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Abstract 

Tracking occluded objects at different depths has become as extremely 

important component of study for any video sequence having wide 

applications in object tracking, scene recognition, coding, editing the 

videos and mosaicking. The paper studies the ability of annotation to 

track the occluded object based on pyramids with variation in depth 

further establishing a threshold at which the ability of the system to 

track the occluded object fails. Image annotation is applied on 3 

similar video sequences varying in depth. In the experiment, one bike 

occludes the other at a depth of 60cm, 80cm and 100cm respectively. 

Another experiment is performed on tracking humans with similar 

depth to authenticate the results. The paper also computes the frame 

by frame error incurred by the system, supported by detailed 

simulations. This system can be effectively used to analyze the error in 

motion tracking and further correcting the error leading to flawless 

tracking. This can be of great interest to computer scientists while 

designing surveillance systems etc. 
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1. INTRODUCTION

Motion tracking plays an important role in the analysis of 

any video sequence. Over the years motion tracking is being 

applied widely in multiple fields like biomechanics [2], avionics 

[3], sport analysis [4], medical [5] etc. Despite the ability of the 

present systems, occlusion, depth variation, and blurriness are 

some of the issues which can hinder the effective object 

tracking. The real world video sequences consist of complex 

cases of occlusion that are difficult to handle thus occlusion. 

One of the tedious areas of interest with multiple applications 

like scene recognition, surveillance, object tracking etc is 

tracking occluded objects at different depths.  

This paper focuses on using the annotation tool provided in 

[1] to label and track different objects in three similar video 

sequences varying in depth. The system provides a robust 

algorithm to track object in above mentioned complex occluded 

video sequences. The effort in labeling and tracking the object is 

greatly decreased by allowing the user to make as well as label 

the contour of object in any one frame followed by the automatic 

tracking of the contour in other frames. The human interaction 

plays a pivotal role in labeling the objects as the user can correct 

the label in different frames thus removing the error produced by 

the computer vision system, hence increasing the efficiency of 

the system.  

The paper tries to analyze a very important and crucial aspect 

related to tracking occluded objects. We establish a threshold 

after which ability of the system to track the occluded object 

fails. Three similar videos having two moving objects, one 

occluding the other with variation in depth, were analyzed. In 

the videos two bikes, one occluding the other at depth 60cm, 

80cm and 100cm were analyzed. Another experiment is 

performed on tracking humans with similar depth to authenticate 

the results. The results were explained on the grounds of 

pyramids. The paper also computes the frame by frame error 

incurred by the system, supported by detailed simulations. This 

can be of great use to computer scientists especially who design 

system for surveillance, defense, ballistics etc. 

The following paper has been divided into five sections. The 

next elaborates the algorithm implemented by the paper for 

tracking the contour of the object. Section 3 explains the 

simulation results while the final section 4, discusses the 

summary of the paper. 

2. HUMAN BASED ANNOTATION

The system used in the paper makes use of human assisted 

layer segmentation, and automatic estimation of optical flow for 

object contour tracking. In order to increase the robustness of the 

system, the objective functions of flow estimation and flow 

interpolation are modeled on lagrange's L1 form [1]. Many 

techniques such as iterative reweighted least square (IRLS) [5, 

6] and pyramid based coarse-to-fine search [4, 6] were used at

large for the optimization of these non linear object functions. 

2.1 HUMAN ASSISTED LAYER SEGMENTATION 

This module works on the basis of human interaction with 

the labeling. The first step is the Initialization of contour in one 

frame. Due to background cluttering or other changes like 

shadow etc in the frame, errors can occur in the contour formed 

by the user. The error in contour can be corrected anytime by the 

user in any frame which is further automatically passed to the 

other frames. The forward and backward tracking of the target is 

simulated automatically by the system. Particle filter is used to 

track the object in the system as real time performance is 

considered more important than accuracy [7]. In addition, 

Occlusion handling technique has also been included in the 

contour tracker itself [1]. 

