
ISSN: 0976-9102 (ONLINE)                                                  ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, MAY 2021, VOLUME: 11, ISSUE: 04 

DOI: 10.21917/ijivp.2021.0352 

2475 

CNN TRANSFER LEARNING FOR DETECTION, COUNTING AND SEGMENTATION 

OF COCONUT PALMS FROM SATELLITE IMAGES 

Niranjan D. Gholba1, Shefali Agrawal2 and Arun Babu3 
Indian Institute of Remote Sensing, Indian Space Research Organisation - Dehradun, India

Abstract 

Several Free and Open Source (FOSS) tools use Neural Networks for 

detection of objects from images and videos captured from hand-held 

imaging devices. Satellite based Remote Sensing images offer wide area 

coverage and hold potential for detecting, counting and mapping 

manmade objects, trees, etc., but, have embedded geospatial 

information and often have more than three bands. Hence, the existing 

FOSS tools are not able to directly process Remote Sensing images for 

Computer Vision (CV) applications. This research aims to devise a 

methodology to adapt a FOSS CV tool, namely the TensorFlow Object 

Detection (TFOD) API, for detection, counting and segmentation of 

coconut palms from satellite images and ascertain if the technique can 

facilitate automated census of coconut palms. Dataset of coconut palm 

crowns was custom-created using multi-band images from World View-

3 satellite. The images were pan-sharpened, cropped and labelled. 

SSDLite MobileNet V2 CNN, which was pre-trained on COCO dataset, 

was subjected to transfer learning using coconut data on Tesla K80x 

GPU. This re-trained CNN could successfully detect and count coconut 

palms with F-1 score more than 96 %. Histogram thresholds were used 

to segment and delineate each detected coconut palm crown with 87 % 

accuracy. Assessment of relative health status of coconut palms was 

mapped using the Normalised Difference Red-Edge Index derived from 

satellite images. This study demonstrated that TFOD API can indeed 

be adapted for object detection and segmentation from Remote Sensing 

images, albeit with some limitations. 
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1. INTRODUCTION 

Artificial Intelligence (AI) aims to create systems that mimic 

human intelligence. AI includes robotics, cognitive modeling, 

expert systems, heuristic problem solving, knowledge 

representation, machine learning, etc. [1]. Computer Vision (CV) 

is a field that combines expertise from Computer Science and 

Artificial Intelligence and enables a computer to use algorithms 

for detection, classification, identification, labeling, segmentation 

of different objects from images and videos. 

Object Detection is an important function of CV, which is 

achieved using a set of algorithms called as Convolutional Neural 

Networks (CNNs) [2], often classified under the sub-section 

named Deep Learning [3]. There are several open-source as well 

as commercial tools for Object Detection. TensorFlow Object 

Detection Application Programming Interface (TFOD API) [4] is 

one such open source compendium of algorithms, hosted by 

Google Inc. It is based on Python backbone and uses the Deep 

Learning libraries like TensorFlow and Keras. It provides a 

convenient and modular approach for object detection of 3-band 

or single band (grayscale) images. TFOD API includes CNNs pre-

trained on image datasets like PASCAL VOC, COCO, ImageNet, 

etc. which comprise of open-source image collections of ‘.jpg’, 

‘.png’, ‘.bmp’ class of 3-layered images captured from hand-held 

or ground-based recording devices. TFOD API has been 

successfully used to detect dogs using SSD MobileNet V2 CNN 

from a custom set of image data [5], to detect animal movements 

from video cameras and initiate alerts signals on Raspberry Pi [6], 

to detect and count humans [7], to detect vehicle number plates 

from images using RetinaNet[8], to detect anomalies in medical 

images using SSD MobileNet V1[9], to detect hand-written 

mathematical digits and operators [10], to detect playing 

cards[11], etc. 

Object detection using Computer Vision has the potential to 

detect specific objects like trees, buildings, vehicles, etc, from 

airborne or satellite images. Though the principles of Computer 

Vision can be applied for Remote Sensing (RS) applications, there 

are certain challenges as the RS data is quite different from the 

conventional images [2]. The Table.1 highlights the differences 

and also suggests solutions to use conventional CV tools for RS 

images. Owing to these differences in the image data, TFOD API 

or any other CV based application cannot directly process RS 

images for training CNNs, without deliberate customization. 

