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Abstract 

This study presents a hybrid framework that integrates Reinforcement 

Learning (RL) and Imitation Learning (IL) to optimize irrigation and 

nitrogen application in precision agriculture. RL agents learn adaptive 

management policies through interactions with simulated crop–

environment systems, whereas IL accelerates training by leveraging 

expert demonstrations. The proposed framework was benchmarked 

using crop growth models under varying climatic and soil conditions. 

The results indicate a 3–6% yield increase, 8–15% improvement in 

water use efficiency, and 12–22% nitrogen reduction compared to 

baseline methods, with a 30–40% faster convergence rate. These 

findings demonstrate the potential of RL + IL approaches to enhance 

agricultural sustainability, scalability, and resilience. 
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1. INTRODUCTION 

By preserving natural resources and minimizing 

environmental impact, Sustainable crop management is critical 

for meeting the growing global demand for food. To improve crop 

yield and resource-use efficiency efficient management of 

irrigation, fertilization, and pest control is essential. Traditional 

approaches defend on fixed schedules or implementation rules, 

which fail to adapt to dynamic environmental conditions, such as 

variable soil moisture, nutrient availability and weather 

fluctuations[1]-[3]. Consequently, these methods can lead to 

suboptimal water and fertilizer utilization, reduced crop yields, 

and increased ecological footprints. 

For precision agriculture, advances in artificial intelligence 

(AI) have introduced data-driven approaches particularly through 

Reinforcement Learning (RL). A reward function feedback 

system that encodes objectives such as maximizing crop yield, 

improving water-use efficiency (WUE), and minimizing chemical 

inputs [1]–[6]  achieved by RL  agents to learn optimal sequential 

decision-making policies by interacting with the environment.  

Potential of RL in sustainable irrigation [1], integrated water 

and nitrogen management [2], irrigation scheduling for enhanced 

WUE [3], and smart fertilization strategies [5],[6] studied by 

several demonstrations. However, pure RL methods often require 

extensive exploration trade-offs and training, which can be costly, 

time-consuming, and risky when deployed in real-world 

agricultural systems. 

Imitation Learning (IL) can be employed to overcome these 

challenges to leverage expert demonstrations and historical 

management data, providing a safe and practical initialization for 

RL agents [7]. Integrating IL and RL in a hybrid framework, the 

system can inherit the domain knowledge of human experts while 

continuously improving policies through autonomous interaction 

with the environment. This hybrid approach increases adaptability 

under diverse climatic conditions, improves resource efficiency, 

and increase crop yield [7]-[11]. 

In this work, we propose Sustainable crop management that 

integrates irrigation, fertilization, and pest control decisions, a 

hybrid RL-IL framework. The framework dynamically adapts to 

real-time field data, optimizes the multi-objective resource 

allocation and ensures robust performance across heterogeneous 

environments. The Framework’s effectiveness in achieving 

sustainable, high-yield crop management while reducing 

environmental impact demonstrated by Simulation studies and 

field trials. 

2. LITERATURE SURVEY 

Li et al. [1] provided a framework for sustainable irrigation, 

demonstrating that RL agents could learn irrigation policies that 

maximize crop yield while minimizing water usage deep 

reinforcement learning. Dynamically adapting irrigation 

schedules based on environmental conditions are highlighted in 

the work.  

Rahman et al. [2] establishes this work  by simultaneously 

optimize multiple resource inputs to improve crop productivity 

and sustainability integrating water and nitrogen management,  

Khan et al. [3] adopted RL to irrigation scheduling, emphasizing 

enhanced water-use efficiency (WUE) through adaptive control 

policies, and Ma et al. [4] deployed under varying climatic 

conditions to achieving robust performance for smart irrigation 

control system via deep RL, Luo et al. [5] discussed RL-based 

without compromising yield by nitrogen optimization in precision 

agriculture, demonstrating reductions in nitrogen application.  

Wang et al. [6] further investigated that RL policies can 

effectively balance crop nutrient requirements and environmental 

constraints. These works evident that ability of RL to optimize 

resource allocation in agriculture under complex and real time 

conditions. 

In spite of these advancements, Challenges faced by RL 

approaches are exploration requirements are extensive, early-

stage decisions and accurate environmental model dependences. 

To overcome and reduce these limitations, Imitation Learning 

(IL) has been introduced as a complementary method. Xu et al. 

[7] proposed combining expert demonstrations with RL fine-

tuning to accelerate learning, improve safety, and enhance policy 

robustness using hybrid RL - IL framework.  

Hybrid methods can effectively leverage human expertise 

while benefiting from autonomous adaptation. Zhang et al. [8] 

explained the emphasizing the importance of adaptive 

frameworks capable of handling environmental variability, 

climate-robust crop management policies, which are highly 

relevant to hybrid RL-IL methods. 

