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Abstract

The study focused on the growing need to manage the increasing
workload pressure that often occurred in modern data centers during
peak hours. The rapid growth of digital services had increased the
computational demand, and this situation had created significant stress
on resource utilization, energy consumption, and task scheduling. This
background highlighted the need for a data-science-driven mechanism
that handled workload patterns in an adaptive and efficient way. The
problem centered on the fact that conventional scheduling techniques
rarely adapted to irregular spikes, and many of these techniques have
handled clustered loads poorly, which caused delays and underutilized
resources. The method introduced an improved Density-Peak Adaptive
Clustering (DPAC) algorithm that used recent advances in
unsupervised learning and that analyzed dynamic workload traces
collected from heterogeneous servers. The algorithm calculated local
densities, identified core points, and formed adaptive clusters that
represented different workload intensities. The model then mapped
these clusters to appropriate resource pools, and it balanced the load
across the data center. The framework also included a predictive
module which has used historical patterns to anticipate the next peak
interval. Experimental tests were carried out on a real workload dataset
that included web services, database transactions, and analytics jobs.
The proposed DPAC framework improves performance and efficiency
of data centers during peak workloads. Experimental results indicate
that the method reduces response time to 165 ms at 100% CPU
utilization, while achieving CPU and memory utilization of 92% and
95%, respectively. Energy consumption decreases to 95 kWh, and the
load balancing index reaches 0.75, demonstrating a significant
improvement over k-means, reinforcement-learning-based allocation,
and Gaussian mixture model approaches. These findings indicate that
the framework has provided an adaptive, predictive, and energy-aware
solution for optimized workload allocation in heterogeneous data
centers.
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1. INTRODUCTION

The rapid expansion of digital ecosystems has shaped the
operational landscape of modern data centers, where massive
workloads continue to grow at an unprecedented rate [1-3]. These
infrastructures support cloud platforms, enterprise applications,
and analytics pipelines that run continuously and generate
fluctuating demands on computing resources. In recent years,
many enterprises have shifted toward distributed and virtualized
environments, which has created complex workload patterns that
vary sharply during peak hours. This background underscores the
need for a data-science-driven strategy that analyzes workload
fluctuations intelligently and supports dynamic adjustments
across heterogeneous servers.

Despite the architectural advances of data centers, a set of
operational challenges persists. The first major challenge arises
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from unpredictable workload surges, which often cause load
imbalances and performance degradation [4]. The second
challenge relates to energy efficiency, because peak-hour
demands have pushed systems toward excessive power
consumption, which has increased operational costs and carbon
impact [5]. These challenges demonstrate that existing scheduling
approaches still lack the adaptability and depth of analytics that
large-scale centers require.

The problem addressed in this study focuses on the limitations
of traditional resource allocation strategies [6]. Many of these
mechanisms rely on static thresholds or historical averages, and
they rarely capture the evolving structure of workload behavior.
As a result, they have handled clustered demands poorly,
especially when diverse tasks that include web traffic, transaction
processing, and high-volume data analytics arrive simultaneously.
The inefficiency that occurs during such peak intervals leads to
overloaded servers, underutilized nodes, and prolonged response
times.

The primary objectives of this research are fourfold. First, the
work aims to analyze workload traces using a data-science
framework that identifies latent patterns across heterogeneous
resources. Second, it aims to design an adaptive clustering
mechanism that groups workloads according to intensity,
temporal variation, and resource requirements. Third, the study
targets the development of a mapping strategy that assigns
clusters to resource pools in an optimized manner. Finally, the
research seeks to evaluate the model under realistic peak-hour
conditions to quantify improvements in performance, utilization,
and energy savings.

The novelty of this study lies in its use of a Density-Peak
Adaptive Clustering (DPAC) model, which integrates recent
clustering advances with workload-aware optimization. Unlike
classical clustering techniques that assume static distributional
structures, the proposed framework operates on dynamic
workload characteristics that evolve with time. It also
incorporates a predictive module which has used historical traces
to anticipate upcoming peaks. This unified view of clustering,
forecasting, and allocation sets the approach apart from
conventional schedulers.

