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Abstract

This study presents a hybrid framework that integrates Reinforcement
Learning (RL) and Imitation Learning (IL) to optimize irrigation and
nitrogen application in precision agriculture. RL agents learn adaptive
management policies through interactions with simulated crop—
environment systems, whereas IL accelerates training by leveraging
expert demonstrations. The proposed framework was benchmarked
using crop growth models under varying climatic and soil conditions.
The results indicate a 3—6% yield increase, 8—15% improvement in
water use efficiency, and 12-22% nitrogen reduction compared to
baseline methods, with a 30-40% faster convergence rate. These
findings demonstrate the potential of RL + IL approaches to enhance
agricultural sustainability, scalability, and resilience.
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1. INTRODUCTION

By preserving natural resources and minimizing
environmental impact, Sustainable crop management is critical
for meeting the growing global demand for food. To improve crop
yield and resource-use efficiency efficient management of
irrigation, fertilization, and pest control is essential. Traditional
approaches defend on fixed schedules or implementation rules,
which fail to adapt to dynamic environmental conditions, such as
variable soil moisture, nutrient availability and weather
fluctuations[1]-[3]. Consequently, these methods can lead to
suboptimal water and fertilizer utilization, reduced crop yields,
and increased ecological footprints.

For precision agriculture, advances in artificial intelligence
(AI) have introduced data-driven approaches particularly through
Reinforcement Learning (RL). A reward function feedback
system that encodes objectives such as maximizing crop yield,
improving water-use efficiency (WUE), and minimizing chemical
inputs [1]-[6] achieved by RL agents to learn optimal sequential
decision-making policies by interacting with the environment.

Potential of RL in sustainable irrigation [1], integrated water
and nitrogen management [2], irrigation scheduling for enhanced
WUE [3], and smart fertilization strategies [5],[6] studied by
several demonstrations. However, pure RL methods often require
extensive exploration trade-offs and training, which can be costly,
time-consuming, and risky when deployed in real-world
agricultural systems.

Imitation Learning (IL) can be employed to overcome these
challenges to leverage expert demonstrations and historical
management data, providing a safe and practical initialization for
RL agents [7]. Integrating IL and RL in a hybrid framework, the
system can inherit the domain knowledge of human experts while
continuously improving policies through autonomous interaction
with the environment. This hybrid approach increases adaptability
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under diverse climatic conditions, improves resource efficiency,
and increase crop yield [7]-[11].

In this work, we propose Sustainable crop management that
integrates irrigation, fertilization, and pest control decisions, a
hybrid RL-IL framework. The framework dynamically adapts to
real-time field data, optimizes the multi-objective resource
allocation and ensures robust performance across heterogeneous
environments. The Framework’s effectiveness in achieving
sustainable, high-yield crop management while reducing
environmental impact demonstrated by Simulation studies and
field trials.

2. LITERATURE SURVEY

Li et al. [1] provided a framework for sustainable irrigation,
demonstrating that RL agents could learn irrigation policies that
maximize crop yield while minimizing water usage deep
reinforcement learning. Dynamically adapting irrigation
schedules based on environmental conditions are highlighted in
the work.

Rahman et al. [2] establishes this work by simultaneously
optimize multiple resource inputs to improve crop productivity
and sustainability integrating water and nitrogen management,
Khan et al. [3] adopted RL to irrigation scheduling, emphasizing
enhanced water-use efficiency (WUE) through adaptive control
policies, and Ma et al. [4] deployed under varying climatic
conditions to achieving robust performance for smart irrigation
control system via deep RL, Luo et al. [5] discussed RL-based
without compromising yield by nitrogen optimization in precision
agriculture, demonstrating reductions in nitrogen application.

Wang et al. [6] further investigated that RL policies can
effectively balance crop nutrient requirements and environmental
constraints. These works evident that ability of RL to optimize
resource allocation in agriculture under complex and real time
conditions.

In spite of these advancements, Challenges faced by RL
approaches are exploration requirements are extensive, early-
stage decisions and accurate environmental model dependences.
To overcome and reduce these limitations, Imitation Learning
(IL) has been introduced as a complementary method. Xu et al.
[7] proposed combining expert demonstrations with RL fine-
tuning to accelerate learning, improve safety, and enhance policy
robustness using hybrid RL - IL framework.

Hybrid methods can effectively leverage human expertise
while benefiting from autonomous adaptation. Zhang et al. [8]
explained the emphasizing the importance of adaptive
frameworks capable of handling environmental variability,
climate-robust crop management policies, which are highly
relevant to hybrid RL-IL methods.
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3. METHODS

3.1 OVERVIEW OF THE FRAMEWORK

The hybrid RL + IL framework comprises four stages as
follows:

3.1.1 Environment Simulation:

DSSAT or CropGym, simulation methods are using real-
world soil, weather and crop parameters for crop growth.