Table.1. Challenges for Object Detection from Remote Sensing 

images compared to normal images. 

Parameter 

Ground-

based 

Image 

Remote 

Sensing Image 

Suggested 

Modifications 

in CV Tools 

File size  
Small (Kb 

to Mb) 

Very Large 

(Mb to Gb) 

Crop RS image 

into small pieces 

Spectral 

Information  

Generally 

RGB (3-

layer) or 

grayscale 

(1-layer)  

Panchromatic, 

LiDAR, 

Microwave, 

Multispectral, 

Thermal, 

Hyperspectral 

Use 

combinations of 

any 3 layers at a 

time and Image 

Fusion 

Common File 

Formats 

jpg/ jpeg, 

png, bmp, 

tiff 

GeoTiff, img, 

jp2 

2-way 

conversion 

between formats 

Number of 

objects per 

image 

Less / 

limited  

High to Very 

high  

Use robust 

CNNs 

No of images 

available for 

training 

Very high 

(in 

millions) 

Few (hundreds 

or lesser) 

Data 

Augmentation 

Size of object 

relative to image 

dimensions  

Large  
Small to very 

small  

Zoom-in to 

create training 

data 

CV techniques hold tremendous potential to use multi-band 

satellite images to detect, count and segment objects like coconut 

palm crowns. 
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Coconut (Cocos nucifera Linnaeus) is a major plantation crop. 

India ranks among the top three nations in global statistics of 

acreage, production and productivity of coconut [12]. In India, 

livelihood of around 12 million people depends on coconut palms 

[13]. However, there is a vast scope to improve productivity. For 

knowing the areas requiring attention, a detailed census of 

coconut palms is essential, that would provide count of the 

number of palms, area under coconut palms and map of their 

health status. Manual census is costly, time consuming and prone 

to human biases and errors. Contrary to this, remote sensing 

images provide undisputed truth of large areas in short time. 

Therefore, this study explores the feasibility of modifying the 

TensorFlow Object Detection API for aiding object detection and 

segmentation from satellite images achieving all the above-

mentioned facets of the census. 

2. MATERIALS AND METHODS 

2.1 RESOURCES AND TOOLS  

The study area was selected in Shivamogga district in 

Karnataka state, India measuring 10 square km size. This area is 

predominant in plantations of coconut as well as arecanut, in 

addition to a few fruit plantations. Coconut plantations are 

available in sparse as well as dense spacing. Ground Truth (GT) 

was collected by visiting the coconut plantations, recording the 

GPS co-ordinates, ground photos and counting the number of 

palms. This data was uploaded in Android based forms in ODK 

Collect App. Using the QRealTime plugin in QGIS software, this 

data was collated and converted into shapefiles for subsequent use 

during validation. 

High resolution cloud-free images of date 05.01.2018 were 

obtained from World View-3 commercial satellite of Digital 

Globe Inc. [14]. They contained a Panchromatic image (01 band 

with 0.4 m spatial resolution) and a Multispectral image (8 bands 

each with 1.2 m spatial resolution) covering the visible and Near-

Infra Red (NIR) region of the Electro-Magnetic spectrum. 

This study was undertaken in Python 3.6 through Anaconda-3 

interface. Annotation of coconut palms was done on images using 

labelImg GUI. TFOD API (models ver 1.12.0) was cloned from 

GitHub and was activated [5]. CNN training was undertaken on 

nVIDIA Tesla K80x GPU. The progress of training and validation 

was monitored real-time using TensorBoard graphical web-based 

interface [15]. Testing of the CNN was done using the Evaluation 

Metrics, namely, Precision, Recall and F-1 score [16], [17]. 

2.2 METHODOLOGY 

Pictorial depiction of the methodology devised for this 

research is depicted in Figures 1 and 2.The training and testing 

samples have to be essentially separate when dealing with CNNs. 

