Mask-RCNN, U-Net, Seg-Net, etc. which generate

output if form of instance as well as semantic segmentation [26].

Else, segmentation can also be achieved using thresholds from the

image histograms. K-means clustering was used to achieve

segmentation of ripe strawberries [27], while thresholding was

used for identifying ripened strawberries to assist a robotic

harvester [28].

In this study, it was aimed to demarcate the coconut palm

crown boundary and then compute the area under the crown

cover. To enable this, the output image was cropped to the limits

of the valid bounding boxes. This was done by masking all else

other than the valid bounding boxes. Towards this, a numpy array

with value = 0 was created as below.

mask_zero=np.zeros([im_height, im_width], int)

A copy of this array was used in a loop to check each pixel,

whether it falls within the co-ordinates of a valid bounding box.

If found true, then the pixel value was changed to 1, else, the pixel

value was retained as 0. This was looped for all the valid bounding

boxes and the output was a binary mask [28], [29].

for k in range (count):

ymin=concat_valid_boxes[k,0]

xmin=concat_valid_boxes[k,1]

ymax=concat_valid_boxes[k,2]

xmax=concat_valid_boxes[k,3]

for i in range (im_height):

for j in range (im_width):

if iymin and iymax and jxmin and jxmax:

mask[i,j] = 1

else:

mask[i,j]=mask[i,j]

End

End

End

The binary mask was a single layered numpy array. However,

for it to be compatible with 3-layered test images, the mask was

converted into a three-layered mask. To crop the test image, it was

dot-multiplied with the three-layered mask array (Fig.4).

mask_3lyr = np.stack((mask,)*3, axis=-1)

subset_to_boxes=mask_3lyr*image

Coconut crown is a 3-dimensional object made up of multiple

leaves radiating out from the center at various angles. The leaf

vein and the leaflets have different tones. The leaves facing

sunlight appear brighter than others. Though all the leaves

together make the crown, the tonal heterogeneity poses a

challenge to segmentation. Therefore, it was necessary to subdue

the tonal variations and it was achieved by blurring the image

using Gaussian Blur in OpenCV.

image_blur = cv2.GaussianBlur(image, (9, 9), 0)

(a) Binary Mask highlighting

valid detection boxes

(b) Test image cropped to

extent of bounding boxes

Fig.4. (a) Binary mask has pixels inside detection boxes with

IoU0.5 with value of 1. Rest pixels have value of 0. (b) Binary

mask image was dot-multiplied with test image to get image

cropped to the detections only

In the test image with a False Colour Combination, the healthy

coconut crowns appeared red or pink in colour. This colour was

to be retained and rest all colours were to be blanked out. The

histogram of the test image in Red-Green–Blue (RGB) domain

was not good enough to isolate the regions corresponding to

coconut crown. So the blurred RGB image was converted into

Hue-Saturation-Value (HSV) domain[28] for better separation of

the coconut crowns (Fig.5).

image_blur_hsv = cv2.cvtColor(image_blur,

cv2.COLOR_RGB2HSV)

(a)

(b)

Fig.5. (a) Gaussian Blur applied on cropped image (b) Blurred

image converted to HSV domain

Histogram of the HSV image was plotted and displayed in

RGB colours (Fig.6).

The histogram values for HSV image could easily separate the

regions corresponding to the coconut crowns, red being the

dominant colour. Input threshold values from the histogram were

then combined to create an output image [28].

min_red = np.array([50, 80, 50])

max_red = np.array([256, 250, 250])

image_red1 = cv2.inRange(image_blur_hsv, min_red, max_red)

The above output image gave the edges of the coconut crown.

It was an 8-bit image with DN values ranging from 0-255. Before

it could be used to crop the test image, it had to be converted into

NIRANJAN D GHOLBA et al.: CNN TRANSFER LEARNING FOR DETECTION, COUNTING AND SEGMENTATION OF COCONUT PALMS FROM SATELLITE IMAGES

2480

a binary mask. The pixels depicting the coconut crown had DN

values between 245 and 255. Therefore, a threshold was applied

to convert all the DN values 245 to 1 and convert all other DN

values to 0. This generated a binary mask which was stacked into

a 3-layered mask and then was then dot-multiplied with the test

image to get the crown cover (Fig.7).

