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Abstract 

Using an MRI to determine the type of hydrocephalus a person has is 

a crucial step in diagnosis and treatment planning. Vision transformers 

(ViTs) and convolutional neural networks (CNNs) have performed 

admirably, but they often struggle to process large amounts of input or 

connect disparate portions of the environment. This paper presents a 

novel hybrid deep-learning architecture for MRI image feature 

extraction, which uses EfficientNet for local feature extraction and the 

Vision Transformer for global dependency capture. The model is 

trained and tested using an MRI dataset linked to hydrocephalus. Local 

Interpretable Model-agnostic Explanations (LIME) are one method for 

dealing with the “black box” component of complex deep learning 

models. It promotes trust and candor among doctors by providing them 

with understandable visual explanations of the model’s predictions. 

When it comes to recall, accuracy, and precision, our proposed hybrid 

model outperforms several of the top standalone architectures, 

including ResNet50, VGG16, and a traditional ViT. The models in this 

framework are simple to understand, and the diagnostic accuracy is 

really good. This makes it an effective tool for supporting radiologists 

in making clinical decisions. 
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1. INTRODUCTION 

Hydrocephalus is one of the most serious, and potentially 

fatal, illnesses. It must be detected quickly and accurately in order 

to improve treatment outcomes and patient survival rates. 

Magnetic resonance imaging (MRI) is the principal non-invasive 

method for detecting and diagnosing brain malignancies due to its 

superior soft-tissue contrast [1]-[3]. However, MRIs are difficult 

to understand since radiologists must examine them by hand, 

which is subjective, time-consuming, and unique to each 

individual. Deep learning (DL) is a new field of study that is 

rapidly developing [4]. It might be used to automate this 

procedure, which would benefit radiologists by providing speedy 

and unbiased early results.  

We blended the CNN and Transformer architectures to create 

a model that outperformed each one. Our role is critical in this 

regard. We use a feature extractor called EfficientNet instead of a 

normal CNN since its compound scaling method provides a better 

combination of performance and cost. After the EfficientNet 

features are entered, a Vision Transformer encoder is used to 

simulate the global connections between these high-level feature 

maps [5]-8]. The model can exploit EfficientNet’s well-trained 

local feature extraction skills on ImageNet by including 

EfficientNet’s ViT portion into a full global context [9]-[11]. The 

end result is a sharper and more distinctive image of how to define 

hydrocephalus. 

 

The key contributions of this paper are threefold: 

• Our novel EfficientNet-ViT architecture combines local 

feature extraction with global contextual modeling to detect 

hydrocephalus using MRI data.  

• Using the LIME technique will allow us to better 

comprehend our hybrid model’s predictions in the future. 

This will help to build trust and encourage therapeutic use 

by focusing on the most relevant regions of images for 

classification.  

• We demonstrate that our proposed model outperforms 

existing strong baseline models by conducting a series of 

rigorous tests on a publicly available hydrocephalus MRI 

dataset.  

• The fundamental goal of this research is to create and 

evaluate a deep learning framework that is highly accurate, 

resilient, and understandable for the classification of brain 

tumors using MRI images. The ultimate goal is to create a 

reliable decision-support system that can be used in 

hospitals. 

The primary objective of this research is to develop and 

validate a highly accurate, robust, and interpretable deep-learning 

framework for the multi-class classification of brain tumors from 

MRI scans, which can serve as a reliable decision-support system 

in clinical practice. 

The core novelty of this work lies in its synergistic hybrid 

architecture, uniquely tailored for neuroimaging. It moves beyond 

simply using a CNN or Vision Transformer (ViT) in isolation 

by integrating EfficientNet-B3 as a sophisticated local feature 

encoder with a ViT for global contextual modeling. This design 

explicitly addresses the limitations of standalone models: it injects 

the spatial inductive bias and efficiency of a state-of-the-art CNN 

into ViT, passing ViT’s data-hungry nature and lack of inherent 

spatial hierarchy. Furthermore, the application of this hybrid 

paradigm to the specific and critical task of hydrocephalus 

classification from MRI scans is an underexplored avenue. 