If there is an overlap then the testing results depict unnaturally 

high accuracy. Therefore, water-tight compartments were created 

out of the study area. The western 65 % of the study area was used 

to generate training and validation images, while eastern 35 % 

area was used for test images [18]. 

Basic Image Processing was undertaken in ERDAS Imagine 

software. The Panchromatic (Pan) and Multispectral (MX) 

satellite images were fused using Subtractive Resolution Merge 

technique to generate Pan-sharpened 8-band MX images giving 

an output of 0.4 m spatial resolution. The Pan-sharpened images 

were cropped into square images of 386 x 386 pixel size to ensure 

feeding a square image into the CNN. They were then converted 

into ‘.jpg’ format with nil compression. The Pan images were 1-

layered, while the pan-sharpened MX images were 3-layered 

colour-composites with combinations of band numbers 7, 5, 3 

(False Colour Composite: NIR, Red, Green) and 5, 3, 2 (Natural 

Colour Composite: Red, Green, Blue). 

The ‘.jpg’ images were opened in ‘labelImg’ tool, which is a 

Python based GUI for annotating objects [19] and rectangular 

boxes were marked on coconut palm crowns on the images. It was 

ensured that the annotation boxes were compact and covered only 

the coconut palm crown. Conscious effort was made to minimize 

the inclusion of adjacent features like background soil or crown 

shadow inside the annotation box. This would assist the CNN in 

correctly identifying the coconut palms [18]. The bounding co-

ordinates of these annotations were saved as ‘.xml’ files in the 

PASCAL VOC format. 

The images and corresponding ‘.xml’ files were randomly split 

into training data (65 %) and validation data (35 %). The TFOD 

API requires the annotation data to be in a customized format 

called as ‘TF Record’. The code for this conversion was adopted 

from Raccoon Dataset Detector [20]. The ‘.xml’ files were first 

combined and converted into Comma Separated Value (‘.csv’) 

files, namely ‘train_labels.csv’ and ‘val_labels.csv’. Further on, 

they were converted to TF Records with names, ‘train.record’ and 

‘val.record’ respectively. Since the object to be detected was 

coconut crown, the label name was fed as ‘coco’ in the 

‘label.pbtxt’ file. All the above mentioned files were then stored 

in a specific directory structure [21] to facilitate TFOD API to 

access it during training and validation. 

The main focus of this study was to develop a workable 

methodology to address the objectives of this study. Therefore, 

the amended code and the modified methodology hereafter are 

explained in the next section along with the corresponding results 

and discussion. 

3. RESULTS AND DISCUSSION 

3.1 ALGORITHM TRAINING 

Model Zoo [22] of the TensorFlow Object Detection API has 

pre-trained algorithms. From this, SSDLite MobileNet V2 

algorithm was selected due to its better performance [18] and was 

subjected to Transfer Learning (also known as Fine Tuning) with 

coconut data from satellite images. Contents of the ‘.config’ file 

were amended to cater to image dimensions, include data 

augmentations and activate dropout and L-2regularization 

(weight: 0.00004) and increase the maximum detections to 500 

per image. 

During training, it is important to select and save those 

checkpoints with lowest loss and highest values of evaluation 

metrics. By default, TFOD API records loss values every 100 

epochs, but saves checkpoints every 600 seconds. Also, only last 

five checkpoints are retained, and all earlier ones are erased from 

the memory. This created problems in finding the best checkpoint. 
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Fig.1. Flow chart of steps followed during Data Preparation, Training and Validation of the CNN 

 

Fig.2. Flow chart of steps followed during testing of algorithm. Output comprises of Coconut Crown Detection, Counting of palms, 

Segmentation of Crown Cover and computation of Area and generation of Map of Health Variations 
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From the graph, epoch with lowest loss could be found, but 

that particular checkpoint was very often not saved. To ensure 

synchronization between recording of parameters and saving of 

checkpoints, the code was modified in ‘model_main.py’ file to 

enable recording and saving of checkpoints every 100 epochs and 

all the epochs were saved without overwriting 

(save_summary_steps=100, save_checkpoints_steps = 100, 

keep_checkpoint_max = None).The algorithm was trained for 

1,00,000 epochs. Several parameters like Mean Average 

Precision (mAP), Training Loss, Evaluation Loss, Average 

Recall, etc. were monitored real-time. Checkpoints with low 

values of training loss were selected and were converted into 

Frozen Inference Graphs for validation. 