(a)

(b)

(c)

Fig.6. Histogram of (a) Hue (b) Saturation (c) Value components

of HSV image

(a) Binary mask of coconut

crown boundary extracted using

HSV Histogram values

(b) Test image cropped to

extent of coconut crown

boundary

Fig.7. (a) Binary mask generated from histogram of HSV image

includes only the shape of the coconut crowns. (b) Extracted

coconut palm crown shapes

3.5 ESTIMATION OF CROWN COVER AREA

From the binary mask of the coconut crowns generated earlier,

loops were invoked to count the number of pixels with value 1,

which covered all the pixels of the coconut crowns only. This

count was then multiplied with the square of the image spatial

resolution to get the area under the coconut crowns. Crown cover

of the coconut palms for the image depicted in Fig.7 was

estimated from GT and it was found to be 1004.91 m2. The

algorithm estimated crown cover to be 879.68 m2, which was

87.54 % of the GT value. The coconut crown is not a perfect

circle, since the radiating leaves in the coconut crown create gaps

at the fringes. This gap cannot be measured during GT, but is

sensed on images. The algorithm could identify the pixels in such

gaps and removed them during segmentation. But, histogram

thresholding does have limitations as it tends to exclude certain

pixels at the crown fringes due to lesser tones of red. Therefore,

at these places, the shape and area of coconut crown demonstrate

variation in the GT and the predicted values.

3.6 MAP OF HEALTH VARIATIONS

After counting detecting and the coconut palms, it was

essential to segregate the healthy palms from the lesser healthy

ones. This would help to identify the palms that are infected or

need more nutrition.

Red-Edge is the region between 700-750 nm wavelengths of

the Electro-Magnetic spectrum, which helps to characterize stress

in plants related to nitrogen, chlorophyll, senescing and water

content. Band-6 of World View-3 satellite corresponds to Red-

edge (698 -749 nm) and Band-7 corresponds to NIR (765–899

nm). Using these two bands from the Pan-sharpened image,

Normalized Difference Red Edge Index (NDRE) was computed

using the formula (Eq.(4)) [30], [31], where DN stands for Digital

Number (pixel value).

 𝑁𝐷𝑅𝐸 =
(𝐷𝑁𝐵𝑎𝑛𝑑 7)− (𝐷𝑁𝐵𝑎𝑛𝑑 6)

(𝐷𝑁𝐵𝑎𝑛𝑑 7)+ (𝐷𝑁𝐵𝑎𝑛𝑑 6)
, (4)

NDRE image is a single-band grayscale image in which the

pixel values range from -1 to 1. The darker pixels (lower values)

represent less healthy vegetation, while brighter pixels (higher

values) represent healthy vegetation. To highlight the tonal

variations the gray-scale image was rescaled to 0-255 and then

converted to a pseudo-colour image using the ‘Jet’ colour scheme

in OpenCV [32]. In this pseudo-colour image, red colour depicted

healthy palm crowns, while orange /yellow corresponded to less

healthy crowns. It was further dot-multiplied with the mask array

to retain only the pixels pertaining to the coconut crowns. So the

background area was removed and thus, the Health Variation Map

of the Coconut Crown Cover was obtained (Fig.8).

im_255=im*255

im_color_255=cv2.applyColorMap(im_255,cv2.COLORMAP_J

ET)

crown_health=im_color_255*coconut_mask

Since the coconut crowns are made of leaves radiating

outwards from the center, the canopy density is maximum at the

center and reduces towards the fringes. NDRE is directly

proportional to canopy density and is inversely proportional to

gap fraction and senescence [31]. Hence, the inner part of the

crown is dense and so appears red in NDRE pseudo-colour image.

(a) (b)

ISSN: 0976-9102 (ONLINE) ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, MAY 2021, VOLUME: 11, ISSUE: 04

2481

(c) (d)

Fig.8. (a) Grayscale NDRE image with values ranging from -1 to

1. (b) NDRE image rescaled to 0-255 and converted pseudo-

colour image. Red colour depicts healthy crowns and yellow

colour depicts less healthy. (c) Binary mask of the coconut

crown shape. (d) Map of the Health Variations.

(a) Original Test image – GT

palm count = 59

(b) Detected Coconut Palms =

59

(c) Coconut Crown Cover =

879 m2

(d) Path Health: Red – Healthy;

Yellow – Less Healthy

Fig.9. Pictorial Summary of the automated coconut census from

satellite image

At the fringes, the leaf density is less, so the NDRE is also less

(yellow colour). Therefore NDRE should be compared with the

visual image to cross-check if the lower values of NDRE are due

to background effect or due to actual poor health. Study of this

NDRE image reveals that yellow colour is more prevalent in the

western edge of the image. That means the palms on the west side

are more stressed and solicit agricultural measures to mitigate the

stress.