The study makes two major contributions. The first
contribution presents a hybrid clustering engine that has
combined local density estimation with peak-distance analysis,
which yields workload groups that align closely with actual
resource demand. This method ensured that the clustering
outcomes are both stable and sensitive to sudden variations. The
second contribution proposes an allocation framework that maps
these clusters onto a server pool in a balanced and energy-aware
manner. The combined contributions demonstrate that integrating
data science and clustering intelligence offers a practical and
scalable method for optimizing data-center operations during
peak hours.
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2. RELATED WORKS

Several studies have addressed workload management in data
centers, and each contributed unique insights into clustering,
scheduling, and optimization. Research in [7] examined early
clustering models that have grouped workloads according to
simple metrics such as CPU consumption and job length.
Although the approach worked for small-scale centers, it
struggled with dynamic, multi-modal workloads. Study [8]
introduced a time-series-driven clustering method that has
captured workload seasonality, and this method improved
prediction but lacked real-time adaptability during peak
fluctuations.

Work in [9] explored k-means-based segmentation for virtual
machine consolidation. The algorithm has reduced energy
consumption by grouping similar workloads, yet it performed
poorly when the data structure deviated from spherical clusters.
In [10], researchers implemented hierarchical clustering that
analyzed workload affinity across applications. The method
produced high interpretability but imposed heavy computation
costs for large datasets. Study [11] proposed a density-based
clustering approach that identified high-load zones within cloud
infrastructures; however, its sensitivity to parameter settings
limited its operational reliability.

Another line of research focused on learning-based resource
scheduling. The authors in [12] developed a reinforcement
learning framework that has adapted resource allocation
according to rewards generated from energy savings and reduced
latency. Although the model improved overall efficiency, it
required extensive training time before deployment. Study [13]
evaluated fuzzy-clustering-guided scheduling for hybrid cloud
environments. The approach improved workload distribution but
lacked the ability to manage abrupt peaks. Work in [14] examined
probabilistic clustering for workload characterization and utilized
Gaussian mixture models, which offered flexible representation
but suffered from convergence issues during highly skewed traffic
loads.

Finally, study [15] introduced a hybrid clustering—forecasting
model that analyzed both historical traces and real-time metrics.
The technique improved scheduling stability; however, it did not
provide a mechanism for adaptive cluster resizing during high-
pressure intervals. These studies collectively showed that
clustering-driven optimization has played a major role in data-
center performance enhancement, yet many methods still lacked
the dynamic responsiveness required for intense peak-hour
behavior.

3. PROPOSED METHOD

The proposed method relied on the Density-Peak Adaptive
Clustering (DPAC) framework, which has combined workload
characterization, dynamic clustering, and resource-aware
allocation into a unified system. The approach processed
incoming workload traces collected from heterogeneous servers
and extracted features that captured CPU utilization, memory
pressure, I/O activity, and arrival intervals. These features were
used to compute local densities and relative peak distances, and
these values guided the formation of adaptive clusters that
represented different workload intensities. Once clusters were
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formed, the system mapped them to suitable resource pools
according to available capacity and predicted peak-hour
fluctuations. The allocation module used a lightweight forecasting
layer which has analyzed short-term historical patterns and
anticipated upcoming surges. This integrated mechanism ensured
balanced load distribution and minimized bottlenecks across
servers.

» The workload dataset was collected from heterogeneous
nodes and preprocessed.

Features that represented system load, access frequency, and
resource intensity were extracted.

* Local density for each workload instance was calculated
using distance metrics.

Peak-distance values were computed to identify potential
cluster centers.

Adaptive clusters were formed based on the density—
distance relationship.

A forecasting module predicted peak intervals using recent
workload traces.

Clusters were mapped to resource pools with available
computational capacity.

The allocation module balanced the load to avoid server
overload.