Finally, the work integrates model interpretability via LIME not 

as an afterthought but as a fundamental component of the 

diagnostic framework, directly linking high performance to 

clinically actionable visual explanations to foster radiologist trust. 

2. PROPOSED METHODOLOGY 

The flow diagram shows that the proposed method is divided 

into three steps: data preparation, hybrid model training, and 

model understanding. The Fig.1 below depicts the expected flow 

diagram. 
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Fig.1. Proposed Framework model 

This is an in-depth discussion of the algorithmic methods for 

each phase. 

2.1 PHASE 1: DATA PREPARATION 

2.1.1 Step 1: MRI Dataset Collection: 

We obtained a publicly available MRI dataset for 

hydrocephalus. The proposed percentages are as follows: 70% of 

the dataset should be used to train the model, 15% for testing, and 

15% for validation. By examining how classes are allocated, we 

may identify and correct any significant imbalances. 

2.1.2 Step 2: Preprocessing: 

At this point, it is critical to standardize the input data and 

make the model more generalizable. 

• Denoising: Because of the way magnetic resonance imaging 

(MR) photos are produced, they frequently contain a high 

level of noise. To remove noise while preserving important 

structural information, we use either a median filtering 

technique or a non-local means filtering algorithm. This is a 

simple tutorial on how to make a median filter using a 3x3 

kernel. 

• For each pixel (x,y) in the image, select a 3x3 

neighborhood. 

• Sort the intensity values of the 9 pixels in this 

neighborhood. 

• Replace the value of pixel (x,y) with the median (the 5th 

value) of the sorted list. 

• Normalization: Setting pixel intensities within a specified 

range ensures that model training is consistent and effective. 

Min-Max scaling allows us to adjust the pixel values so that 

they all fall between 0 and 1. Eq.(1) looks like this: 

 I_normalized = (I – I_min) / (I_max – I_min) (1) 

where, I is the original image and I_min and I_max are its 

minimum and maximum pixel intensities. 

• Augmentation: The research employs a variety of real-time 

data augmentation approaches to avoid overfitting and make 

your training data more helpful by adding more of it. This 

includes: 

• Random Rotation: ±15 degrees. 

• Random Horizontal and Vertical Flip: With a 

probability of 0.5. 

• Random Zoom: Up to 10% of the image height/width. 

• Brightness and Contrast Adjustment:  During 

training, new augmented images are generated at regular 

intervals to ensure that the model never views the same 

picture twice. 

2.2 PHASE 2: HYBRID MODEL TRAINING 

The EfficientNet-ViT hybrid model represents the first phase. 

Here are the steps to make the architecture and train it: 

2.2.1 Step 1: EfficientNet Feature Extraction: 

• We remove the top layers of EfficientNet-B3, which was 

trained on ImageNet, so that it can serve as the primary 

feature extractor. Preprocessed MRI images enter this 

network.  

• EfficientNet’s current output is a high-dimensional feature 

map, commonly known as the “feature volume.” This map 

can be represented by (batch_size, H, W, and C). The CNN 

learned all of the hierarchical features found in this volume. 

2.2.2 Step 2: Feature Map Preparation for ViT: 

• EfficientNet’s feature maps are incompatible with the ViT 

encoder because they require a succession of flattened 

patches. We receive a lot of two-dimensional patches from 

the initial three-dimensional feature map (H, W, and C).  

• Each feature map “patch” has the exact same dimensions (H 

* W) and configuration (1, 1, C). The C channels 

demonstrate how the feature map is integrated into the 

image. Each point on the map resembles a patch. The 

ultimate result is a collection of C-dimensional tokens of N 

dimensions (H * W).  

• This sequence now includes a learnable [CLS] token, also 

known as a class token. You can create the final category by 

arranging all of the data in the sequence using this token. 

2.2.3 Step 3: Vision Transformer (Global Feature Encoding): 

• This group of tokens, which now includes positional 

information, is encoded using a normal ViT encoder stack 

with identical L layers. 