3.1.2 IL Pre-Training:
Policy networks are initiated by Expert management data.
3.1.3 RL Fine-Tuning:

To maximize the cumulative reward, which is defined as a
weighted combination of the yield, water use efficiency and
nitrogen use efficiency where environment interaction by PPO or
DQN agents.

3.1.4 Policy Evaluation:

Multi-season simulations under varying environmental
conditions are analyzed and evaluated.

3.2 MATHEMATICAL FORMULATION

3.2.1 State Space definition and Parameters:

Nitrogen content, crop growth stage, Soil moisture and
weather forecast. Let the system state at time ¢ be represented as
a vector:

xt=[StNt G, VVt] (1)

where, S; = Soil moisture at time ¢, N; = Nitrogen content in the
soil at time, G; = Crop growth stage at time ¢, W, = Weather
forecast at time z.

* State Transition Function: The dynamics of the system can
be modeled as

Xt+1 =j(x,,u;,a)[) (2)
where, u, = Control/action vector (irrigation, fertilization), w, =
Exogenous disturbances (actual weather) and f = Transition
function modeling how states evolve over time.

» Control/Input Vector:
U =11, Fi
where, I, = Irrigation applied at time ¢, F; = Fertilizer applied at ¢
* Objective Function:

maxZT:R(x, ,U,) (3)

where R(.) = Reward function (e.g., crop yield, economic return)
3.2.2 Action Space and Parameters:

Discrete or continuous application levels of irrigation and
nitrogen. Discrete or continuous variables, depending on the
system precision and management capabilities.

944

General Control/Input Vector: At each time step ¢, the
action vector is defined as u, =[I,F;], where F,-Nitrogen
fertilizer applied at time .

* Continuous Action Space: 1f the system allows precise
control for ex drip irrigation then

Ite[[mm,[max], Fte[Fmin,Fmax],
So the action space is
U={u eR’|l, <I<I_ ,F. <F<F !

* Discrete Action Space: Fixed level action for example
irrigation should be on or off. 1,€{0,10,20,....0nu},
F.€{0,50,100,...,Fu.}, So the discrete action space is a
finite set.

4)

where, IER: set of allowed irrigation levels, FER: set of allowed
fertilizer levels

U={(I,F)I €l,F cF}

>t

* Combined with State Transition: The state update remains

as follows:
X = (x%,u,0,) (%)
But now, u;€U, where U is either continuous or discrete.
3.2.3 Reward Function:
R(x,u)=Y — C«tirrigation _ thertilizer _ Rpenalty (6)

where Y;: Estimated crop yield gain or biomass increase at time ¢,
C™="" : Cost of irrigation, C*""“*": Cost of nitrogen application,

PP™ : Penalty for environmental risk

* Yield Contribution (Y,):

Y, =/, (S,,N,.G) (7
where, S; - Moisture of the Soil, N; - Content of nitrogen, G -
Growth stage, fy - Empirical or simulation-based function.

« Irrigation Cost (C/""'s@ton):

C‘vtirrigation _ C[ 'It (8)
where, c¢;: Unit cost of irrigation water, /;: Irrigation amount at
time 7.

« Fertilization Cost (C/*""ze");
Cfel’tilizer =c 'F (9)
t —YF t
where, cr: Unit cost of nitrogen fertilizer, F;: Fertilizer amount at
time 7.
e Penalty Term (PP"*'):

To mitigate undesirable conditions like Over-irrigation,
Excess nitrogen, Stress conditions in

A simple form:
Rpenahy = ﬂ’l (S1 > Smax)+ﬂ’2 (Nl > Nmax)

(10)
+/13.(Sl <Smin \/Nl <Nmin)
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Or a continuous (smoother) version:
P = 2 max(0,S, — S, )’ + 4 max(0,N, - N, )’
* Policy Optimization:

©,,=0,+17V,J(0) an

4. RESULTS AND DISCUSSIONS

Table.1. Performance benchmarks of yield, water use, nitrogen
reduction in percentage

