
NEHAL N SHAH AND UPENA D DALAL: SAD PROCESSOR FOR MULTIPLE MACROBLOCK MATCHING IN FAST SEARCH VIDEO MOTION ESTIMATION 

DOI: 10.21917/ijivp.2015.0142

966 

SAD PROCESSOR FOR MULTIPLE MACROBLOCK MATCHING IN FAST SEARCH 

VIDEO MOTION ESTIMATION 

Nehal N. Shah
1
 and Upena D. Dalal

2

1
Department of

 
Electronics and Communication Engineering, Sarvajanik College of Engineering and Technology, India 

E-mail: nehal.shah@scet.ac.in 
2
 Department of

 
Electronics and Communication Engineering, Sardar Vallabhbhai National Institute of Technology, India 

E-mail: udd@eced.svnit.ac.in 

Abstract 

Motion estimation is a very important but computationally complex 

task in video coding. Process of determining motion vectors based on 

the temporal correlation of consecutive frame is used for video 

compression. In order to reduce the computational complexity of 

motion estimation and maintain the quality of encoding during 

motion compensation, different fast search techniques are available. 

These block based motion estimation algorithms use the sum of 

absolute difference (SAD) between corresponding macroblock in 

current frame and all the candidate macroblocks in the reference 

frame to identify best match. Existing implementations can perform 

SAD between two blocks using sequential or pipeline approach but 

performing multi operand SAD in single clock cycle with optimized 

recourses is state of art.  In this paper various parallel architectures 

for computation of the fixed block size SAD is evaluated and fast 

parallel SAD architecture is proposed with optimized resources. 

Further SAD processor is described with 9 processing elements which 

can be configured for any existing fast search block matching 

algorithm. Proposed SAD processor consumes 7% fewer adders 

compared to existing implementation for one processing elements. 

Using nine PE it can process 84 HD frames per second in worse case 

which is good outcome for real time implementation. In average case 

architecture process 325 HD frames per second. 

Keywords: 

Motion estimation (ME), Block Matching Algorithm (BMA), Sum of 

Absolute Difference (SAD), Processing Element (PE), Macroblock 

(MB), SAD processor, Diamond Search Architecture 

1. INTRODUCTION

Video compression involves block based motion estimation 

(ME) [1] between successive frames for temporal redundancy 

reduction. It is defined as searching the motion vector which is 

the displacement of the coordinate of the best similar 

macroblock (MB) in reference frame for the macroblock in 

current frame. The most commonly used metric to calculate the 

resemblance is the Sum of Absolute Difference (SAD), which 

adds up the absolute differences between corresponding 

elements in the candidate and current block. Candidate MB 

having minimum distortion is treated as best match. Full search 

or fast search algorithm decides how many candidate MBs are 

searched which is most time consuming process in estimation.  

SAD processor consists of N processing elements (PE) for N 

candidate MBs, each PE consists of three parts; absolute 

difference calculation between corresponding elements of MB, 

performing addition of all resultant operands and finding MB 

having minimum SAD value among all candidate blocks. The 

hardware implementation of multi operand adders has been 

addressed using various approaches among them most common 

approach is compressor trees utilizing different heuristics. 