* The system updated cluster boundaries whenever sudden
workload shifts occurred.

* Performance metrics were logged, analyzed, and compared
against baseline schedulers.

WORKLOAD DATA COLLECTION AND
FEATURE EXTRACTION

31

The first step in the proposed DPAC framework involves
collecting workload traces from heterogeneous servers within a
data center. Each server records metrics such as CPU utilization,
memory usage, I/O activity, and request arrival intervals. These
raw traces are preprocessed to remove noise, normalize the data,
and handle missing values. After preprocessing, feature extraction
is performed to represent the dynamic characteristics of each
workload instance. These features form the basis for subsequent
clustering and allocation steps.

The extracted feature vector for a workload instance ican be
expressed as:

FE=lfepusfmemsfiofi]
where  fou, fuems fio and fi represent CPU load, memory
consumption, I/O utilization, and inter-arrival time, respectively.
Each feature is normalized to ensure equal contribution during
density computation.

Table.1. Extracted Workload Features

Workload|CPU|{Memory| 1/0 Arrival
ID (%)| (%) |(MB/s)|Interval (s)
Wi 68 72 120 3
w2 45 60 80 5
W3 90 85 150 2
W4 30 40 60 6
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The Table.1 illustrates a set of workload features for four
instances. The feature vectors serve as input for the next stage,
density and peak-distance computation.

3.2 DENSITY AND
COMPUTATION

PEAK-DISTANCE

After feature extraction, the algorithm calculates the local
density for each workload instance. Density quantifies the number
of neighboring instances within a defined distance threshold e.
Peak-distance is the distance of each instance to the nearest
workload with higher density. This step identifies candidate
cluster centers that represent high-intensity workloads.

The local density p; of workload i is computed as:

N OF —-F.0Y
o) :Zexp _(—fj
J=1 d

c

where N is the total number of instances, F; and F; are feature
vectors, and d. is the cutoff distance. The peak-distance J; is
computed as:

6,= min UF, —F, [

Jpi>pi

Table.2. Density and Peak-Distance Calculation

Workload ID|Density (p)|Peak Distance (6)
Wi 3.25 1.5
w2 2.10 2.3
W3 4.10 1.0
W4 1.50 2.8

The Table.2 illustrates the computed density and peak-
distance values for the workloads. Instances with high density and
high peak distance are selected as cluster centers, as they represent
significant workload peaks that require prioritization during
resource allocation.

3.3 ADAPTIVE CLUSTERING FORMATION

Once cluster centers are identified, the DPAC algorithm
assigns the remaining workloads to the nearest center based on the
Euclidean distance in the feature space. The clustering is adaptive,
as the boundaries of clusters are adjusted dynamically if workload
patterns shift. This ensures that sudden surges or dips in workload
intensity are captured effectively. The assignment rule for a
workload i to a cluster center c is:

Cluster, =argmin[J F; — F, [J
where F. represents the feature vector of the cluster center. The
adaptive nature of clustering is governed by a monitoring function

M(¢) that detects deviations exceeding a predefined threshold 6,
triggering a re-computation of densities and cluster membership.

Table.3. Cluster Assignment

Workload ID|Cluster Center|Assigned Cluster
Wi W3 Cl1
w2 Wi C2
w3 w3 Cl
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W4 W2 C3

The Table.3 demonstrates how workloads are grouped into
clusters. Cluster C1 represents high-intensity workloads, C2
medium, and C3 low. Adaptive clustering ensures that if W2
suddenly spikes in demand, it may be reassigned to Cl
dynamically.

3.4 PEAK PREDICTION
ALLOCATION

FOR  RESOURCE

The framework incorporates a short-term forecasting module
that predicts upcoming peak intervals based on historical
workload traces. The module uses moving averages and weighted
history to estimate the expected load for the next time window.
The predicted peak value at time ¢ is computed as:

w
Z gt Lt —k

t w
(04
k=1"k

where L. is the historical workload at lag &, ax is the weight
assigned to the k™ lag, and wis the window size. This predicted
peak is then used to pre-allocate resources to clusters identified in
the previous step.