Suppose a function is defined using landmarks points as 
n
ppp RaaM 1

2}:{  at frame F1. The motion vector vp 

represents each landmark at frame F2.  Depending upon whether 

the tracking is back or forth, the frame F2 can be after or before 

F1. Instinctively, we want the movement of contour to be 

persistent and should match with the image features. In order for 

the movement to be persistent, we use optimization. The 

objective function is defined as, 
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vT+1 = vT, where v is the motion vector. In the equation, the 

length between the contour points ap and ap+1 is calculated by 

using the weight Sp; we define, 
ll

l
S

p

p


  where, lp = ||ap – 

ap+1|| and l is the average of lp. It’s evident from these equations 

that closer the points in the contour formation, more the 

probability that the points move together. Variable Tp is a square 

neighborhood at ap, while mp is the region of support for ap, a 

binary mask which indicates the presence of each neighboring 

pixel c inside the pixel, modulated by a two dimensional 

Gaussian function. In Eq.(1) the objective function mentioned is 

nonlinear, hence Taylor expansion is used to linearize the data 

term followed by the optimization of objective function 

performed through iterative reweighted least square (IRLS) [5, 

6] and pyramid based coarse-to-fine search [4, 6]. In order to 

account for the changes in the lighting condition, the images in 

F1 and F2 contain the first and second order derivative of 

luminance instead of just RGB channels. The rigidity of the 

object is controlled by the coefficient . The user can set the 

value of  before tracking.  

For handling occlusion, the user is allowed to specify relative 

depth and the depth is automatically interpolated (as time 

function) for the rest of the frames. The contour tracker is driven 

by a 2
nd

-order dynamical model for prediction. The prediction is 

used as an initialization for optimizing Eq.(1). The tracking 

algorithm iterates between the following two steps to handle 

occlusion: 

(1) Check whether each landmark Zp is occluded by other 

layers with smaller depth values. If occlusion is detected for Zp 

then set rp(c) = 0, c  Np, in Eq.(1). This means there is no 

region to support tracking Zp. 

(2) Optimize Eq.(1) using the coarse-to-fine scheme. 

The contour tracker worked fine for most of the cases, but it 

fails in case of drift from the position especially when the object 

rotates. To overcome this drawback, the system allows the 

correction of a landmark to be made at any frame and the change 

is transferred to the other frames. In the temporal propagation 

[1], to reconstruct the point modified by the user, the linear 

regression coefficients for the other points are estimated. The 

algorithm proposed works astonishingly well. In comparison to 

the complicated contour tracking/modification algorithm 

proposed in [8], are too expensive to be implemented for real-

time long distance environments. 

2.2 LAYER BY LAYER OPTICAL FLOW 

ESTIMATION 

The mask showing the visibility of each layer is the main 

difference between layer by layer optical flow estimation and 

traditional flow estimation for the whole frame. The pixels lying 

inside the mask are only used for matching.  For occlusion 

handling problem, apart from the normal procedure, outlier 

detection is also performed to segregate occlusion in the 

evaluation of optical flow to compensate the irregularity caused 

in the evaluation due to arbitrary shape of the mask. 

For baseline line model for optical flow estimation the 

system uses optical flow algorithm [5,6], while to improve the 

accuracy symmetric flow, computation is included.  Let E1 and 

E1 be the visible mask of a layer at frame F1 and F2, (g1, h1) be 

the flow field from F1 to F2, and (g2, h2) the flow field from F2 to 

F1. Following terms constitute the objective function for 

approximating the layer by layer optical flow. In the first step, 

the matching of images with the visible data term is formulated 

as mentioned in below, 

 
         yxFhygxFyxEuBdata ,,,* 21111
1   (2) 

where, u is the Gaussian filter. The data term 
 2
dataB  for (g2, h2) is 

similarly defined. To account for outliers in matching, L1 norm 

is used. In the second step, smoothness is imposed by, 

     
2

1

2

1
1 hgBsmooth  (3) 

where,  varies between 0.5 and 1. Finally, symmetric matching 

can be achieved by,  
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The sum of the above three equation gives the objective 

function described below, 
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IRLS proposed in [5,6] is used as equivalent to outer and 

inner fixed-points, together with the coarse-to-fine search [4,6]  

and image wrapping for the optimization of this objective 

function. After computing the flow at each level of pyramid, the 

visible layer mask E1 is approximated on the basis of estimated 

flow: 

 If B2(x + g1, y + h1) = 0, then set B1(x, y) = 0 

 If in the Eq.(4), the symmetry term is beyond the threshold 

at (x, y), then set E1(x, y) = 0 

Same rule can be used to update E2. As course to fine 

technique is used for the algorithm, we get two bidirectional 

flow fields and cropped visible layer masks that exhibit 

occlusion. The user is allowed to change the values of ,  and  
and in Eq.(5). 