Implementation of 8:4 and 9:4 compressors [2] based on full 

adders and mux demonstrates reduction in vertical critical path 

and number of stages in multi operand addition. Mux based 

adders offer less delay and consumes less power at cost of higher 

area. Based on carry save compressor tree, 9:2 as well 11:2 

compressors are presented in [3] which claims better speed 

compared to carry propagate adders (CPA). High speed low 

power 15:4 compressor based on 5:3 compressor is discussed in 

[4]. Modern FPGA includes specific hardware dedicated for fast 

carry propagation. Efficient implementation of carry save adder 

on FPGA is discussed in [5] which offers less delay compared to 

Radix-4 CSA. Another variant of carry save adder on FPGA is 

discussed in [6]. Pipelined adder implementation based on 

FPGA is presented in [7]. SAD implementation on FPGA for 16 

× 16 MB is discussed in [8]. SAD16 unit can be used to perform 

the complete16 × 16 operation, either by replicating the unit 16 

times or exploiting its pipeline characteristic. The SAD16 

implementation produces its first result after19 clock cycles. By 

replicating the SAD16 unit and adding another adder tree, the 

resulting fully parallelized implementation requires 27 clock 

cycles to produce the 16 × 16 SAD result. Another area efficient 

method utilizing the pipelined SAD16 unit requires 42 clock 

cycles to perform the 16 × 16 SAD operation. The study shows 

that sequential architecture uses less resources but it also gives 

lesser throughput which is not suitable for real time. While 

pipeline architecture uses moderate resources and offer 

reasonable throughput, and parallel architecture provides 

maximum throughput at the expense of highest resource 

utilization. In paper [9] comparative analysis for sequential, 

pipeline and parallel architectures for SAD 16 × 16 

implementation is given and it proposes partial summation term 

reduction approach for multi operand addition. There is always 

trade-off between the maximum throughput and resource 

utilization. In paper [10], FPGA implementation of the Sum of 

Absolute Differences (SAD) algorithm is introduced which 

accomplish correlation based wavefront sensing. 4 × 4 SAD is 

implementation on FPGA is presented in [11] and 16 × 16 SAD 

implementation in 29 clock cycles is presented in [12]. 

In this paper configurable architecture for SAD processor 

using multiple processing elements for fast search block 

matching algorithm is presented which can process all candidate 

MBs in one clock cycle and offers optimal resource utilization. 

Section 2 shows top level module for SAD processor consisting 

multiple processing elements and evaluates various approaches 

for finding SAD of 8 × 8 MB based on existing multi operand 

addition schemes. Experimental results are shown in section 3 

for one PE and then SAD processor with nine PEs configured for 

diamond search BMA and final remark is presented in section 4. 



ISSN: 0976-9102(ONLINE)                                                                                        ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, FEBRUARY 2015, VOLUME: 05, ISSUE: 03 

967 

2. SAD PROCESSING ELEMENTS BASED ON 

VARIOUS APPROACHES OF MULTI 

OPERAND ADDITION 

2.1 MOTION ESTIMATION ARCHITECTURE 

FOR FAST SEARCH BMA 

Existing fast search BMAs are based on diamond or hexagon 

shape or their hybrid version and demands 7 to 9 processing 

elements in parallel to process multiple candidate MBs. The 

general block diagram for estimating motion in fast search 

BMAs is shown in Fig.1 with nine processing elements which 

can be configured according to requirement. According to 

graphical pattern of fast search BMAs the candidate blocks from 

search window can be organized in memory m0, m1 up to m8. 

As an example location of 9 candidate MBs in search area for 

diamond search pattern is shown in Fig.2. After memory 

organization the next step is to calculate the best match for the 

current block using SAD. 

 

Fig.1. Configurable SAD processor for any fast search BMA 

The equation for calculating the sum of absolute difference is 

given by Eq.(1).  

      
 

 

N

x

N

y

kk vyuxfyxfvuSAD

1 1

1 ,,,  (1) 

 



















1,11

0,1
,

MSByxxy

MSByxyx
ADC vu  (2) 

SAD, is calculated in three steps as shown in Fig.3. First 

computation of absolute differences between corresponding 

elements is done by A.D. block. Addition of all difference values 

of the one row is done by addition scheme block. Finally the 

addition of all individual eight rows is done. For absolute 

difference calculation Eq.(2) [11] is used. 2‟s complement of a 

signed complemented number results in the original number. 

First X-Y is calculated assuming that X > Y. If it is true then the 

MSB of X-Y will be zero, otherwise again calculate the 2‟s 

complement of (X-Y). This absolute difference computation 

scheme utilizes fewer resources and results in fast absolute 

difference. After calculating the absolute difference, addition 

schemes are used. Various multi operand addition schemes are 

available in literature as mentioned before. Few of them are 

modified for computation of fix size MB and incorporated in 

SAD processor. 

 

Fig.2. Location of candidate MBs in search area for diamond 

search pattern 

2.2 MULTI OPERAND ADDITION SCHEMES FOR 

FIX SIZE MACROBLOCK 

2.2.1 Addition using Hierarchical Adders: 

Most familiar addition scheme is addition in hierarchy [9]. In 

this method SAD of one row of a macroblock is performed as 

shown in Fig.4. The difference of reference and current pixel is 

calculated in first step, then an absolute difference is obtained 

and finally these pixels are added in hierarchy. SAD calculation 

of one row is replicated as shown in Fig.3 and all eight rows are 

added. 