Table.4. Predicted Peaks

Cluster Historical Avg Load|Predicted Peak Load
Cl1 85% 92%
C2 60% 68%
C3 40% 42%

The Table.4 highlights how predicted peaks inform allocation.
High-intensity clusters like C1 receive more resources in advance,
reducing the likelihood of overload.

3.5 RESOURCE POOL MAPPING AND LOAD
BALANCING

The final step involves mapping each cluster to a suitable
resource pool, considering available capacity and predicted
demand. The allocation aims to balance workloads across servers
while minimizing energy consumption. The allocation decision
A, of cluster ¢ to resource pool r is defined as:

. R,‘
4., =argmin {—ch +ﬂ~E},J
where R; is the resource requirement of workload i, C, is the
capacity of resource pool », E, is the energy cost, and 4 is a
weighting factor balancing performance and energy efficiency.

Table.5. Resource Pool Mapping

Cluster |Assigned Pool|Capacity (%)|Energy Cost (kWh)
C1 Pool-A 90 120
C2 Pool-B 70 95
C3 Pool-C 50 60

The Table.5 illustrates the mapping of clusters to resource
pools. The allocation ensures high utilization without overloading
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servers, and it allows dynamic reallocation if workload patterns
change during runtime.

4. RESULTS AND DISCUSSION

The experiments are conducted using a simulation
environment implemented in MATLAB R2025a, which provides
extensive support for clustering, workload modeling, and
resource allocation modules. The DPAC framework is executed
on a high-performance computing workstation equipped with an
Intel Core 19-13900K CPU, 64 GB RAM, and NVIDIA RTX
4090 GPU to handle parallel computations and real-time
monitoring simulations. The simulations replicate a large-scale
data center comprising 100 heterogeneous servers with diverse
computational and memory capacities. Each server has been
configured to emulate typical cloud workloads including web
services, batch analytics, and database transactions. The
environment allows the testing of peak-hour scenarios by
generating workload surges using synthetic traces that reflect real-
world patterns.

4.1 EXPERIMENTAL SETUP AND PARAMETERS

The experimental setup uses several configurable parameters
to evaluate the performance of the DPAC method under varying
workloads. Key parameters include density threshold, peak-
distance scaling factor, prediction window size, cluster-to-pool
mapping rules, and resource capacities. These parameters are
chosen based on preliminary trials to balance computational
efficiency and allocation accuracy.

Table.6. Experimental Setup Parameters

Parameter Value
Number of servers 100
Density cutoff d,. 1.2
Peak-distance factor 0.5
Prediction window w |5 time units
CPU utilization range 0-100%
Memory utilization range| 0-100%
I/0O throughput range  |{0-200 MB/s
Reallocation threshold 6 10%

The Table.6 provides an overview of the parameters used to
configure the simulation. Each parameter has been fine-tuned to
replicate realistic data center operations while maintaining
computational feasibility.

4.2 PERFORMANCE METRICS

The proposed DPAC framework is evaluated using five
standard performance metrics:

* Response Time (RT): This measures the average time
required for a workload to complete execution after
submission. Lower values indicate improved scheduling
efficiency.

» CPU Utilization (CPU%): Represents the percentage of
total CPU capacity effectively used across all servers.
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Higher utilization reflects efficient resource allocation
without overloading.

Memory Utilization (Mem%): Tracks the average memory
consumption per server relative to its capacity. Balanced
memory use ensures no server becomes a bottleneck.

* Energy Consumption (EC): Evaluates total energy
consumed by all servers during peak workloads. Lower
consumption signifies energy-efficient resource allocation.

* Load Balancing Index (LBI): Quantifies the distribution
uniformity of workloads across servers. A higher LBI
indicates a more evenly balanced system.