2.3 HUMAN ASSISTED MOTION LABELING  

On failure of optical flow estimation fails, the user by the 

help of feature points can specify the sparse correspondence 

between two frames. The system then automatically produces a 

parametric motion or interpolates a dense flow field based on the 

specified sparse correspondence. For the specification of sparse 

correspondence the user can either use the help of computer for 

increasing efficiency or manually, taking full control of motion 

annotation. 

Minimum SSD matching and Lucas-Kanade transform [7] is 

used by the system for finding the best match in the next frame 

for the feature point specified by user in previous frame. The 

system depends on the number of feature points specified to 

determine the mode of parametric motion i.e. translation, affine 
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transform or homography followed by the estimation of the 

motion parameters accordingly. The modes mentioned above 

can also be selected by the user directly and the user even have 

an option to choose to generate a smooth flow field interpolated 

using the preconditioned conjugate gradient algorithm. 

However, defining corner like features for sequences in 

which only line structure is present can be a difficult task for 

these kinds of sequences. In order to solve this problem, 

uncertainty matching and probalisitic parametric motion were 

included in the algorithm so that the user can have a freedom to 

choose any pixel for correspondence. In the case of uncertainty 

matching, a probability map wp(x) is produced to match the 

feature point p at location cp  R
2
. A mean p and covariance 

matrix p are used to approximate the probability map Hp(x). 

For the determination of the probabilistic motion estimation, the 

system loops around two points. In the first step, the current 

estimate of mean and covariance are used for motion 

approximation. Mathematically, let s(cp;):R
2
R

2
 be a 

parametric motion applied to the estimation of parametric 

motion computed by, 

        

p
p pp

T
pp cscs 


;;minarg  (6) 

In second step, estimation of the mean and covariance is 

done where a new probability map is used which is reweighted 

by the current motion, 

       FcsNxi pppp
2,;,    (7) 

Convergence of this algorithm occurs within a few iterations. 

A dense flow field (i.e. ) can also be obtained for the motion 

s(cp;). Also, the feature point specified by the user can be used 

in the next frame. For providing the human assistance the users 

interact with the tool through the interface provided in the 

system developed by the authors of [1]. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig.1. a) Contour generated on the objects (b) Annotated sequence for 60cm depth (c) Annotated sequence for 80cm depth                    

(d) Annotated sequence for 100cm depth 
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(a) (b) (c) 

Fig.2. Contour generated on the Human subject for (a) Annotated sequence for 60cm depth (b) Annotated sequence for 80cm depth      

(c) Annotated sequence for 100cm depth 

Table.1. Error incurred during contour based tracking of each 

frame with respect to ground truth frame in percentage and 

pixels for at depth (a) 60 (b) 80 (c) 100 (in cm) 

(a) 60 

Frame 
Number of 

pixels 

Error in pixels 

with ground frame 

Error (%) with 

respect to ground 

truth frame 

2 70339 00006 0.009 

3 70295 00050 0.071 

4 69337 01084 1.433 

5 69063 01282 1.822 

6 68244 02101 2.987 

7 67851 02494 3.546 

8 66375 03970 5.643 

9 64420 05925 8.423 

10 60496 09849 14.001 

11 58082 12263 17.432 

(b) 80 

Frame 
Number of 

pixels 

Error in pixels 

with ground frame 

Error (%) with 

respect to ground 

truth frame 

2 70229 00009 0.0012 

3 70197 00041 0.058 

4 69374 00864 1.234 

5 69052 01186 1.689 

6 68517 01721 2.45 

7 68161 02077 2.957 

8 66893 03345 4.763 

9 64667 05571 7.932 

10 61918 08320 11.843 

11 59308 10930 15.561 

(c) 100 

Frame 
Number of 

pixels 

Error in pixels 

with ground frame 

Error (%) with 

respect to ground 

truth frame 

2 10054 001 0.009 

3 10064 009 0.089 

4 10055 000 0.000 

5 10136 081 0.805 

6 10161 106 1.050 

7 10340 285 2.832 

8 10357 302 2.990 

9 10402 247 3.450 

10 10458 403 4.010 

11 10918 863 8.58 

Table.2. Error incurred during contour based tracking of each 

frame with respect to ground truth frame in percentage and 

pixels for at depth (a) 60 (b) 80 (c) 100 (in cm) 