2.2.2 Addition using 8:4 Compressor: 

Literature exhibit column addition based multi operand 

addition schemes which are evaluated here. One row of 8 × 8 

macroblock has 8 pixels, and each pixel has 8 bits as shown in 

Fig.5(a). The Fig.5(b) shows 4:2 compressor and Fig.5(c) shows 

8:4 compressor [2] having 8 inputs (I0-I7), four outputs (X1-X4) 

both are based on full adder and half adder. This compressor 

uses counter property so that, output of compressor gives 

number of 1‟s at input. For example, if all input bits are 1, then 

output of the compressor is “1000”. This design of 8:4 

compressor takes three stages of adders to compress the input 

bits into four output bits. Totally, four full adders and three half 

adders are used. 4:2 compressor uses additional two full adders. 

3:2 compressor itself is full adder. As shown in Fig.5(d) final 

addition of one column is generated, by combining all three 

compressors. Column addition is replicated 8 times to find sum 

of all 64 pixels of macroblock. In this method pixels are fed after 

absolute difference hence SAD is obtained as a result.  



NEHAL N SHAH AND UPENA D DALAL: SAD PROCESSOR FOR MULTIPLE MACROBLOCK MATCHING IN FAST SEARCH VIDEO MOTION ESTIMATION 

968 

 

Fig.3. Sad calculation for one macroblock (8 × 8) [13] 

 

Fig.4. SAD calculation of one row using Hierarchical addition 

2.2.3 Addition Using Carry Save Adder (CSA): 

Another variant of addition scheme is possible based on 3:2 

carry save adder as shown in Fig.6(a). In this method the sum of 

four bits of one column is calculated, the name of this module is 

given as CSA 4bits [5]. After that this CSA 4bits module is 

replicated eight times, so that addition of four rows are 

calculated, this is shown in Fig.6(a) with curly bracket and also 

shown in Fig.6(b). The name for this module is given as CSA 4 

rows. Finally this CSA 4 rows module replicated as shown to 

perform addition of all eight pixels of macroblock which is SAD 

calculation of 1 row of Fig.3. The name of this module is given 

as CSA 8 rows as shown in Fig.6(b). 

 

 

 

 

 
(a) (b) 

 

 
(c) (d) 

Fig.5(a). 8 × 8 macroblock bits, (b). 4:2 compressor, (c). 8:4 

compressor [2] and (d). Sum module for 8 bits 

 

Fig.6.(a). Addition flow of 8 rows, (b). SAD calculation of one 

row using Carry Save Adder 

(a) 

(b) 



ISSN: 0976-9102(ONLINE)                                                                                        ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, FEBRUARY 2015, VOLUME: 05, ISSUE: 03 

969 

 

Fig.7. Addition of one column using PSTR [9] 

2.2.4 Addition using Partial Summation Term Reduction 

(PSTR): 

Instead of using various stages of compressors, if concept of 

partial summation term reduction (PSTR) [9] is used then 

addition can be speedy. In PSTR N number of layers are reduce 

to two layers where N numbers are operands to be added. This 

reduction is carried out using components like a full adder and a 

half adder. The two layers resulting thus are generally known as 

sum and carry. In final step there are various ways to add last 

two rows of sum and carry. In Fig.7 shows the flow of addition 

for 8 bits of one column, in different levels. At level 1 the 

addition of 8 bits of one column is shown and the sum bits are 

forwarded at the same column in next level and the carry bits are 

forwarded at the next column in the same level. This flow is 

repeated at different levels, until the level at which it reduces to 

the two rows. After reducing the eight rows in two rows, either 

the carry look ahead adder or ripple carry adder is used. This 

mechanism results in less number of adders compared to 

compressor based schemes. 

3. SIMULATION AND RESULT FOR SAD 

PROCESSOR 

Based on four addition schemes SAD processor is synthesis 

for Xilinx FPGA families Spartan3 and Virtex5. „Foreman‟ 

frame is used for simulation in Xilinx 12.3i ISE and results are 

shown for 8 × 8 MB. The search range parameter p = 16, so the 

search window size is 40 × 40 in reference frame. SAD of 8 × 8 

macroblock results are compared based on four different 

addition schemes using Virtex5 - xc5vlx50 and Spartan3 – 

XC3S400 FPGA in Table.1 and Table.2 respectively. 

It can be observed that number of look-up-tables (LUTs) 

used are less than all other schemes in PSTR, and at same time 

post map static timing delay as well as post place and route static 

timing delay is also less. Table.3 indicates macro statistics for all 

four addition schemes. It is clearly observed that numbers of 

adders are less in PSTR based addition, that is the reason for 

having less LUTs in implementation. Table.3 shows, SAD of 8 × 

8 macroblock based on PSTR addition scheme uses 29%, 23%, 

and 7% less number of adders compared to hierarchical, 8:4 

compressor based, CSA based adders respectively. Both 

comparisons reveal that PSTR scheme outperforms in all aspects 

and can result in best addition scheme for SAD processor hence 

same is incorporated in proposed SAD processor architecture. 

