
T PASUPATHI et. al.: FPGA IMPLEMENTATION OF ADAPTIVE INTEGRATED SPIKING NEURAL NETWORK FOR EFFICIENT IMAGE RECOGNITION SYSTEM

DOI: 10.21917/ijivp.2014.0122

848

FPGA IMPLEMENTATION OF ADAPTIVE INTEGRATED SPIKING NEURAL

NETWORK FOR EFFICIENT IMAGE RECOGNITION SYSTEM

T. Pasupathi
1
, A. Arockia Bazil Raj

2
 and J. Arputhavijayaselvi

3

Department of Research and Development, Kings College of Engineering, India

E-mail: 1pasu.tamil@gmail.com, 2brazilraj.a@gmail.com, 3dean@kingsindia.net

Abstract

Image recognition is a technology which can be used in various

applications such as medical image recognition systems, security,

defense video tracking, and factory automation. In this paper we

present a novel pipelined architecture of an adaptive integrated

Artificial Neural Network for image recognition. In our proposed

work we have combined the feature of spiking neuron concept with

ANN to achieve the efficient architecture for image recognition. The

set of training images are trained by ANN and target output has been

identified. Real time videos are captured and then converted into

frames for testing purpose and the image were recognized. The

machine can operate at up to 40 frames/sec using images acquired

from the camera. The system has been implemented on XC3S400

SPARTAN-3 Field Programmable Gate Arrays.

Keywords:

Image Recognition, Spiking Neuron, FPGA, Artificial Neural

Networks, Feature Extraction

1. INTRODUCTION

By automatic identification of real time users, personalized

services such as a face recognition-based smart TV program,

Passport security alert system, Bank password, Lap password

systems can offer a set of programs that are customized to user

profile and it will be identified and matched with previous

database [1]. In traditional fingerprint and iris identification,

users will pass through a ‘pause and declare’ procedure for

authentication purpose. This may not be suitable for consumer
application. On the other hand face Recognition does not have

that type of short coming. Here, we have developed a face

recognition system that can be very helpful in a real time

environment to facilitate intelligent services. Comprehensive

reviews of the related works can be found in [2], [3].

Furthermore, face recognition can make use of a wide range
of inexpensive consumer camera such as DV cameras, and

embedded camera in mobile devices. Artificial Neural Networks

increase the generalization accuracy in face recognition [4].

Artificial Neural Networks (ANNs) are widely used in the

areas of the following categories, i)Function approximation
including time series prediction, fitness approximation and

modeling, ii)Classification, including pattern and sequence

recognition, novelty detection and sequential decision making,

iii)Data processing including filtering, clustering, blind source

separation and compression, iv)Robotics, including directing

manipulators, prosthesis, Control, including Computer numerical

control [5]. Here we mainly focused on face recognition for

home environment application & security purpose. Now a day’s

pipelined implementation is essential for all kinds of operation to

achieve the efficient and reduced area structure when we

implemented in devices like FPGA and ASIC. The biologically

inspired ANNs are parallel and distributed information

processing systems. This system requires the massive parallel

computation. Thus, the high speed operation in real time

applications can be achieved only if the networks are

implemented using parallel hardware architecture [6]. Another

current end of neural research focuses on elementary neural

mechanisms such as spiking neurons. Their rather simple and

asynchronous behaviors have motivated several implementations

on analog devices, whereas digital implementations appear as

quite unable to handle large spiking neural networks, for lack of

density [7].

2. DESCRIPTION OF THE SYSTEM

A high speed ANN digital architecture is implemented in this

paper for increasing the speed of neuron functions for input and

output mapping system.

Our implementation operates in four different phases:

Phase I includes acquiring and preprocessing of images. Phase II

includes development of pipelined architecture of Neural

Network for extracting weights and thresholds through the back
propagation algorithm from the training and testing images.

Phase III includes developing ANN, based on the concept of

spiking neuron in order to reduce the complexity of the digital

system. Phase IV includes recognition of images (decision

finding).