(a) 60 

Frame 
Number of 

pixels 

Error in pixels 

with ground frame 

Error (%) with 

respect to ground 

truth frame 

2 74142 00986 0.30 

3 73571 01551 1.04 

4 72144 02986 2.97 

5 71002 04128 4.48 

6 69853 05272 6.61 

7 68868 06257 8.37 

8 66676 08453 11.27 

9 65093 10020 13.32 

10 63667 11462 12.28 

11 62221 12895 15.13 

(b) 80 

Frame 
Number of 

pixels 

Error in pixels 

with ground frame 

Error (%) with 

respect to ground 

truth frame 

2 74151 00964 0.61 

3 73570 01535 1.17 

4 72183 02922 1.47 
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5 71031 04124 3.29 

6 69891 05234 4.20 

7 68817 06268 7.73 

8 66683 08416 10.25 

9 65036 10079 12.35 

10 63681 11424 13.26 

11 62216 12889 16.17 

(c) 100 

Frame 
Number of 

pixels 

Error in pixels 

with ground frame 

Error (%) with 

respect to ground 

truth frame 

2 74131 00984 1.31 

3 73570 01555 2.07 

4 72193 02982 3.97 

5 71031 04124 5.49 

6 69861 05274 7.62 

7 68827 06258 8.33 

8 66653 08456 11.25 

9 65076 10029 13.35 

10 63631 11464 15.26 

11 62236 12899 17.17 

3. RESULTS  

The aim of the experiment is to analyze the tracking ability 

of annotation with depth variations. In the videos two bikes, one 

occluding the other at depth 60cm, 80cm and 100cm were 

analyzed. Second experiment is performed on tracking humans 

with similar depth to authenticate the results. The results were 

explained on the grounds of pyramids. The section further also 

computes the percentage error in all the sequence at different 

depths. Finally we establish a threshold at which the system is 

effectively able to track the occluded object. The simulations 

were carried out on windows 7 running on an Intel i3 2.26 GHz 

processor machine. The automatic tracking for all frames in 

different video sequences takes less than 2 seconds on an 

average to compute the results.  

The focus is to study frames which incur major occlusion, 

occurring from frame 2 to frame 11 in the first, second and third 

video sequence respectively as shown in Fig.1(a), 1(b) and 1(c). 

The contour of the object is tracked from the reference frame to 

succeeding frame using the layer by layer optical flow 

estimation as shown in Fig.1. 

Error is defined as the total number of extra pixels classified 

or unclassified in the contour of the succeeding frame over the 

total number of pixels in the reference contour in the first frame. 

The ground truth pixels for the reference frame are 70301, 70345 

& 70238 for the first, second and third video sequence 

respectively across which all the error for each frame is 

evaluated. Detail of the total number of pixels in the succeeding 

frames along with the error in tracking with respect to the 

ground truth frame for all the three cases (60cm, 80cm, 100cm) 

are also shown in Table.1(a), 1(b), 1(c). The error for tracking 

the object in 100cm sequence varies from a minimum value of 

0.012(%) to a maximum of 15.561(%), the error in the 80cm 

tracking condition varies in a range of 0.009(%) to 17.342(%) 

while the error in tracking under the 60cm distance outdoor 

sequence varies from 0.014(%) to 20.343(%). 

In the second experiment, we study frames which incur 

major occlusion, occurring from frame 2 to frame 11 in the first, 

second and third video sequence respectively as shown in 

Fig.2(a), 2(b) and 2(c). The contour of the object is tracked from 

the reference frame to succeeding frame using the layer by layer 

optical flow estimation as shown in Fig.2. 

The ground truth pixels for the reference frame are 74142, 

74151 & 74131 for the first, second and third video sequence 

respectively across which all the error for each frame is 

evaluated. Detail of the total number of pixels in the succeeding 

frames along with the error in tracking with respect to the 

ground truth frame for all the three cases (60cm, 80cm, 100cm) 

are also shown in Table.2(a), 2(b), 2(c). The error for tracking 

the object in 100cm sequence varies from a minimum value of 

0.30(%) to a maximum of 15.13(%), the error in the 80cm 

tracking condition varies in a range of 0.61(%) to 16.17(%) 

while the error in tracking under the 60cm distance outdoor 

sequence varies from 1.31(%) to 17.17(%).  From the error 

analysis as shown in Table.1 and Table.2, we can state the 

thresholds at which the ability of the system to track the 

occluded objects fails is at 3.54 % error at 60cm depth at frame 

7, at 4.76 % error at 80cm depth at frame 8 and at 3.45 % error 

for 100cm depth at frame 9. 

