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Abstract

Using an MRI to determine the type of hydrocephalus a person has is
a crucial step in diagnosis and treatment planning. Vision transformers
(ViTs) and convolutional neural networks (CNNs) have performed
admirably, but they often struggle to process large amounts of input or
connect disparate portions of the environment. This paper presents a
novel hybrid deep-learning architecture for MRI image feature
extraction, which uses EfficientNet for local feature extraction and the
Vision Transformer for global dependency capture. The model is
trained and tested using an MRI dataset linked to hydrocephalus. Local
Interpretable Model-agnostic Explanations (LIME) are one method for
dealing with the “black box” component of complex deep learning
models. It promotes trust and candor among doctors by providing them
with understandable visual explanations of the model’s predictions.
When it comes to recall, accuracy, and precision, our proposed hybrid
model outperforms several of the top standalone architectures,
including ResNet50, VGG16, and a traditional ViT. The models in this
framework are simple to understand, and the diagnostic accuracy is
really good. This makes it an effective tool for supporting radiologists
in making clinical decisions.
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1. INTRODUCTION

Hydrocephalus is one of the most serious, and potentially
fatal, illnesses. It must be detected quickly and accurately in order
to improve treatment outcomes and patient survival rates.
Magnetic resonance imaging (MRI) is the principal non-invasive
method for detecting and diagnosing brain malignancies due to its
superior soft-tissue contrast [1]-[3]. However, MRIs are difficult
to understand since radiologists must examine them by hand,
which is subjective, time-consuming, and unique to each
individual. Deep learning (DL) is a new field of study that is
rapidly developing [4]. It might be used to automate this
procedure, which would benefit radiologists by providing speedy
and unbiased early results.

We blended the CNN and Transformer architectures to create
a model that outperformed each one. Our role is critical in this
regard. We use a feature extractor called EfficientNet instead of a
normal CNN since its compound scaling method provides a better
combination of performance and cost. After the EfficientNet
features are entered, a Vision Transformer encoder is used to
simulate the global connections between these high-level feature
maps [5]-8]. The model can exploit EfficientNet’s well-trained
local feature extraction skills on ImageNet by including
EfficientNet’s ViT portion into a full global context [9]-[11]. The
end result is a sharper and more distinctive image of how to define
hydrocephalus.
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The key contributions of this paper are threefold:

* Our novel EfficientNet-ViT architecture combines local
feature extraction with global contextual modeling to detect
hydrocephalus using MRI data.

* Using the LIME technique will allow us to better
comprehend our hybrid model’s predictions in the future.
This will help to build trust and encourage therapeutic use
by focusing on the most relevant regions of images for
classification.

* We demonstrate that our proposed model outperforms
existing strong baseline models by conducting a series of
rigorous tests on a publicly available hydrocephalus MRI
dataset.

* The fundamental goal of this research is to create and
evaluate a deep learning framework that is highly accurate,
resilient, and understandable for the classification of brain
tumors using MRI images. The ultimate goal is to create a
reliable decision-support system that can be used in
hospitals.

The primary objective of this research is to develop and
validate a highly accurate, robust, and interpretable deep-learning
framework for the multi-class classification of brain tumors from
MRI scans, which can serve as a reliable decision-support system
in clinical practice.

The core novelty of this work lies in its synergistic hybrid
architecture, uniquely tailored for neuroimaging. It moves beyond
simply using a CNN or Vision Transformer (ViT) in isolation
by integrating EfficientNet-B3 as a sophisticated local feature
encoder with a ViT for global contextual modeling. This design
explicitly addresses the limitations of standalone models: it injects
the spatial inductive bias and efficiency of a state-of-the-art CNN
into ViT, passing ViT’s data-hungry nature and lack of inherent
spatial hierarchy. Furthermore, the application of this hybrid
paradigm to the specific and critical task of hydrocephalus
classification from MRI scans is an underexplored avenue.
Finally, the work integrates model interpretability via LIME not
as an afterthought but as a fundamental component of the
diagnostic framework, directly linking high performance to
clinically actionable visual explanations to foster radiologist trust.

2. PROPOSED METHODOLOGY

The flow diagram shows that the proposed method is divided
into three steps: data preparation, hybrid model training, and
model understanding. The Fig.1 below depicts the expected flow
diagram.
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Fig.1. Proposed Framework model

This is an in-depth discussion of the algorithmic methods for
each phase.

2.1 PHASE 1: DATA PREPARATION

2.1.1 Step 1: MRI Dataset Collection:

We obtained a publicly available MRI dataset for
hydrocephalus. The proposed percentages are as follows: 70% of
the dataset should be used to train the model, 15% for testing, and
15% for validation. By examining how classes are allocated, we
may identify and correct any significant imbalances.

2.1.2 Step 2: Preprocessing:

At this point, it is critical to standardize the input data and
make the model more generalizable.