3.2 VISUALIZATION AND TESTING OF 

ALGORITHM 

The “object_detection_tutorial.ipynb” notebook in TFOD API 

was used for visualization of the detected objects.  

But, TFOD output has default bounding boxes with thick 

borders and the large sized labels. Since, coconut palms are 

closely spaced, such labels caused cluttering (Fig.3 (a)). In order 

to de-clutter the detections, the line thickness was reduced from 8 

to 1. Code was amended to enable the algorithm to draw up to 

maximum 500 boxes (default value is 100). Also, the default class 

labels and prediction scores were deactivated to improve the 

visualization (Fig.3 (b)). 

  

(a) (b) 

Fig.3. Visualization of detections. (a) Detections with default 

settings caused overlapping of labels. (b) De-cluttered detection 

boxes 

Default detections are on 3 layered colour images. (Natural 

and False Color Composite images). To test the 1-layered 

Panchromatic images, the code was modified by reshaping the 

image numpy array [23]. 

In TFOD API, the output in form of ‘detection boxes’ gets 

saved in the memory as an output dictionary referred to as 

output_dict[‘detection_boxes’] in the notebook. The 

corresponding scores of these detections got stored as ‘detection 

scores’ in float format in the range of 0 to 1. The number of boxes 

equal the number of scores. Hence, the total number of boxes 

generated by the CNN was computed from the number of scores 

as below. 

total_no_of_boxes=output_dict['detection_scores'].size 

Jaccard Index, also called as Intersection over Union (IoU) 

was used to decide whether the detection boxes were valid. The 

ratio of the common part (intersection) between the ground truth 

and detection box to the total part (union) is IoU. Its value varies 

between 0 and 1. When there is no overlap, IoU equals zero. When 

the overlap is complete and exact, then IoU is 1. Though it is 

desirable to have IoU values closer to 1, practically, detection 

boxes having IoU0.5 were considered valid. To count the 

number of valid detections, a counter was used in a loop as below. 

count=0 

for j in range(total_no_of_boxes): 

if output_dict['detection_scores'][j]  0.5: 

count = count +1 

End 

End 

Each detection box was stored in the dictionary as a row with 

four values corresponding to the pixel locations of top-left corner 

and bottom-right corner. The sequence was ymin, xmin, ymax and xmax 

with respect to the origin of the image at the top-left corner. The 

default values were normalized between 0 and 1 and hence were 

difficult to perceive. They had to be converted to the actual scale 

of the image using the image dimensions. The images used in this 

study were square images. Hence the image width and height were 

same. The bounding-box coordinates were converted into the 

pixel-based values by multiplying them with the image width 

(number of pixels). 

convert_to_image_coord=output_dict['detection_boxes']*im_hei

ght 

The output_dict['detection_boxes'] was a numpy array which 

contained vertical stack of individual arrays for all the boxes. To 

extract the valid detections from this array, it was spilt into arrays 

of individual detection boxes[24]. 

split_image_coord=np.vsplit(convert_image_coord_to_int, 

total_no_of_boxes) 

From the spilt array, those having detection_scores>= 0.5 

(IoU) were selected and then stacked into a new numpy array and 

concatenated to get one final array as below[25]. 

array1 = [] 

j = 0 

for j in range(total_no_of_boxes): 

if detection_scores_array[j] 0.5: 

array1.append(split_image_coord[j]) 

j+=1 

output = np.vstack(array1) 

k = 0 

concat_valid_boxes= 

np.concatenate(array1[:k+1]+array1[k+1:], axis=0) 

End 

End 

3.3 EVALUATION METRICS 

Testing of the algorithm’s performance was undertaken using 

the Evaluation Metrics [16], [17] described by the formulae 

shown in Equations 1-3. The predicted detection boxes were 

checked for correctness as per the Ground Truth data. Only those 

detections, which correctly covered the coconut palm crowns 

were counted manually and its value was fed to find Precision, 

Recall and F-1 Score. 
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Precision=(No of boxes containing coconut palms)/(Total number  

 of bounding boxes) (1) 