Detailed description is given below,

Phase I: In our implementation the size of the images was

750  682 pixels. These images were viewed and further

cropped into 150  150 pixels. Since the memory would have
been insufficient to store a large size of images and videos, it

would have been not practical to use the actual 856  682 pixel
images. Testing and training images used in our implementation

are shown in Fig.1. After the JPEG images were obtained, they

were pre-processed and segmented and features are extracted

[11]. Preprocessing includes noise suppression, deblurring,

image enhancement and edge detection. Segmentation includes
texture segregation, colour recognition and clustering. Initially

videos acquired by the camera and then converted into frames

using the following MATLAB comments,

obj = videoinput('winvideo',4);

preview(obj);

for i = 1:n

img = getsnapshot (obj);

Image (img);

closepreview;

The acquired JPEG images are converted to indexed images

based on a RGB color system. Each pixel of training and testing

image was classified into one of 256 categories, and each

http://en.wikipedia.org/wiki/Time_series_prediction
http://en.wikipedia.org/wiki/Fitness_approximation
http://en.wikipedia.org/wiki/Pattern_recognition
http://en.wikipedia.org/wiki/Novelty_detection
http://en.wikipedia.org/wiki/Blind_source_separation
http://en.wikipedia.org/wiki/Blind_source_separation
http://en.wikipedia.org/wiki/Computer_numerical_control
http://en.wikipedia.org/wiki/Computer_numerical_control

ISSN: 0976-9102(ONLINE) ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, MAY 2014, VOLUME: 04, ISSUE: 04

849

category is represented by an integer in the range from 0 to 255,

where 0 represents black and 255 represents white. Each

assigned colour index number served as an ANN input and,

therefore, there are 22500 (150 × 150) inputs for a single image.

These inputs are given to develop Neural Network. During

training phase of ANN the images are represented with binary
output data. Nine images of same person Fig.1 and another nine

images different persons Fig.2 are used to train and test the

ANNs. Features of the images are extracted for the excellent

recognition of images.

Phase II: In the second phase a high speed ANN architecture is

developed for increasing the speed of neuron functions for input
and output mapping of the system. In our proposed ANN, the

input layer has twelve neurons and uses log sigmoid transfer

function. The output layer has one neuron and uses log sigmoid

transfer function. Neural Network is trained using back

propagation algorithm.

NN trains the network on training data using Supervised
Learning which uses a Gradient Descent [8]. The training

process was carried out, until a maximum of 5000 epochs

(iterations) (illustrated in Fig.4), or the desired mean squared

error was achieved. The number of hidden layer is varied from

150 to 1000. The successful learning rate for every image is

determined after the training process. This is carried out till the

desired Mean Square Error (MSE) and the target output is

achieved. At the desired MSE the weights and bias are extracted

and considered as optimized parameters. The extracted weights

and biases are given into the FPGA.

Fig.1. Image AAA-Trainig image set

Fig.2. Image BBB-Testing image set

The neural network is trained with the error function,

     
 


x yn

i

n

j

ijji zyxOE

1 1

2
,, (1)

where, nx and ny are the dimensions of the image in terms of

number of pixels in the x, y directions. Each pixel is specified by

xi, yj, zij where zij in the gray intensity of the pixel. O(xi, yj) is the

output of the neural network when the input is the position of the

pixel i, j. Once the Neural network has been trained, we can use

it for image recognition. This can be done by comparing the
error function between the trained ANN and another different

image (Testing image). Below a given threshold the two images

are assigned to be the same. The trained ANN is considered as

compressed version of the image. In which all the information of

the image are now encoded into the weights and thresholds. We

can find that “similar” image gets a much smaller value of the

error function than a “different” image.