The dataset used for simulation is derived from a combination
of real-world traces and synthetically generated workload
patterns. Real-world traces include web server logs, database
transaction records, and batch job histories, while synthetic traces
are used to emulate extreme peak conditions. Each instance in the
dataset contains four primary features: CPU utilization, memory
utilization, I/O throughput, and arrival interval.

Table.7. Dataset Description

Feature Type Range
CPU Utilization |Continuous 0-100%
Memory Utilization|Continuous 0-100%
/O Throughput |Continuous| 0-200 MB/s
Arrival Interval |Continuous 1-10s
Workload Type |Categorical|Web, Batch, DB

The Table.7 summarizes the dataset attributes. The dataset is
designed to test the DPAC method under diverse workload
intensities and patterns.

For comparative evaluation, existing methods are selected.
The first method is k-means-based workload segmentation [9],
which clusters workloads using Euclidean distance but assumes
static cluster structures. The second method is a reinforcement-
learning-driven allocation [12], which adapts resources based on
rewards generated from energy savings and response-time
reduction but requires extensive training. The third method is a
probabilistic Gaussian mixture model approach [14], which
represents workload distributions flexibly but suffers from
convergence issues under highly skewed peak workloads.

4.3 RESULTS BASED ON CPU UTILIZATION

Table.8. Response Time (ms) vs CPU Utilization

CPU K-Means|RL Allocation GMM |Proposed
Utilization (%)| [9] [12] [14] | DPAC
10 120 105 115 98
20 130 115 125 105
50 160 145 155 125
100 250 220 235 165

The Table.8 shows that the DPAC framework consistently
reduces response time, particularly under high CPU load,
compared to existing methods.
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Table.9. CPU Utilization Efficiency (%) vs CPU Utilization

CPU K-Means|RL Allocation| GMM |Proposed
Utilization (%)| [9] [12] [14] | DPAC
10 8 9 7 9
20 16 18 15 19
50 42 45 40 48
100 80 85 78 92

The Table.9 indicates that DPAC achieves higher effective
CPU utilization across all load scenarios.

Table.10. Memory Utilization (%) vs CPU Utilization

CPU K-Means|RL Allocation| GMM |Proposed
Utilization (%)| [9] [12] [14] | DPAC
10 9 10 8 10
20 17 19 16 20
50 40 44 39 50
100 78 82 76 95

The Table.10 demonstrates that DPAC improves memory
utilization while balancing workloads efficiently.

Table.11. Energy Consumption (kWh) vs CPU Utilization

CPU K-Means|RL Allocation| GMM |Proposed
Utilization (%)| [9] [12] [14] | DPAC
10 12 10 11 9
20 25 22 24 19
50 60 55 58 45
100 140 125 130 95

The Table.11 shows DPAC achieves the lowest energy
consumption, particularly under heavy CPU loads.

Table.12. Load Balancing Index (0—1) vs CPU Ultilization

CPU K-MeansRL Allocation| GMM |Proposed
Utilization (%) [9] [12] [14] | DPAC
10 0.72 0.78 0.75 0.82
20 0.70 0.76 0.74 0.80
50 0.65 0.70 0.68 0.78
100 0.55 0.60 0.58 0.75

The Table.12 indicates DPAC maintains better workload
balance across servers, especially under peak CPU loads.

4.4 RESULTS BASED ON MEMORY UTILIZATION

Table.13. Response Time (ms) vs Memory Utilization

Memory |K-Means|RL Allocation|GMM |Proposed
Utilization (%)| [9] [12] [14] | DPAC
10 110 102 108 95
20 125 112 118 105
50 165 145 158 125
100 245 220 235 160
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The Table.13 demonstrates that DPAC reduces response time
consistently as memory usage increases.

Table.14. CPU Utilization Efficiency (%) vs Memory Utilization

Memory |K-MeansRL Allocation|GMM |Proposed
Utilization (%)| [9] [12] [14] | DPAC
10 9 10 8 10
20 17 18 16 19
50 45 46 43 50
100 80 85 78 92

The Table.14 shows that DPAC achieves higher CPU
efficiency while handling high memory loads.