 Recall= (No of boxes containing coconut palms)/(Total number  

 of coconut palms in image) (2) 

 F1-Score= 2*(Precision*Recall)/(Precision+Recall) (3) 

3.4 SEGMENTATION BASED ON HISTOGRAM 

THRESHOLDS 

Segmentation is used in CV for delineating the shape (outer 

form) of objects. This is useful in gaming applications, self-driven 

vehicles, sorting fruits, etc. Segmentation can be achieved using 

CNNs like Mask-RCNN, U-Net, Seg-Net, etc. which generate 

output if form of instance as well as semantic segmentation [26]. 

Else, segmentation can also be achieved using thresholds from the 

image histograms. K-means clustering was used to achieve 

segmentation of ripe strawberries [27], while thresholding was 

used for identifying ripened strawberries to assist a robotic 

harvester [28]. 

In this study, it was aimed to demarcate the coconut palm 

crown boundary and then compute the area under the crown 

cover. To enable this, the output image was cropped to the limits 

of the valid bounding boxes. This was done by masking all else 

other than the valid bounding boxes. Towards this, a numpy array 

with value = 0 was created as below. 

mask_zero=np.zeros([im_height, im_width], int) 

A copy of this array was used in a loop to check each pixel, 

whether it falls within the co-ordinates of a valid bounding box. 

If found true, then the pixel value was changed to 1, else, the pixel 

value was retained as 0. This was looped for all the valid bounding 

boxes and the output was a binary mask [28], [29]. 

for k in range (count):  

ymin=concat_valid_boxes[k,0]  

xmin=concat_valid_boxes[k,1]  

ymax=concat_valid_boxes[k,2]  

xmax=concat_valid_boxes[k,3]  

for i in range (im_height):  

for j in range (im_width):  

if iymin and iymax and jxmin and jxmax:  

mask[i,j] = 1  

else:  

mask[i,j]=mask[i,j] 

End 

End 

End 

The binary mask was a single layered numpy array. However, 

for it to be compatible with 3-layered test images, the mask was 

converted into a three-layered mask. To crop the test image, it was 

dot-multiplied with the three-layered mask array (Fig.4). 

mask_3lyr = np.stack((mask,)*3, axis=-1) 

subset_to_boxes=mask_3lyr*image 

Coconut crown is a 3-dimensional object made up of multiple 

leaves radiating out from the center at various angles. The leaf 

vein and the leaflets have different tones. The leaves facing 

sunlight appear brighter than others. Though all the leaves 

together make the crown, the tonal heterogeneity poses a 

challenge to segmentation. Therefore, it was necessary to subdue 

the tonal variations and it was achieved by blurring the image 

using Gaussian Blur in OpenCV. 

image_blur = cv2.GaussianBlur(image, (9, 9), 0) 

  

(a) Binary Mask highlighting 

valid detection boxes 

(b) Test image cropped to 

extent of bounding boxes 

Fig.4. (a) Binary mask has pixels inside detection boxes with 

IoU0.5 with value of 1. Rest pixels have value of 0. (b) Binary 

mask image was dot-multiplied with test image to get image 

cropped to the detections only 

In the test image with a False Colour Combination, the healthy 

coconut crowns appeared red or pink in colour. This colour was 

to be retained and rest all colours were to be blanked out. The 

histogram of the test image in Red-Green–Blue (RGB) domain 

was not good enough to isolate the regions corresponding to 

coconut crown. So the blurred RGB image was converted into 

Hue-Saturation-Value (HSV) domain[28] for better separation of 

the coconut crowns (Fig.5). 

image_blur_hsv = cv2.cvtColor(image_blur, 

cv2.COLOR_RGB2HSV) 

 
(a) 

 
(b) 

Fig.5. (a) Gaussian Blur applied on cropped image (b) Blurred 

image converted to HSV domain 

Histogram of the HSV image was plotted and displayed in 

RGB colours (Fig.6).  