The error of output neuron k after the activation of the

network on the nth training example {x(n), y(n)} is:

 e(n) = xk(n) – yk(n). (2)

The network error is derived from the sum of the squared

errors of the output neurons:

     .2 nenE k (3)

The total mean squared error is the average of the network

errors of the training examples

  .
1

1






N

n

AV nE
N

E (4)

In the same approach testing images are acquired by camera

and then trained by ANN. The extracted weights and bias are

taken into FPGA and compared with trained inputs. More

complex images will require larger architectures. Design flow of

image recognition is described in Fig.3. The features of training

and testing images are compared by ANN, if the images are

same then the following result is displayed “IMAGES ARE

SAME” otherwise the displayed message is “IMAGES ARE

NOT SAME”. This paper reports on the implementation of an
Artificial Neural Network (ANN) on Field Programmable Gate

Array (FPGA). The work was carried out as an experiment in

mapping a bit-level, logically intensive application onto the

specific logic resources of a fine grained FPGA. By exploiting

there configuration capabilities of the FPGA, individual layers of

the network are time multiplexed onto the logic array [9],[12].

This allows a larger ANN to be implemented on a single FPGA

at the expense of slower overall system operation. Developing

ANN based image recognition system consists of the following

steps.

Feed forward Artificial Neural Network is developed and

trained using the following MATLAB comments,

[inputs, targets] = image dataset;

net = newff (inputs, targets, 10)

trainFcn = net.trainFcn

As shown in the Fig.3 the network has been structured for

this application. To start this process the initial weights are
chosen randomly. Then the training begins. There are two

approaches are used to train the NN.

T PASUPATHI et. al.: FPGA IMPLEMENTATION OF ADAPTIVE INTEGRATED SPIKING NEURAL NETWORK FOR EFFICIENT IMAGE RECOGNITION SYSTEM

850

Fig.3. Design flow of ANN for image recognition

They are supervised and unsupervised learning process. In

this case Supervised training is used which uses a known dataset

(named as training dataset) to make predictions. The training

dataset includes input data and response values. From these

values, the supervised learning algorithm seeks to build a model

that can make predictions of the response values for a new

dataset [10], [11].

Fig.4. MATLAB based illustration ANN training (Number of
iteration = 5000)

3. FEATURE EXTRACTION USING MATLAB

The feature extraction takes a matrix of pixels and returns a

vector of information that is consistent for any one input matrix

(the same input always gives the same output vector). In pattern

recognition feature extraction is a special form of dimensionality

reduction; the feature extraction follows the following steps.

Step 1: Get the training image.

Step 2: Convert the image into gray scale and resize the image

into fixed size.

Step 3: Convert the gray scale pixel into equivalent binary

pattern.

Step 4: Set the threshold value, if the pixel value is greater than
the threshold value means consider as ‘1’. If the pixel

value is below than the threshold value means consider

as ‘0’.

Step 5: Form the matrix and arrange into single dimensional

vector, and convert the same into a text file.

Step 6: Follow the above steps for testing image and obtain

another text file.

These two text files are fed to the Artificial Neural Network

to perform the identification.

If the training and testing images are same it displays the

target output. If the image is not matched, uses back propagation

algorithm to back propagate the error values until we get the

target output.

4. IMPLEMENTATION OF BACK

PROPAGATION ALGORITHM

Back propagation has proven to be so powerful that it

currently accounts for 80% of all neural network applications

[9]. In Back propagation, a third neurons layer is added (the

hidden layer) and the discrete thresholding function is replaced

with a continuous (sigmoid) one as shown in the Fig.4. But the

most important modification for Back propagation is the
generalized delta rule, which allows for adjustment of weights

leading to the hidden layer neurons in addition to the usual

adjustments to the weights leading to the output layer neurons.

Each propagation involves the following steps:

During the step – I

1) Generating propagation output activations from the

forward propagation of the inputs (training pattern)

through the neural network.

2) Output obtained in step1 is propagated towards the back

through the neural network using the training pattern

target output in order to generate the deltas of all output
and hidden neurons.

Fig.4. Illustration of back propagation algorithm

During the Step – II: Updating weights

For each weight-synapse follow the following steps:

.