Table.15. Memory Utilization (%) vs Memory Utilization

Memory |K-MeansRL Allocation|GMM|Proposed
Utilization (%)| [9] [12] [14] | DPAC
10 8 9 7 10
20 16 18 15 19
50 42 44 40 48
100 78 82 76 95

The Table.15 confirms DPAC maximizes memory utilization
without overloading servers.

Table.16. Energy Consumption (kWh) vs Memory Utilization

Memory |K-Means|RL Allocation|GMM |Proposed
Utilization (%)| [9] [12] [14] | DPAC
10 11 10 10 9
20 24 21 23 19
50 58 53 55 45
100 135 120 130 95

The Table.16 illustrates DPAC’s energy efficiency at various
memory load levels.

Table.17. Load Balancing Index (0—1) vs Memory Utilization

Memory |K-MeansRL Allocation|GMM|Proposed
Utilization (%)| [9] [12] [14] | DPAC
10 0.70 0.75 0.73 0.82
20 0.68 0.73 0.71 0.80
50 0.62 0.68 0.65 0.78
100 0.55 0.60 0.58 0.75

The Table.17 highlights DPAC’s superior load balancing,
particularly under high memory utilization.

5. DISCUSSION OF RESULTS

The experimental results indicate that the proposed DPAC
framework consistently outperforms existing methods across all
evaluated metrics. The Table.8 shows that the DPAC method
reduces response time to 165 ms at 100% CPU utilization,
whereas k-means, RL-based, and GMM approaches require 250
ms, 220 ms, and 235 ms, respectively. Similarly, Table.9
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demonstrates that DPAC achieves 92% CPU utilization under
maximum load, outperforming k-means (80%), RL allocation
(85%), and GMM (78%). Memory utilization trends follow a
similar pattern (Table.10 and Table.11), with DPAC reaching
95% at peak loads, indicating efficient allocation without
overloading servers.

Energy consumption (Table.12 and Table.13) also favors
DPAC, which reduces power usage to 95 kWh at peak CPU or
memory utilization, representing approximately 30-35% savings
compared to other methods. Load balancing metrics (Table.14
and Table.15) further confirm that DPAC maintains uniform
workload distribution, achieving a 0.75 LBI under maximum
load, while other methods range between 0.55 and 0.60. The
improvements are attributed to the adaptive clustering, peak-
aware allocation, and real-time adjustment of clusters. Overall,
the DPAC framework demonstrates superior performance in
managing heterogencous workloads efficiently, minimizing
latency, and reducing energy consumption during peak-hour
conditions.

6. CONCLUSION

This study presents a data-science-driven approach for
optimizing workload allocation in data centers using a Density-
Peak Adaptive Clustering (DPAC) framework. The framework
integrates feature extraction, density-based clustering, peak
prediction, and resource-aware allocation to address dynamic
workload patterns during peak hours. Experimental results
indicate that DPAC consistently reduces response time, increases
CPU and memory utilization, lowers energy consumption, and
improves load balancing compared to k-means, RL-based, and
Gaussian mixture model methods.

The framework demonstrates particularly strong performance
under high-load scenarios, reducing response time to 165 ms,
achieving CPU utilization of 92%, memory utilization of 95%,
energy consumption of 95 kWh, and a load balancing index of
0.75 at peak conditions (Tables 6.1-6.10). These results validate
the framework’s adaptability and efficiency in real-world data-
center scenarios. The DPAC approach provides a scalable,
predictive, and energy-aware solution for resource management,
which can significantly enhance operational performance in large-
scale cloud infrastructures. Future work can focus on integrating
additional workload types and real-time reinforcement-learning
optimization for further gains.

REFERENCES

[1T V. Milic, “Next-Generation Data Center Energy
Management: A Data-Driven Decision-Making
Framework”, Frontiers in Energy Research, Vol. 12, pp.
1449358-1449367, 2024.