The histogram values for HSV image could easily separate the 

regions corresponding to the coconut crowns, red being the 

dominant colour. Input threshold values from the histogram were 

then combined to create an output image [28]. 

min_red = np.array([50, 80, 50]) 

max_red = np.array([256, 250, 250]) 

image_red1 = cv2.inRange(image_blur_hsv, min_red, max_red) 

The above output image gave the edges of the coconut crown. 

It was an 8-bit image with DN values ranging from 0-255. Before 

it could be used to crop the test image, it had to be converted into 
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a binary mask. The pixels depicting the coconut crown had DN 

values between 245 and 255. Therefore, a threshold was applied 

to convert all the DN values  245 to 1 and convert all other DN 

values to 0. This generated a binary mask which was stacked into 

a 3-layered mask and then was then dot-multiplied with the test 

image to get the crown cover (Fig.7). 

 

(a) 

 

(b) 

 

(c) 

Fig.6. Histogram of (a) Hue (b) Saturation (c) Value components 

of HSV image 

  

(a) Binary mask of coconut 

crown boundary extracted using 

HSV Histogram values 

(b) Test image cropped to 

extent of coconut crown 

boundary 

Fig.7. (a) Binary mask generated from histogram of HSV image 

includes only the shape of the coconut crowns. (b) Extracted 

coconut palm crown shapes 

3.5 ESTIMATION OF CROWN COVER AREA 

From the binary mask of the coconut crowns generated earlier, 

loops were invoked to count the number of pixels with value 1, 

which covered all the pixels of the coconut crowns only. This 

count was then multiplied with the square of the image spatial 

resolution to get the area under the coconut crowns. Crown cover 

of the coconut palms for the image depicted in Fig.7 was 

estimated from GT and it was found to be 1004.91 m2. The 

algorithm estimated crown cover to be 879.68 m2, which was 

87.54 % of the GT value. The coconut crown is not a perfect 

circle, since the radiating leaves in the coconut crown create gaps 

at the fringes. This gap cannot be measured during GT, but is 

sensed on images. The algorithm could identify the pixels in such 

gaps and removed them during segmentation. But, histogram 

thresholding does have limitations as it tends to exclude certain 

pixels at the crown fringes due to lesser tones of red. Therefore, 

at these places, the shape and area of coconut crown demonstrate 

variation in the GT and the predicted values. 

3.6 MAP OF HEALTH VARIATIONS 

After counting detecting and the coconut palms, it was 

essential to segregate the healthy palms from the lesser healthy 

ones. This would help to identify the palms that are infected or 

need more nutrition.  

Red-Edge is the region between 700-750 nm wavelengths of 

the Electro-Magnetic spectrum, which helps to characterize stress 

in plants related to nitrogen, chlorophyll, senescing and water 

content. Band-6 of World View-3 satellite corresponds to Red-

edge (698 -749 nm) and Band-7 corresponds to NIR (765–899 

nm). Using these two bands from the Pan-sharpened image, 

Normalized Difference Red Edge Index (NDRE) was computed 

using the formula (Eq.(4)) [30], [31], where DN stands for Digital 

Number (pixel value). 

 𝑁𝐷𝑅𝐸 =
(𝐷𝑁𝐵𝑎𝑛𝑑 7)− (𝐷𝑁𝐵𝑎𝑛𝑑 6)

(𝐷𝑁𝐵𝑎𝑛𝑑 7)+ (𝐷𝑁𝐵𝑎𝑛𝑑 6)
, (4) 

NDRE image is a single-band grayscale image in which the 

pixel values range from -1 to 1. The darker pixels (lower values) 

represent less healthy vegetation, while brighter pixels (higher 

values) represent healthy vegetation. To highlight the tonal 

variations the gray-scale image was rescaled to 0-255 and then 

converted to a pseudo-colour image using the ‘Jet’ colour scheme 

in OpenCV [32]. In this pseudo-colour image, red colour depicted 

healthy palm crowns, while orange /yellow corresponded to less 

healthy crowns. It was further dot-multiplied with the mask array 

to retain only the pixels pertaining to the coconut crowns. So the 

background area was removed and thus, the Health Variation Map 

of the Coconut Crown Cover was obtained (Fig.8). 