3.7 AUTOMATED COCONUT SURVEY

Combination of all the above results produced a holistic and

automated approach for coconut palm detection (bounding

boxes), mapping the crown shapes and health variations from

World View-3 satellite images. In addition to it tabular data

consisting of count of palms and crown cover area was generated.

Summary of the automated census for a small area has been

demonstrated in Fig.9. Thus, it was proved on a limited area that

automated census of coconut palms was possible using transfer

learning of pre-trained CNNs to detect, count, segment the

coconut palm crowns and to measure the crown cover area to get

the estimate of extent of crop cover and also get the map of

relative health status of the coconut palms using multiband

satellite image.

4. CONCLUSION

Need of the hour is to expand the CV techniques to assist in

solving practical challenges. The technology should be

customized to reduce the human effort on ground. Therefore, this

research expanded the domain of the CV techniques beyond just

detection and counting of the coconut palms. It not only

delineated the crown shape, but also found out the relative levels

of stress in the coconut palms. This would facilitate identifying

the plants needing additional agricultural management practices.

This study used TensorFlow Object Detection API, a FOSS

tool, and customized its code to enable it for automatic census of

coconut palms using very high resolution images from World

View-3 satellite. It used three band combinations of the Pan-

sharpened Multispectral images and single-band panchromatic

images. The study used SSDLite MobileNet V2 algorithm that

was pre-trained on COCO dataset. It was subjected to transfer

learning on the custom coconut dataset. This algorithm trained

well and was able to successfully detect and count the palms with

more than 96 % F-1 score.

The coconut crowns were segmented using histogram

thresholding technique, and the crown cover area was computed

with 87 % accuracy. Also, mapping of the relative health status

(stress variations) was done using the Normalized Difference

Red-Edge Index image. The combination of outputs from all these

techniques delivered a holistic output in form of automated

coconut census using Remote Sensing images. This study was

done on a small area, but has demonstrated that the TensorFlow

Object Detection API can be successfully used for detection and

segmentation of objects from Remote Sensing images. This study

would be further extended to include testing of the CNN

algorithm on larger sized images and getting the output of

detecting boxes in the geospatial domain with the information of

latitude and longitude.

REFERENCES

[1] R. Vargas, A. Mosavi and L. Ruiz, “Deep Learning: A

Review”, Advances in Intelligent Systems and Computing,

Vol. 5, No. 2, pp. 1-14, 2017.

[2] Y. Li, H. Zhang, X. Xue, Y. Jiang and Q. Shen, “Deep

Learning for Remote Sensing Image Classification: A

Survey”, Data Mining and Knowledge Discovery, Vol. 8,

No. 6, pp. 1-17, 2018.

[3] I. Goodfellow, Y. Bengio and A. Courville, “Deep

Learning”, MIT Press, 2016.

[4] TensorFlow, “TFOD API-GitHub”, Available at

https://github.com/tensorflow/models/tree/master/research/

object_detection, Accessed at 2020.

[5] K. Patel, “Custom Object Detection using TensorFlow from

Scratch”, Available at:

NIRANJAN D GHOLBA et al.: CNN TRANSFER LEARNING FOR DETECTION, COUNTING AND SEGMENTATION OF COCONUT PALMS FROM SATELLITE IMAGES

2482

https://towardsdatascience.com/custom-object-detection-

using-tensorflow-from-scratch-e61da2e10087, Accessed at

2020.

[6] Evan, “TensorFlow-Object-Detection-on-the-Raspberry-

Pi”, Available at:

https://github.com/EdjeElectronics/TensorFlow-Object-

Detection-on-the-Raspberry-Pi, Accessed at 2020.

[7] R. Balsys, “TensorFlow Object Detection Merged with

Grabscreen Tutorial Part 2”, Available at:

https://pylessons.com/Tensorflow-object-detection-

merged-grab-screen-faster/, Accessed at 2020.

[8] S. Paul, “Vehicle Number Plate Detection”, Available at:

https://github.com/sayakpaul/Vehicle-Number-Plate-

Detection, Accessed at 2020.

[9] V. Sodha, “TensorFlow Object Detection API Tutorial -

Training and Evaluating Custom Object Detector”,

Available at: https://becominghuman.ai/tensorflow-object-

detection-api-tutorial-training-and-evaluating-custom-

object-detector-ed2594afcf73, Accessed at 2019.

[10] S. Obadja, “Math Operators Object Detection”, Available at:

https://github.com/stevenobadja/math_object_detection,

Accessed at 2020.

[11] Evan, “TensorFlow-Object-Detection-API-Tutorial-Train-

Multiple-Objects-Windows-10”, Available at:

https://github.com/EdjeElectronics/TensorFlow-Object-

Detection-API-Tutorial-Train-Multiple-Objects-Windows-

10, Accessed at 2020.