.

.
bk2

bk1

bj3

bj2

bj1

w41

w42

w52

w51

w32

w31

w21

w13

w23

w21

w12

w11

i1

in

k1

kn

j1

j2

jn

error

error
error

.

.

.

Input

layer
Hidden

layer

Output

layer

Best Training Performance is 9.5482e-006

at epoch 166

166 Epochs

M
e
a

n
 S

q
u

a
r
e
d

 E
r
r
o
r
 (

m
se

)

Writing
text as file

Testing

vector
Reading

Neural N/W

design
Error

Computation

Back

propagation

Target

Writing
text as file

Training
image

Testing

image

Feature
Extraction

Feature
Extraction

Writing
text as file

W

&

B

ISSN: 0976-9102(ONLINE) ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, MAY 2014, VOLUME: 04, ISSUE: 04

851

1) Gradient of the weight is obtained by multiplying its

output delta and input activation.

2) Bring this weight in the opposite direction of the gradient

by subtracting a ratio of it from the weight.

This ratio influences the speed and quality of learning. The

sign of the gradient of a weight indicates where the error is
increasing; this is why the weight must be updated in the

opposite direction.

Repeat step 1 and 2 until the performance of the network is

satisfactory.

5. DESIGN OF PIPELINED ARCHITECTURE

OF ANN USING SPIKING IN FPGA

With the introduction of FPGAs, it is feasible to achieve the

following features (i) Fully custom hardware for designed
application. (ii) Flexibility: Changes in the designs can be

accomplished within a short time, and thus result in considerable

savings in cost and design [12]. Pipelined architecture of ANN is

shown in Fig.5. Spartan-3 (XC3S400 PQ208-5) FPGA operates

at 4Mhz operating frequency, by developing clock manager unit

master clock is divided into multiple frequency and treated as

operating frequency for other units such as serial communication

manager, time machine, RAM, etc., to achieve the pipelined

structure. Once the accumulator array value reaches the

threshold means the neuron gets fired, and the decision will be

taken by that neuron.

Fig.5. FPGA based pipelined architecture of image recognition

system

In case of multi-layer perceptron every neuron is triggered in

each propagation cycle. But the basic idea of SNN is not to fire

the every neuron at each propagation cycle, but rather fire only

when an intrinsic quality of the neuron related to its membrane
electrical charge reaches the desired threshold value. When a

neuron fires, it generates a spikeON signal which travels to other

neurons which, in turn, spikeON or spikeOFF their potentials in

accordance with this signal.

In SNN environment, the activation level is modeled as some

differential equation with the inputs acquired from the

MATLAB (neuron's state), with incoming spikes pushing this

value higher, and then either firing or decaying over time.

This design choice of SNN leads to a great simplification of

the image recognition architecture. In SNN environment the

SpikeON and SpikeOFF signals are used to explain the concept of

synaptic weights in time instead of currents.

When the Neuron1 fires, a spikeON signal is applied to

Neurn4. This gives the increment of current in Neuron4 by 1

unit. When Neuron2 fires, another spikeON signal is sent to

Neuron4 causing the increment of current in Neuron4 by another

unit, the new value becomes 2 units. When Neuron3 also fires,

another spikeON signal is given to Neuron4 causing the

increment of current in Neuron4 by another unit, now the new

value becomes 3 units. After the interval t1 + w1 has elapsed, a

SpikeOFF signal is sent to Neuron4 causing current to be now

equal to 1 unit, and this happened for next time interval also. All
SpikeON value is incremented by the counter by one and every

SpikeOFF causes the counter to decrement by 1. The particular

spikeON or SpikeOFF signal, is selected by the corresponding

address line [7].