4. CONCLUSION   

The system is applied to track object in three different video 

sequences involving different depth between the objects in the 

sequences. The error plots justify that tracking an objects with 

larger depth is much more accurate than at less distance between 

them. It can be justified by the error thresholds also as the ability 

of the system to track the occluded object fails at frame 6 for 

60cm depth while at frame 8 and 9 for 80cm and 100cm depth 

respectively, hence proving that the occluded object can be 

tracked more efficiently at one frame with larger depth between 

the occluded and non occluded objects. The system has vast 

application in areas where flawless tracking is of great 

importance. The summary can be effectively used by computer 

scientists in designing system using image annotation for 

tracking. Overall, the system can be efficiently used to track the 

objects in normal as well as occluded conditions in all the 

different cases. 

REFERENCES 

[1] Ce Liu ,William T. Freeman, Edward H. Adelson and Yair 

Weiss, “Human-Assisted Motion Annotation”, IEEE 

Conference on Computer Vision and Pattern Recognition, 

pp. 1-8, 2008. 

[2] J.T. Long, N. Jannetto, S. Bakker, S. Smith and G.F. 

Harris, “Biomechanics of cranial dynamics during daily 

living artivities”, 26
th

 Annual International Conference of 

the IEEE Engineering in Medicine and Biology Society, 

Vol. 1, pp. 2417-2419, 2004. 



DEVINDER KUMAR AND AMARJOT SINGH: ANNOTATION SUPPORTED OCCLUDED OBJECT TRACKING 

472 

[3] George M. Siouris, Guanrong Chen and Jianrong Weng 

“Tracking of Incoming ballistic missile using an extended 

Interval kalman filter”, IEEE Transactions on Aerospace 

and Electronic Systems, Vol. 33, No. 1, pp. 232-240, 1997. 

[4] Alberto Tomita, Tomio Echigo, Masato Kurokawa, Hisahi 

Miyamori and Shun-ichi Iisaku, “A visual tracking system 

for sports video annotation in unconstrained 

environments”, International Conference on Image 

Processing, Vol. 3, pp. 242-245, 2000. 

[5] Ting Chen, Member, Xiaoxu Wang, Sohae Chung, Dimitris 

Metaxas and Leon Axel, “Automated 3D Motion Tracking 

Using Gabor Filter Bank, Robust Point Matching and 

Deformable Models”, IEEE Transactions on Medical 

Imaging, Vol. 29, No. 1, pp. 1-11, 2010. 

[6] B. Lucas and T. Kanade, “An iterative image registration 

technique with an application to stereo vision”, 

Proceedings of the 7
th

 International joint Conference on 

Artificial Intelligence, Vol. 2, pp. 674–679, 1981. 

[7] M. J. Black and P. Anandan, “The robust estimation of 

multiple motions: parametric and piecewise-smooth flow 

fields”, Computer Vision and Image Understanding, Vol. 

63, No. 1, pp. 75-104,  1996. 

[8] T. Brox, A. Bruhn, N. Papenberg and J. Weickert, “High 

accuracy optical flow estimation based on a theory for 

warping”, European Conference on Computer Vision, pp. 

25–36, 2004. 

[9] A. Bruhn, J. Weickert and C. Schnorr, “Lucas/Kanade 

meets Horn/schunk: combining local and global optical 

flow methods”, International Journal of Computer Vision, 

Vol. 61, No. 3, pp. 211-231, 2005. 

[10] M. Isard and A. Blake, “CONDENSATION – Conditional 

Density Propagation for Visual Tracking”, International 

Journal of Computer Vision, Vol. 29, No. 1, pp. 5–28, 

1998. 

[11] L. Alvarez, R. Deriche, T. Papadopoulo and J. S´anchez, 

“Symmetrical dense optical flow estimation with 

occlusions detection”, International Journal of Computer 

Vision, Vol. 75, No. 3, pp. 371-385, 2007. 

 

 

 