• Each ViT Encoder Layer comprises: 

• Multi-Head Self-Attention (MSA): Multi-Head Self-

Attention (MSA) is one method for doing so. It requires 

adding up the values of all the tokens in a sequence and 

calculating their weights (attention scores) based on how 

well their queries match the keys of the other tokens. 
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This allows the model to use data from around the world. 

The operation can be written on a single head as 

Attention(Q, K, V) = softmax((Q * K^T) / sqrt(d_k)) * 

V. The input sequence is mapped to Q, K, and V to form 

the query, key, and value matrices. Because it includes 

several brains, the model can process data from a variety 

of representation subspaces.  

• Layer Normalization (LN): Layer normalization (LN) 

should be applied both before and after the MSA and 

MLP blocks to provide strong training. 

• Multi-Layer Perceptron (MLP): The Multi-Layer 

Perceptron (MLP) is a straightforward feed-forward 

network with a single hidden layer and a GELU function 

to activate it. It is used on each token individually. 

2.2.4 Step 4: Classification Head and Stacked Model Training 

• The [CLS] token (zL
0) appears after the L transformer layers. 

This token has now created a single global representation 

using all of the input feature maps.  

• The [CLS] token embedding is processed by the last 

classification head using a single fully connected (Linear) 

layer and a softmax activation function. The softmax 

technique generates a probability distribution for each focus 

class based on categories such as “glioma,” “meningioma,” 

“pituitary,” and “no tumor.” 

• Training Procedure: 

• The classifier, ViT encoder, and EfficientNet backbone 

all begin from scratch and learn.  

• We use the AdamW optimizer and weight decay to keep 

things under control.  

• To calculate the learning rate, an annealing schedule 

based on cosine is used.  

• We employ the Categorical Cross-Entropy loss function.  

• The model is trained for a set number of iterations, with 

the highest validation accuracy serving as the ending 

point. 

2.3 PHASE 3: MODEL INTERPRETABILITY WITH 

LIME 

The next step is to use LIME to assist people better understand 

the model. 

2.3.1 Step 1: Prediction and Instance Selection: 

After training, the hybrid model receives a test image from 

which it can make an estimate. We will keep discussing each 

prediction, such as “Glioma.” 

2.3.2 Step 2: Perturbation and Explanation: 

• LIME uses a segmentation method similar to Quickshift to 

divide the image into superpixels that are close together in 

order to generate an understandable representation of the 

input.  

• Then it generates a bunch of perturbed instances by 

randomly assigning superpixels the original value of “on” or 

a neutral value, such as gray.  

• We use the first hybrid model to determine how likely each 

revised case is to belong in the target class. 

2.3.3 Step 3: Learning a Local Surrogate Model: 

• LIME uses the new sample dataset and its predictions to 

create an understandable and usable model, such as a linear 

model with Lasso regularization.  

• In this simple model, the weight of each superpixel indicates 

how important it is; people believe that a superpixel with a 

positive weight will increase the expected class. 

2.3.4 Step 4: Visualization: 

A heatmap of the K most relevant superpixels is displayed 

over the original image. This image shows the clinician whatever 

aspects of the MRI (such as tumors or swelling) the model 

considered most essential. The Fig.2 depicts how LIME compares 

the original photographs to the reason for hydrocephalus. 

LIME Explanation in 

Hydrocephalus 
Original Images 

  

 Fig.2. LIME Explanation comparison with Hydrocephalus and 

original images 

3. RESULTS AND DISCUSSION 

The proposed hybrid EfficientNet-ViT model was 

implemented and evaluated using an NVIDIA RTX 6000 Ada 

GPU (48GB VRAM) with a software stack comprising Python 

3.9, PyTorch 2.0, and the LIME library for interpretability. The 

model was trained for 50 epochs on a curated dataset of 

approximately 2,500 annotated MRI scans, with a total training 

time of approximately 15 hours. We test our proposed hybrid 

model against three well-known baseline approaches on the same 

test set to ensure that it works. The most significant metric for 

success is classification accuracy, but F1-score, recall, and 

precision are also useful. 