im_255=im*255 

im_color_255=cv2.applyColorMap(im_255,cv2.COLORMAP_J

ET) 

crown_health=im_color_255*coconut_mask 

Since the coconut crowns are made of leaves radiating 

outwards from the center, the canopy density is maximum at the 

center and reduces towards the fringes. NDRE is directly 

proportional to canopy density and is inversely proportional to 

gap fraction and senescence [31]. Hence, the inner part of the 

crown is dense and so appears red in NDRE pseudo-colour image.  

  

(a) (b) 
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(c) (d) 

Fig.8. (a) Grayscale NDRE image with values ranging from -1 to 

1. (b) NDRE image rescaled to 0-255 and converted pseudo-

colour image. Red colour depicts healthy crowns and yellow 

colour depicts less healthy. (c) Binary mask of the coconut 

crown shape. (d) Map of the Health Variations. 

  

(a) Original Test image – GT 

palm count = 59 

(b) Detected Coconut Palms = 

59 

  

(c) Coconut Crown Cover = 

879 m2 

(d) Path Health: Red – Healthy; 

Yellow – Less Healthy 

Fig.9. Pictorial Summary of the automated coconut census from 

satellite image 

At the fringes, the leaf density is less, so the NDRE is also less 

(yellow colour). Therefore NDRE should be compared with the 

visual image to cross-check if the lower values of NDRE are due 

to background effect or due to actual poor health. Study of this 

NDRE image reveals that yellow colour is more prevalent in the 

western edge of the image. That means the palms on the west side 

are more stressed and solicit agricultural measures to mitigate the 

stress. 

3.7 AUTOMATED COCONUT SURVEY 

Combination of all the above results produced a holistic and 

automated approach for coconut palm detection (bounding 

boxes), mapping the crown shapes and health variations from 

World View-3 satellite images. In addition to it tabular data 

consisting of count of palms and crown cover area was generated. 

Summary of the automated census for a small area has been 

demonstrated in Fig.9. Thus, it was proved on a limited area that 

automated census of coconut palms was possible using transfer 

learning of pre-trained CNNs to detect, count, segment the 

coconut palm crowns and to measure the crown cover area to get 

the estimate of extent of crop cover and also get the map of 

relative health status of the coconut palms using multiband 

satellite image. 

4. CONCLUSION 

Need of the hour is to expand the CV techniques to assist in 

solving practical challenges. The technology should be 

customized to reduce the human effort on ground. Therefore, this 

research expanded the domain of the CV techniques beyond just 

detection and counting of the coconut palms. It not only 

delineated the crown shape, but also found out the relative levels 

of stress in the coconut palms. This would facilitate identifying 

the plants needing additional agricultural management practices.  

This study used TensorFlow Object Detection API, a FOSS 

tool, and customized its code to enable it for automatic census of 

coconut palms using very high resolution images from World 

View-3 satellite. It used three band combinations of the Pan-

sharpened Multispectral images and single-band panchromatic 

images. The study used SSDLite MobileNet V2 algorithm that 

was pre-trained on COCO dataset. It was subjected to transfer 

learning on the custom coconut dataset. This algorithm trained 

well and was able to successfully detect and count the palms with 

more than 96 % F-1 score. 

The coconut crowns were segmented using histogram 

thresholding technique, and the crown cover area was computed 

with 87 % accuracy. Also, mapping of the relative health status 

(stress variations) was done using the Normalized Difference 

Red-Edge Index image. The combination of outputs from all these 

techniques delivered a holistic output in form of automated 

coconut census using Remote Sensing images. This study was 

done on a small area, but has demonstrated that the TensorFlow 

Object Detection API can be successfully used for detection and 

segmentation of objects from Remote Sensing images. This study 

would be further extended to include testing of the CNN 

algorithm on larger sized images and getting the output of 

detecting boxes in the geospatial domain with the information of 

latitude and longitude. 
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