 



SUDHARSHAN BANAKAR et al.: REINFORCEMENT AND IMITATION LEARNING FOR SUSTAINABLE CROP MANAGEMENT: A HYBRID FRAMEWORK 

944 

3. METHODS 

3.1 OVERVIEW OF THE FRAMEWORK 

The hybrid RL + IL framework comprises four stages as 

follows: 

3.1.1 Environment Simulation: 

DSSAT or CropGym, simulation methods are using real-

world soil, weather and crop parameters for crop growth. 

3.1.2 IL Pre-Training:  

Policy networks are initiated by Expert management data. 

3.1.3 RL Fine-Tuning:  

To maximize the cumulative reward, which is defined as a 

weighted combination of the yield, water use efficiency and 

nitrogen use efficiency where environment interaction by PPO or 

DQN agents. 

3.1.4 Policy Evaluation:  

Multi-season simulations under varying environmental 

conditions are analyzed and evaluated. 

3.2 MATHEMATICAL FORMULATION 

3.2.1 State Space definition and Parameters:  

Nitrogen content, crop growth stage, Soil moisture and 

weather forecast. Let the system state at time t be represented as 

a vector:  

 xt = [St Nt Gt Wt] (1) 

where, St = Soil moisture at time t, Nt = Nitrogen content in the 

soil at time, Gt = Crop growth stage at time t, Wt = Weather 

forecast at time t.  

• State Transition Function: The dynamics of the system can 

be modeled as   

 xt+1 = f(xt,ut,ωt) (2) 

where, ut = Control/action vector (irrigation, fertilization), ωt = 

Exogenous disturbances (actual weather) and f = Transition 

function modeling how states evolve over time. 

• Control/Input Vector: 

 Ut = [It, Ft] 

where, It = Irrigation applied at time t, Ft = Fertilizer applied at t 

• Objective Function: 

 
0

max ( , )
T

t t

t

R x u
=

  (3) 

where R(.) = Reward function (e.g., crop yield, economic return) 

3.2.2 Action Space and Parameters: 

Discrete or continuous application levels of irrigation and 

nitrogen. Discrete or continuous variables, depending on the 

system precision and management capabilities. 

General Control/Input Vector: At each time step t, the 

action vector is defined as ut =[It,Ft], where  Ft -Nitrogen 

fertilizer applied at time t. 

• Continuous Action Space: If the system allows precise 

control for ex drip irrigation then 

It∈[Imin,Imax], Ft∈[Fmin,Fmax], 

So the action space is  

2

min max min max{ , }|t t tU u I I I F F F=     R  

• Discrete Action Space: Fixed level action for example 

irrigation should be on or off. It∈{0,10,20,…,Imax}, 

Ft∈{0,50,100,…,Fmax}, So the discrete action space is a 

finite set. 

 {( , )| , }t t t tU I F I I F F=    (4) 

where, I∈R: set of allowed irrigation levels, F∈R: set of allowed 

fertilizer levels 

• Combined with State Transition: The state update remains 

as follows: 

 
1 ( , , )t t t tx f x u + =  (5) 

But now, ut∈U, where U is either continuous or discrete. 

3.2.3 Reward Function: 

 irrigation fertilizer penalty( , )t t t t t tR x u Y C C P= − − −  (6) 

where Yt: Estimated crop yield gain or biomass increase at time t,    
irrigation

tC : Cost of irrigation, fertilizer

tC : Cost of nitrogen application,                                 

penalty

tP : Penalty for environmental risk 

• Yield Contribution (Yt):  

 ( , , )t Y t t tY f S N G=  (7) 

where, St - Moisture of the Soil, Nt - Content of nitrogen, Gt -

Growth stage, fY - Empirical or simulation-based function. 

• Irrigation Cost (Ct
irrigation): 

 irrigation

t I tC c I=   (8) 

where, cI: Unit cost of irrigation water, It: Irrigation amount at 

time t. 

• Fertilization Cost (Ct
fertilizer): 

 fertilizer

t F tC c F=   (9) 

where, cF: Unit cost of nitrogen fertilizer, Ft: Fertilizer amount at 

time t. 

• Penalty Term (Pt
penalty): 

To mitigate undesirable conditions like Over-irrigation, 

Excess nitrogen, Stress conditions  in 

A simple form: 

 

penalty

1 max 2 max

3 min min

( ) ( )

( )

t t t

t t

P S S N N

S S N N

 



=   +  

+    
 (10) 
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Or a continuous (smoother) version: 

 
penalty 2 2

1 opt 2 optmax(0, ) max(0, )t t tP S S N N = − + −  

• Policy Optimization: 

 
1 ΘΘ Θ (Θ)t t J+ = +  (11) 

4. RESULTS AND DISCUSSIONS 

Table.1. Performance benchmarks of yield, water use, nitrogen 

reduction in percentage 

Metric 

 

Mathematical 

Definition 

 

Expected 

Range 

Typical  

Improvement  

over Baseline 

Ref.  