This comparison is important due to usage of multiple 

processing elements in parallel. Marginal visible difference 

results in huge performance improvement when multiple 

processing elements are performed in parallel.  

Table.1. Comparison of SAD of 8 × 8 macroblock using various 

addition schemes on Virtex5 FPGA 

 

Based on 

hierarchical  

adders 

Based on 

8:4  

compressor 

Based 

on 

CSA 

Based 

on 

PSTR  

adders 

Number of 

Slice 

Registers 

(28,800) 

1033 1032 1032 1031 

Number of 

Slice LUTs  

(28,800) 

2064 1917 1804 1725 

Synthesis 

Delay (ns) 
2.154 2.154 2.154 2.154 

Maximum 

Frequency 

(MHz) 

464.296 464.296 464.296 464.296 

Maximum 

output 

required time 

after 

clock (ns) 

11.413 15.561 12.971 12.833 

Post map  

Static Timing 

Delay (ns) 

20.452 21.150 16.327 16.153 

Post PAR  

Static Timing 

Delay (ns) 

21.718 26.038 19.882 19.299 

Total Power 

(mW) 
528.28 530.21 529 529.97 

Table.2. Comparison of SAD of 8 × 8 macroblock using various 

addition schemes on Spartan3 FPGA 

 

Based on 

hierarchical 

adders 

Based on 

8:4 

compressor 

Based 

on 

CSA 

Based 

on 

PSTR 

adders 

Number of 

Slices 

(3584) 

1443 1528 1184 1126 

Number of 

4-input 

LUTs 

(7168) 

2674 2518 2166 2105 



NEHAL N SHAH AND UPENA D DALAL: SAD PROCESSOR FOR MULTIPLE MACROBLOCK MATCHING IN FAST SEARCH VIDEO MOTION ESTIMATION 

970 

Synthesis 

Delay (ns) 
5.96 5.917 5.960 5.917 

Maximum 

Frequency 

(MHz) 

167.783 168.998 167.783 168.998 

Maximum 

output 

required 

time after 

clock (ns) 

31.280 40.049 32.201 15.770 

Post map 

Static 

Timing 

Delay (ns) 

21.864 21.150 21.132 19.352 

Post PAR 

Static 

Timing 

Delay (ns) 

34.254 40.802 34.789 19.352 

The PSTR based 8 × 8 SAD implementation is now 

compared with existing implementations in Table.4. In [8] the 

computation of the SAD for 16 × 16 MB is implemented on a 

FPGA device. It uses less LUTs but consumes 26 more clock 

cycles compared to proposed implementation. The solution 

proposed in [12] uses highest LUTS and requires 29 cycles for a 

SAD computation at a frequency of 380 MHz. Rehman‟s 

implementation [11] exhibits lower utilization because of 4 × 4 

macroblock size. Proposed SAD method outperforms from delay 

speed and area perspective for single cycle computation. 

Maximum frequency of proposed 8 × 8 SAD implementation is 

464.3MHz on virtex5 xc5vlx50 FPGA. 

Fast search BMA based on diamond or cross diamond shape 

uses nine candidate blocks hence SAD processor is configured 

for nine processing elements using PSTR based SAD of 8 × 8 

macroblock and comparison of macro statistics is given in 

Table.6.  Number of counter, registers, latches and comparator 

used with all four schemes are same but vast difference is in 

number of adders / subtracters. SAD processor based on PSTR 

uses less number of adders and that also of lower bits. 

Simulation results of SAD processor with 9 processing elements 

are shown in Fig.8. To organize nine candidate macroblocks 

from reference memory for diamond shape needs 34 clock 

cycles and as shown in Fig.8(a), sad_m0 to sad_m8 indicate 

SAD value of all eight rows of nine candidate MBs available in 

next clock cycle. Same time comparator provides result for best 

match among candidate MBs as indicated in Fig.8(b).  