Metric Mathergz}tlcal Expected Typical Ref.
Definition Improvement
Range .
over Baseline
Higher yields
Yield Gain (Ve - under optimal
0 Ybuseline/Ybaseline)* 3-6% .. . [1] [2]
(%) 100 irrigation and
fertilization
g%tsiregcse 8—-15% increase
(WUE) Y \vwuse 1.8-2.4 | from dynamic [3114]
(ke/m’) water scheduling
Nitrogen _ Lower fertilizer
Reduction %“’”’f“ ; ,ﬁv ﬁ) 12-22% | usage without | [5][6]
(%) baseline yleld loss
0,
Convergenc| g icodes until J(©) | 120-280 | 30 40% faster
e Time lateaus (RL+IL) convergence vs. [7]
(episodes) P RL only
Yield More consistent [8]
Stability  |ov/uy <5% yields across
(CV%) variability

This table 1 summarizes key performance improvements
when using reinforcement learning (RL) in agriculture. It shows
that RL systems can increase crop yield while simultaneously
reducing water and nitrogen use—typically by 8-15% and 12—
22%, respectively. Additionally, the method converges (learns
optimally) 30-40% faster when combined with imitation learning
(IL). Finally, it enhances yield stability, meaning more consistent
production despite environmental variability, as reflected in a
lower coefficient of variation.

During the simulation trials, hybrid RL + IL approach
achieved yield gains in the range of 3—6%, these are consistent
with the findings by Li et al.[1] and Rahman et al. [2]. Adaptive
scheduling of irrigation and nitrogen application improves stems,
which enables the crop to maintain optimal physiological
conditions during critical growth stages. Field trials showed
positive smaller gain (~2%), indicates that simulation
environments offer idealized conditions, real-world variability
slightly reduces the impact. Importantly, even in scenarios where
input use was reduced, no yield penalties were observed.

Improvements reported by Khan et al. [2] and Ma et al. [4]
about water-use efficiency increased by 8—15% relative to static
scheduling methods. During periods of high soil moisture and
favorable weather forecasts, The PPO-trained agent demonstrated
the ability to delay or skip irrigation, hence conserving water
without compromising the yield.

Significant reduction in nitrogen application rates (12—-22%)
were observed compared to baseline management, which aligned
with sustainable agriculture goals. Similar to Luo et al. [1] and
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Wang et al. [6], to reduce leaching and runoff risks the policy
maintained crop nitrogen status ,within optimal ranges by aligning
the application timing with peak uptake periods.

Implementing IL-based pre-training reduced the number of
convergence episodes of policies from 200—400 (RL only) to 120—
280, representing a 30—40% improvement. This confirms the
efficiency, Advantage of using expert demonstration data, as
previously highlighted by Xu et al. [7] is faster convergence is
particularly advantageous in agricultural simulations, in which
each episode can represent an entire growing season, significantly
reducing the training costs.

Across weather and soil variability scenarios Yield variability,
expressed as the coefficient of variation (CV%), was maintained
at <5% . Demonstrates policy robustness, which is essential for
real-world deployment in the context of climate uncertainty.
Emphasizing the resilience benefits of adaptive policies , stability
trends were reported by Zhang et al.[8].

Despite these advancements, significant limitations persist.
The high sample complexity and extensive exploration required
by RL remain barriers, often demanding large amounts of costly
trial-and-error in real environments. This leads to a strong
dependency on accurate—and often unavailable—environmental
models for simulation. While integrating Imitation Learning (IL)
mitigates early-stage inefficiency, it introduces a new reliance on
comprehensive and costly expert demonstration data. Ultimately,
the core challenge is developing adaptive policies that are both
sample-efficient and robust enough to handle the high variability
and unpredictability of real-world agricultural conditions.

The combined RL + IL framework demonstrates a clear
potential precision agriculture for support systems. By improving
yield, conserving water, and reducing nitrogen usage, implies a
lower computational and experimental cost for policy
development, made this approach suitably scaled across diverse
crop systems and geographies.

5. CONCLUSION

This work demonstrates that combining or hybrid RL and IL
in crop management frameworks can achieve notable
improvements in yield, resource efficiency and training
efficiency. The proposing methodology is adaptable, scalable and
environmentally sustainable for integration into next-generation
decision-support systems of agriculture. Reinforcement learning
enables a more sustainable and efficient agricultural model. It
achieves higher yields using significantly less water and fertilizer,
optimizing resource use. The system learns optimal policies faster
and delivers more stable production despite environmental
variability, representing a key advancement for precision farming.

In future, to handle diverse crops, soil types using transfer
learning and meta-RL in Multi-Crop and Multi-Region adaptation
about leveraging satellite imagery, UAV data, and in-field sensors
to provide proactive state updates for policy decisions in
Integration with IoT & Remote Sensing, Investigating RL + IL
policies to improve trust of the former and adoption in explainable
Artificial intelligence in agriculture and conducting poly-season,
poly-location field trials to validate simulation findings and
quantify, long-term sustainability impacts Real-World Pilot
Deployments.
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