[12] Coconut Development Board, “Statistics - Area, Production,

Productivity of Coconut”, Available at:

https://www.coconutboard.gov.in/Statistics.aspx, Accessed

at 2020.

[13] V.G. Chandrasekharan, V.C. Vasanthkumar, P.V.

Preethakumari, R.P. Viswam and E.S. Vinod, “Consolidated

Report Concurrent Estimation of Coconut Production in

Kerala 2012-13”, Available at:

https://www.coconutboard.in/images/Survey/report-kerala-

2012-13.pdf, Accessed at 2013.

[14] Digital Globe, “World View-3”, Available at: https://dg-

cms-uploads-

production.s3.amazonaws.com/uploads/document/file/95/D

G2017_WorldView-3_DS.pdf, Accessed at 2019.

[15] Hands-On Tensor Board, “TensorFlow Dev Summit 2017”,

Available at:

https://www.youtube.com/watch?v=eBbEDRsCmv4,

Accessed at 2019.

[16] J. Hui, “mAP (Mean Average Precision) for Object

Detection”, Available at:

https://medium.com/@jonathan_hui/map-mean-average-

precision-for-object-detection-45c121a31173, Accessed at

2019.

[17] R. Padilla, “Metrics for Object Detection”, Available at:

https://github.com/rafaelpadilla/Object-Detection-Metrics,

Accessed at 2019.

[18] N.D. Gholba, “Detection of Coconut Palms and Allied

Species from High Resolution Satellite Images using Deep

Learning Techniques”, Master Thesis, Department of

Computer Science, Andhra University, pp. 1-120, 2019.

[19] T.T. Lin, “labelImg”, Available at:

https://github.com/tzutalin/labelImg, Accessed at 2019.

[20] D. Tran, “Raccoon Detector Dataset”, Available:

https://github.com/datitran/raccoon_dataset, Accessed at

2019.

[21] L. Vladimirov, “Training Custom Object Detector —

TensorFlow Object Detection API tutorial documentation,”

TensorFlow, 2018. Available at: https://tensorflow-object-

detection-api-tutorial.readthedocs.io/en/latest/training.html.

Accessed: 27-Mar-2019.

[22] Tensorflow, “Tensorflow Detection Model Zoo”, Available

at:

https://github.com/tensorflow/models/blob/master/research/

object_detection/g3doc/detection_model_zoo.md,

Accessed at 2019.

[23] M. Hugi, “Tensorflow Numpy Image Reshape [Grayscale

Images] - Stack Overflow”, Available at:

https://stackoverflow.com/questions/51872412/tensorflow-

numpy-image-reshape-grayscale-images, Accessed at 2019.

[24] SciPy, “NumPy v1.17 Manual: numpy.vsplit”, Available at:

https://docs.scipy.org/doc/numpy/reference/generated/num

py.vsplit.html, Accessed at 2020.

[25] P. Sharma, “Computer Vision Tutorial: A Step-by-Step

Tutorial on Image Segmentation Techniques (Part 1)”,

Available at:

https://www.analyticsvidhya.com/blog/2019/04/introductio

n-image-segmentation-techniques-python/, Accessed at

2019.

[26] X. Liming and Z. Yanchao, “Automated Strawberry Grading

System based on Image Processing”, Computers and

Electronics in Agriculture, Vol. 71, No. 1, pp. 32-39, 2010.

[27] A. Danusasmita, “Image Detection Project Finding

Strawberries”, Available at: https://github.com/andridns/cv-

strawberry/blob/master/strawberry.ipynb, Accessed at 2019.

[28] Rochan, “Crop Image in Tensorflow Object Detection API

and Display It”, Available at:

https://stackoverflow.com/questions/51572429/crop-image-

in-tensorflow-object-detection-api-and-display-it, Accessed

at 2020.

[29] P.S. Thenkabail, P. Teluguntla, M.K. Gumma and V.

Dheeravath, “Hyperspectral Remote Sensing for Terrestrial

Applications”, CRC Press, 2016.

[30] Q. Xie, “Vegetation Indices Combining the Red and Red-

Edge Spectral Information for Leaf Area Index Retrieval”,

IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, Vol. 11, No. 5, pp. 1482-

1492, 2018.

[31] S. Mallick, “Apply ColorMap for pseudocoloring in

OpenCV (C++ / Python)”, Available at:

https://www.learnopencv.com/applycolormap-for-

pseudocoloring-in-opencv-c-python/, Accessed at 2020.