3.1 BASELINE ALGORITHMS 

• VGG16: The standard deep CNN VGG16 is gaining 

popularity because its structure never changes. It can benefit 

deep models that exclusively employ convolutional neural 

networks. 

• ResNet50: ResNet50 use residual connections to improve 

CNN performance and to address the issue of gradients 

disappearing in very deep networks.  

• Standard Vision Transformer (ViT-B/16): The Standard 

Vision Transformer (ViT-B/16) is a popular ViT model that 

does not use a CNN feature extractor and instead accepts raw 

image patches as input. As a result, our combined method 

outperforms a single transformer. 
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Table.1. Performance metrics results  

with proposed and existing methods 

Model Accuracy Precision Recall F1-Score 

VGG16 92.5 0.93 92 0.92 

ResNet50 94.1 0.94 94 0.94 

Standard ViT  

(ViT-B/16) 

93.8 0.94 93 0.93 

Proposed Hybrid 

Model 

96.8 0.97 97 0.97 

The proposed hybrid EfficientNet-ViT model performs 

significantly better, as shown in Table.1. It is far more accurate at 

96.8%, outperforming ResNet50 in all aspects. This speed gain 

may be due to the synergistic design. EfficientNet creates a robust 

set of features, whereas ViT’s self-attention technique adds 

characteristics that are relevant in the current circumstance. You 

can use pre-processed EfficientNet features to make the standard 

ViT less data-intensive and more spatially inductive. However, 

the hybrid form is preferable to the standard ViT.  

This performance gain is attributed to the synergistic 

architecture: EfficientNet-B3 provides a rich, hierarchical set of 

localized features, while the Vision Transformer encoder 

effectively models long-range dependencies between these 

features, creating a more globally informed representation for 

classification. The hybrid approach also mitigates a key limitation 

of the standard ViT, which is its lack of inherent spatial inductive 

bias and high data hunger, by using pre-processed, semantically 

rich feature maps from EfficientNet as its input sequence. 

 

Fig.3. Confusion Matrix 

The Fig.3 of the confusion matrix shows that the hybrid model 

would make less mistakes when determining which form of tumor 

it is, such as meningioma or glioma. This is another evidence that 

the global setting is ideal for making minor modifications. 

An important practical result is the model’s computational 

efficiency during inference. Despite its hybrid nature, the 

optimized architecture processes an MRI slice in approximately 

120ms, making it suitable for potential integration into a clinical 

workflow. Furthermore, the application of LIME provided 

consistent and clinically plausible visual explanations, 

highlighting peri-ventricular edema and ventricular enlargement 

in hydrocephalus cases, which aligns with standard radiological 

markers. This combination of high accuracy, speed, and 

transparency addresses critical requirements for a clinical 

decision-support system. 

4. CONCLUSION AND FUTURE WORK 

This study described an innovative hybrid deep-learning 

system for hydrocephalus classification that combined 

EfficientNet’s local feature extraction with Vision Transformer’s 

global contextual modeling capabilities. On a publicly available 

benchmark dataset, this model outperformed a few strong solo 

CNNs and a standard ViT. We used the LIME framework and 

explicit, after-the-fact reasoning for the model’s predictions to 

address the major challenge with medical AI: it was difficult to 

understand. Our model is a computer-aided design (CAD) tool 

that can assist radiologists make diagnoses faster, more 

accurately, and with greater confidence because it is both accurate 

and simple to explain. In the future, we will go many different 

directions. To see if the model works with additional MRI 

scanners and approaches, we’ll examine larger datasets from 

many universities. Second, we aim to incorporate tumor 

segmentation into the framework so that it may be used for both 

locating and classifying tumors. The final phase in determining 

how well the model makes decisions is to consider other methods 

for understanding its choices, such as SHAP and integrated 

gradients. A clinical deployment study is required to assess the 

tool’s effect on diagnostic workflow and radiologist performance 

in real-world scenarios. 
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