Table.3. Resource utilization for SAD of 8 × 8 macroblock 

Macro 

Statistics 

Based on 

hierarchical 

adders 

Based on 

8:4 

compressor 

Based 

on 

CSA 

Based on 

PSTR 

adders 

Adders/ 

Subtracters 
191 145 175 135 

14-bit adder 7 7 15 7 

11-bit adder 8 -- -- -- 

10-bit adder 16 10 32 -- 

9-bit adder 32 -- -- -- 

8-bit adder 64 64 64 64 

8-bit adder 

carry in 
64 64 64 64 

Registers 1024 1024 1024 1024 

4x1Mux -- 600 256 -- 

1-bit xor2 -- 381 -- 224 

1-bit xor3 -- 195 256 408 

Table.4. Comparison of SAD implementation for fix size macroblocks 

Architectures 
Macroblock 

Size 
FPGA LUTs 

Synthesis 

Delay (ns) 

Maximum 

Frequency MHz) 
Clock cycles 

carry–save adders 16 × 16 FLEX20KE Altera 1699 5.076 197 27 

carry generator 

method [12] 
16 × 16 STRATIX EP1S80 7765 2.632 380.7 29 

Kincses’s 

architecture [11] 
8 × 8 

Spartan 3 

(3s400-5pq208) 
3435 7.692 130 1 

Dadda tree scheme 

[11] 
4 × 4 

Virtex 2 

(2v1000bg575-4) 
657 7.505 133.245 3 

Proposed SAD 

implementation 
8 × 8 

Spartan 3 

(xc3s400-5pq208) 
2105 5.960 167.78 1 

Virtex 5 

(xc5vlx50-3ff676) 
1725 2.154 464.296 1 

Table.5. Performance comparison for calculating motion vector (MV) using diamond search BMA 

Architecture 

Used 

To fill All 

candidate 

macro 

blocks 

Latency 

of PU 

To 

calculate 

SAD 

Comparator 

Large 

DS 

Pattern 

LDSP 

Small 

DS 

Pattern 

SDSP 

Total 

cycle to 

generate 

MV 

Frequency 

FPS 

HDTV 

1080p  

(worst 

case) 

FPS 

HDTV 

1080p  

(average 

case) 

PU [14] 26 4 7 5 42 20 62 272.6 58 240 

PU-42 [14] 26 3 7 5 41 19 60 287.3 63 263 



ISSN: 0976-9102(ONLINE)                                                                                        ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, FEBRUARY 2015, VOLUME: 05, ISSUE: 03 

971 

PU-82 [14] 26 2 7 5 40 18 58 283.0 65 269 

Proposed 31 3 1 35 3 38 451.101 84 325 

Table.6. Comparison of SAD processor for fast search BMA using nine SAD processing elements 

Macro Statistics Based on hierarchical adders Based on 8:4 compressor Based on CSA Based on PSTR 

Adders/ Subtractors 1719 1215 1575 1152 

8-bit adder -- 576 576 576 

8-bit adder carry-in -- 576 576 576 

9-bit subtractor 576 -- -- -- 

10-bit adder -- -- 288 -- 

11-bit adder 1080 -- 72 -- 

14-bit adder 63 63 63 -- 

Counters 2 2 2 2 

Registers 4642 4642 4642 4642 

Latches 133 133 133 133 

Comparators 8 8 8 8 

1-bit xor2 -- 4104 -- 2160 

1-bit xor3 -- 3816 2304 4428 

 

Fig.8(a). SAD values of eight rows of nine candidate MB 

 

Fig.8(b). Comparator value 

Fig.8. Results of SAD processor with 9 processing elements  

Proposed architecture is compared with existing 

implementation of diamond search BMA [14] and results are 

indicated in Table.5. For large diamond search pattern (LDSP) 

proposed architecture requires only 35 clock cycles, which is 

less compared to Porto‟s architecture. For calculating small 

diamond search pattern (SDSP) proposed architecture requires 

only 3 clock cycles, so for generating motion vector (MV) for 

the best case 38 clock cycles are needed. The best case means 

best match is found in first iteration only and MV is on center of 

search window. Table.5 also indicates frequency of operation 

and number of frames processed per second of HD 1080p 

resolution in worse case and average case. The average case and 

worst case are obtained through the software implementation of 

the algorithm and it has been observed that for most of 

sequences use 3 iterations on an average. Worse case is 

considered as 20 iterations. Proposed architecture can process 84 

frames per second in worst case and 325 frames per second in 

average case for HDTV 1080p resolution. 