T. Khan and R. Buyya, “Workload Forecasting and Energy
State Estimation in Cloud Data Centres: ML-Centric
Approach”, Future Generation Computer Systems, Vol. 128,
pp. 320-332, 2022.

L. Xue, J. Wang and Y. Zhang, “Online Energy
Conservation Scheduling for Geo-Distributed Data Centers

(3]

929

(6]

(7]

(8]

(9]

[10]

[12]

[14]

[15]

ICTACT JOURNAL ON DATA SCIENCE AND MACHINE LEARNING, DECEMBER 2025, VOLUME: 07, ISSUE: 01

with  Hybrid Data-Driven and Knowledge-Driven
Approach”, Energy, Vol. 322, pp. 135714-135723, 2025.

S. Ilager and R. Buyya, “A Data-Driven Analysis of a Cloud
Data Center: Statistical Characterization of Workload,
Energy and Temperature”, Proceedings of IEEE/ACM
International Conference on Utility and Cloud Computing,
pp- 1-10, 2023.

V. Mallikarjunaradhya and A.S. Mohammed, “Efficient
Resource Management for Real-time Al Systems in the
Cloud using Reinforcement Learning”, Proceedings of
International Conference on Contemporary Computing and
Informatics, pp. 1654-1659, 2024.

V. Mallikarjunaradhya and A.S. Mohammed, “Optimizing
Real-time Task Scheduling in Cloud-based Al Systems
using Genetic Algorithms”, Proceedings of International
Conference on Contemporary Computing and Informatics,
pp. 1649-1653, 2024.

N. Hogade and S. Pasricha, “A Survey on Machine Learning
for Geo-Distributed Cloud Data Center Management”, [EEE
Transactions on Sustainable Computing, Vol. 8, No. 1, pp.
15-31, 2022.

M. Daraghmeh, A. Agarwal and Y. Jararweh, “Cloud
Workload Categorization using various Data Preprocessing
and Clustering Techniques”, Proceedings of IEEE/ACM
International Conference on Utility and Cloud Computing,
pp. 1-10, 2023.

L. Yan, W. Liu, R. Li and S. Hu, “Workload Prediction and
VM Clustering Based Server Energy Optimization in
Enterprise Cloud Data Center”, Proceedings of
International Conference on Algorithms and Architectures

for Parallel Processing, pp. 293-312, 2021.

S. Jebreili and A. Goli, “Optimization and Computing using
Intelligent Data-Driven”, Optimization and Computing
using Intelligent Data-Driven Approaches for Decision-
Making: Optimization Applications, Vol. 90, No. 4, pp. 1-
12, 2024.

J. Ma, Z. Wang and Y. Yan, “Data-Driven Flexibility
Capability Modeling of Internet Data Center Considering
Task Dependency”, IEEE Internet of Things Journal, Vol.
11, No. 14, pp. 24538-24550, 2024.

K.L. Veigas and M. Chinnici, “Towards Energy Efficiency
of HPC Data Centers: A Data-Driven Analytical
Visualization Dashboard Prototype Approach”, Electronics,
Vol. 14, No. 16, pp. 3170-3188, 2025.

M. Yildiz and A. Baiocchi, “Data-Driven Workload
Generation based on Google Data Center Measurements”,
Proceedings of International Conference on High
Performance Switching and Routing, pp. 143-148, 2024.
M. Sumsuzoha, M.S. Rana, M.S. Islam, M.K. Rahman, M.
Karmakar and M.S. Hossain, “Leveraging Machine
Learning for Resource Optimization in USA Data Centers:
A Focus on Incomplete Data and Business Development”,
The American Journal of Engineering and Technology, Vol.
6, No. 12, pp. 119-140, 2024.

S. Karim and H. He, “Optimization: Data-Driven
Management using Deep Learning in Cloud Computing”,
Proceedings of Symposium on Asia-Pacific Network
Operations and Management, pp. 1-4,2022.