 

Yield Gain 

(%) 

(YRL –

Ybaseline/Ybaseline)* 

100 

3–6% 

Higher yields 

under optimal 

irrigation and 

fertilization 

[1] [2] 

Water Use 

Efficiency 

(WUE) 

(kg/m³) 

Y/WUSE 1.8–2.4 

8–15% increase 

from dynamic 

water scheduling 

[3] [4] 

Nitrogen 

Reduction 

(%) 

(Nbaseline – NRL 

/Nbaseline ) * 10 
12–22% 

Lower fertilizer 

usage without 

yield loss 

[5] [6] 

Convergenc

e Time 

(episodes) 

Episodes until J(Ɵ) 

plateaus 

120–280 

(RL+IL) 

30–40% faster 

convergence vs. 

RL only 

[7] 

Yield 

Stability 

(CV%) 

σY/μY ≤5% 

More consistent 

yields across 

variability 

[8] 

 

This table 1 summarizes key performance improvements 

when using reinforcement learning (RL) in agriculture. It shows 

that RL systems can increase crop yield while simultaneously 

reducing water and nitrogen use—typically by 8–15% and 12–

22%, respectively. Additionally, the method converges (learns 

optimally) 30–40% faster when combined with imitation learning 

(IL). Finally, it enhances yield stability, meaning more consistent 

production despite environmental variability, as reflected in a 

lower coefficient of variation. 

During the simulation trials, hybrid RL + IL approach 

achieved yield gains in the range of 3–6%, these are consistent 

with the findings by Li et al.[1] and Rahman et al. [2]. Adaptive 

scheduling of irrigation and nitrogen application improves stems, 

which enables the crop to maintain optimal physiological 

conditions during critical growth stages. Field trials showed 

positive smaller gain (~2%), indicates that simulation 

environments offer idealized conditions, real-world variability 

slightly reduces the impact. Importantly, even in scenarios where 

input use was reduced, no yield penalties were observed. 

Improvements reported by Khan et al. [2] and Ma et al. [4] 

about water-use efficiency increased by 8–15% relative to static 

scheduling methods. During periods of high soil moisture and 

favorable weather forecasts, The PPO-trained agent demonstrated 

the ability to delay or skip irrigation, hence conserving water 

without compromising the yield. 

Significant reduction in nitrogen application rates (12–22%) 

were observed compared to baseline management, which aligned 

with sustainable agriculture goals. Similar to Luo et al. [1] and 

Wang et al. [6],  to reduce leaching and runoff risks the policy 

maintained crop nitrogen status ,within optimal ranges by aligning 

the application timing with peak uptake periods. 

Implementing IL-based pre-training reduced the number of 

convergence episodes of policies from 200–400 (RL only) to 120–

280, representing a 30–40% improvement. This confirms the 

efficiency, Advantage of using expert demonstration data, as 

previously highlighted by Xu et al. [7] is faster convergence is 

particularly advantageous in agricultural simulations, in which 

each episode can represent an entire growing season, significantly 

reducing the training costs. 

Across weather and soil variability scenarios Yield variability, 

expressed as the coefficient of variation (CV%), was maintained 

at ≤5% . Demonstrates policy robustness, which is essential for 

real-world deployment in the context of climate uncertainty. 

Emphasizing the resilience benefits of adaptive policies , stability 

trends were reported by Zhang et al.[8]. 

Despite these advancements, significant limitations persist. 

The high sample complexity and extensive exploration required 

by RL remain barriers, often demanding large amounts of costly 

trial-and-error in real environments. This leads to a strong 

dependency on accurate—and often unavailable—environmental 

models for simulation. While integrating Imitation Learning (IL) 

mitigates early-stage inefficiency, it introduces a new reliance on 

comprehensive and costly expert demonstration data. Ultimately, 

the core challenge is developing adaptive policies that are both 

sample-efficient and robust enough to handle the high variability 

and unpredictability of real-world agricultural conditions. 

The combined RL + IL framework demonstrates a clear 

potential precision agriculture for support systems. By improving 

yield, conserving water, and reducing nitrogen usage, implies a 

lower computational and experimental cost for policy 

development, made this approach suitably scaled across diverse 

crop systems and geographies. 

5. CONCLUSION 

This work demonstrates that combining or hybrid RL and IL 

in crop management frameworks can achieve notable 

improvements in yield, resource efficiency and training 

efficiency. The proposing methodology is adaptable, scalable and 

environmentally sustainable for integration into next-generation 

decision-support systems of agriculture. Reinforcement learning 

enables a more sustainable and efficient agricultural model. It 

achieves higher yields using significantly less water and fertilizer, 

optimizing resource use. The system learns optimal policies faster 

and delivers more stable production despite environmental 

variability, representing a key advancement for precision farming. 

In future, to handle diverse crops, soil types using transfer 

learning and meta-RL in Multi-Crop and Multi-Region adaptation 

about leveraging satellite imagery, UAV data, and in-field sensors 

to provide proactive state updates for policy decisions in 

Integration with IoT & Remote Sensing, Investigating RL + IL 

policies to improve trust of the former and adoption in explainable 

Artificial intelligence in agriculture and conducting poly-season, 

poly-location field trials to validate simulation findings and 

quantify, long-term sustainability impacts Real-World Pilot 

Deployments. 
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