4. CONCLUSION 

Motion estimation is used to minimize the temporal 

redundancies in a video sequence for the video compression. For 

estimating motion BMA is used, which uses SAD as cost 

function in most hardware implementations. SAD computation 

is challenging task in implementation. In this paper, four 

methods of multi operand addition based on carry save addition, 

8 to 4 compressor, hierarchical addition and addition using 

partial summation term reduction (PSTR) are implemented and 

compared. SAD for 8 × 8 MB is computed using all four 

methods in 1 clock cycle. Among all these methods, SAD 

processor based on PSTR scheme outperforms in terms of delay 

and resource utilization which results in 84 and 325 frames per 

second in worse case and average case respectively for HDTV 

1080p resolution. Due to such figure architecture is well suited 

for real time implementation. Compared to existing 

implementation of diamond search BMA proposed 

implementation save 34.5% clock cycles in best case 

implementation which is the case for approximately 75% MBs in 

real time video on an average.  

 

 



NEHAL N SHAH AND UPENA D DALAL: SAD PROCESSOR FOR MULTIPLE MACROBLOCK MATCHING IN FAST SEARCH VIDEO MOTION ESTIMATION 

972 

REFERENCES 

[1] Iain E. Richardson, “H.264 and MPEG-4 Video 

Compression”, John Wiley & Sons, Inc., 2003. 

[2] R. Marimuthu, D. Bansal, S. Balamurugan and P. S. 

Mallick, “Design of 8-4 And 9-4 Compressors for High 

Speed Multiplication”, American Journal of Applied 

Sciences, Vol. 10, No. 8, pp. 893-900, 2013. 

[3] J. Hormigo, J. Villalba and E. L. Zapata, “Multi-operand 

Redundant Adders on FPGAs”, IEEE Transactions on 

Computers, Vol. 62, No. 10, pp. 2013-2025, 2013. 

[4] S. R. Chowdhury, A. Banerjee, A. Roy and H. Hiranmay 

Saha, “Design, Simulation and Testing of a High Speed 

Low Power 15-4 Compressor for High Speed 

Multiplication Applications”, First IEEE International 

Conference on Emerging Trends in Engineering and 

Technology, pp. 434-438, 2008. 

[5] M. Ortiz, F. Quiles, J. Hormigo, F. J. Jaime, J. Villalba and 

E. L. Zapata, “Efficient implementation of carry-save 

adders in FPGAs”, 20
th

 IEEE International Conference on 

Application-specific Systems, Architectures and Processors 

Efficient, pp. 207-210, 2009. 

[6] S. Ravi Chandra Kishore and K. V. Ramana Rao, 

“Implementation of carry-save adders in FPGA”, 

International Journal of Engineering and Advanced 

Technology, Vol. 1, No. 6, pp. 27-29, 2012. 

[7] F. De Dinechin, H. D. Nguyen and B. Pasca, “Pipelined 

FPGA Adders”, International Conference on Field 

Programmable Logic and Applications, pp. 422-427, 2010. 

[8] Stephan Wong, Stamatis Vassiliadis and Sorin Cotofana, 

“A Sum of Absolute Differences Implementation in FPGA 

Hardware”, Proceedings of 28
th

 Euromicro Conference, pp. 

1-5. 2002. 

[9] N. N. Shah, K. R. Agarwal and H. M. Singapuri, 

“Implementation of sum of absolute difference using 

optimized partial summation term reduction”, International 

Conference on Advanced Electronic Systems, pp. 192-196, 

2013. 

[10] Z. Kincses, Z. Nagy, L. Orzó, P. Szolgay and G. Mező, 

“Implementation of a parallel SAD based wavefront sensor 

architecture on FPGA”, European Conference on Circuit 

Theory and Design, pp. 823-826, 2009. 

[11] S. Rehman, R. Young, C. Chatwin and P. Birch, “An 

FPGA Based Generic Framework for High Speed Sum of 

Absolute Difference Implementation”, European Journal 

of Scientific Research, Vol. 33, No. 1, pp. 6-29, 2009. 

[12] S. Wong, B. Stougie and S. Cotofana, “Alternatives in 

FPGA-based SAD Implementations”, Proceedings of IEEE 

International Conference on Field-Programmable 

Technology, pp. 449-452, 2002. 

[13] A. Ben Atitallah, P. Kadionik, N. Masmoudi and H. Levi, 

“HW / SW FPGA Architecture for a Flexible Motion 

Estimation”, 14
th

 IEEE International Conference on 

Electronics, Circuits and Systems, pp. 30-33, 2007. 

[14] M. Porto, A. Silva, S. Almeida, E. Costa, and S. Bampi, 

“Motion Estimation Architecture Using Efficient Adder-

Compressors for HDTV Video Coding”, Journal 

Integrated Circuits Systems, Vol. 5, No. 1, pp. 78-88, 2010. 

 