Fig.6. Representation of spiking neuron

6. RESULTS AND CONCLUSION

We have proposed and designed a new hardware pipelined

architecture system for neural network based on specialized

spiking neuron for image recognition system. One of the most

important features of spiking neuron is that the current activation

level is normally considered to be the neuron's state. Those

spiking neuron concept are also cooperative in order to solve

complex recognition problems. As an example of the image

recognition system application, network can be trained well to

identify special points on an image. Autonomous image
recognition or intelligent image identifying systems for industry,

home, cars use this kind of system.

REFERENCES

[1] Shatrughan Modi, “Automated Coin recognition system

using ANN”, International Journal of Computer

Applications, Vol. 26, No. 4, pp. 13, 2011.

[2] Aleix M. Martinez, “Matching expression variant faces”,

Vision Research, Vol. 43, No. 9, pp. 1047-1060, 2003.

[3] Chengjun Liu, “Gabor-based kernel PCA with fractional

power polynomial models for face recognition”, IEEE

4MHZ

Up/Down

Command

Count

Clock

Threshold DB9 Connector

External
Spiking

Inputs

Accumul
ator

Array

Serial

Commu.

Digital

Controller

Spiking
Neuron

Array

Output
Decision

Enable

Clock

Manager

Weight
address

generator

RAM

(HL1, WT,

BIAS)

Address
Enable

Register

Up/Down
Counter

Array

Memory

scheduling

Controller

Time

Machine

Z^-1

http://en.wikipedia.org/wiki/Differential_equation

T PASUPATHI et. al.: FPGA IMPLEMENTATION OF ADAPTIVE INTEGRATED SPIKING NEURAL NETWORK FOR EFFICIENT IMAGE RECOGNITION SYSTEM

852

Transactions on Pattern Analysis and Machine

Intelligence, Vol. 26, No. 5, pp. 572-581, 2004.

[4] J. Harkin, F. Morgan, L. McDaid, S. Hall, B. McGinley

and S. Cawley, “A reconfigurable and biologically inspired

paradigm for computation using network-on-chip and

spiking neural networks”, International Journal of

Reconfigurable Computing, Vol. 2009, pp. 1-13, 2009.

[5] Pallabi Parveen and Bhavani Thuraisingham, “Face

Recognition Using Various Classifiers: Artificial neuron

network, Linear discriminant and principal component

analysis”, Technical report UTDCS-05-06, 2006.

[6] B. Schrauwen, M. D’Haene, D. Verstraeten and J.V.
Campenhout, “Compact hardware liquid state machines on

FPGA for real-time speech recognition”, Neural Networks,

Vol. 21, No. 2–3, pp. 511-523, 2008.

[7] Vaibhav Garg, Ravi Shekar and J.G. Harris, “Spiking

Neuron Computation with the Time Machine”, IEEE

Transactions on Biomedical Circuits and Systems, Vol. 6,
No. 2, pp. 142-155, 2012.

[8] Juan A. Ramírez-Quintana, Mario I. Chacon-Murguia and

Jose F. Chacon-Hinojos, “Artificial Neural Image

Processing Applications: A Survey”, Engineering Letters,

Vol. 20, No. 1, pp. 68, 2012.

[9] G. Cauwenberghs, D.H. Goldberg and A.G. Andreou,

“Probabilistic synaptic weighting in a reconfigurable

network of VLSI integrate-and-fire neurons”, Neural

Networks, Vol. 14, No. 6-7, pp. 781-793, 2001.

[10] Rich Caruana and Alexandru Niculescu-Mizil, “An

Empirical Comparison of Supervised Learning

Algorithms”, Proceedings of the 23rd International

Conference on Machine Learning, pp. 161-168, 2006.

[11] M. Egmont-Petersena, D. de Ridder and H. Handels,

“Image processing with neural networks-a review”, Pattern

Recognition, Vol. 35, No. 10, pp. 2279-2301, 2002.

[12] C.E. Cox and W.E. Blanz, , “GABGLION-A Fast Field

Programmable Gate Array Implementation of a

Connectionist Classifier”, IEEE Journal of Solid-State
Circuits, Vol. 27, No. 3, pp. 288-299, 1992.