* Denoising: Because of the way magnetic resonance imaging
(MR) photos are produced, they frequently contain a high
level of noise. To remove noise while preserving important
structural information, we use either a median filtering
technique or a non-local means filtering algorithm. This is a
simple tutorial on how to make a median filter using a 3x3

kernel.
* For each pixel (x,y)in the select a 3x3

neighborhood.

image,

» Sort the intensity values of the 9 pixels in this
neighborhood.

* Replace the value of pixel (x,y) with the median (the 5%
value) of the sorted list.

* Normalization: Setting pixel intensities within a specified
range ensures that model training is consistent and effective.
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Min-Max scaling allows us to adjust the pixel values so that
they all fall between 0 and 1. Eq.(1) looks like this:

I normalized = (I — I min) / (I_max — 1 _min) (1)

where, /is the original image and/ min and/ max are its
minimum and maximum pixel intensities.

* Augmentation: The research employs a variety of real-time
data augmentation approaches to avoid overfitting and make
your training data more helpful by adding more of it. This
includes:

* Random Rotation: +15 degrees.

* Random Horizontal and Vertical Flip: With a
probability of 0.5.

* Random Zoom: Up to 10% of the image height/width.

* Brightness and Contrast Adjustment: During
training, new augmented images are generated at regular
intervals to ensure that the model never views the same
picture twice.

2.2 PHASE 2: HYBRID MODEL TRAINING

The EfficientNet-ViT hybrid model represents the first phase.
Here are the steps to make the architecture and train it:

2.2.1 Step 1: EfficientNet Feature Extraction:

* We remove the top layers of EfficientNet-B3, which was
trained on ImageNet, so that it can serve as the primary
feature extractor. Preprocessed MRI images enter this
network.

« EfficientNet’s current output is a high-dimensional feature
map, commonly known as the “feature volume.” This map
can be represented by (batch_size, H, W, and C). The CNN
learned all of the hierarchical features found in this volume.

2.2.2 Step 2: Feature Map Preparation for ViT:

« EfficientNet’s feature maps are incompatible with the ViT
encoder because they require a succession of flattened
patches. We receive a lot of two-dimensional patches from
the initial three-dimensional feature map (H, W, and C).

» Each feature map “patch” has the exact same dimensions (H
* W) and configuration (1, 1, C). The C channels
demonstrate how the feature map is integrated into the
image. Each point on the map resembles a patch. The
ultimate result is a collection of C-dimensional tokens of N
dimensions (H * W).

* This sequence now includes a learnable [CLS] token, also
known as a class token. You can create the final category by
arranging all of the data in the sequence using this token.

2.2.3 Step 3: Vision Transformer (Global Feature Encoding):

* This group of tokens, which now includes positional
information, is encoded using a normal ViT encoder stack
with identical L layers.

» Each ViT Encoder Layer comprises:

e Multi-Head Self-Attention (MSA): Multi-Head Self-
Attention (MSA) is one method for doing so. It requires
adding up the values of all the tokens in a sequence and
calculating their weights (attention scores) based on how
well their queries match the keys of the other tokens.
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This allows the model to use data from around the world.
The operation can be written on a single head as
Attention(Q, K, V) = softmax((Q * K*T) / sqrt(d_k)) *
V. The input sequence is mapped to Q, K, and V to form
the query, key, and value matrices. Because it includes
several brains, the model can process data from a variety
of representation subspaces.

Layer Normalization (LN): Layer normalization (LN)
should be applied both before and after the MSA and
MLP blocks to provide strong training.

Multi-Layer Perceptron (MLP): The Multi-Layer
Perceptron (MLP) is a straightforward feed-forward
network with a single hidden layer and a GELU function
to activate it. It is used on each token individually.

2.2.4 Step 4: Classification Head and Stacked Model Training

* The [CLS] token (z.°) appears after the L transformer layers.
This token has now created a single global representation
using all of the input feature maps.

* The [CLS] token embedding is processed by the last
classification head using a single fully connected (Linear)
layer and a softmax activation function. The softmax
technique generates a probability distribution for each focus
class based on categories such as “glioma,” “meningioma,”
“pituitary,” and “no tumor.”

* Training Procedure:
 The classifier, ViT encoder, and EfficientNet backbone
all begin from scratch and learn.

* We use the AdamW optimizer and weight decay to keep
things under control.

* To calculate the learning rate, an annealing schedule
based on cosine is used.

* We employ the Categorical Cross-Entropy loss function.
» The model is trained for a set number of iterations, with

the highest validation accuracy serving as the ending
point.

2.3 PHASE 3: MODEL INTERPRETABILITY WITH
LIME

The next step is to use LIME to assist people better understand
the model.

2.3.1 Step I: Prediction and Instance Selection:

After training, the hybrid model receives a test image from
which it can make an estimate. We will keep discussing each
prediction, such as “Glioma.”

2.3.2 Step 2: Perturbation and Explanation:

* LIME uses a segmentation method similar to Quickshift to
divide the image into superpixels that are close together in
order to generate an understandable representation of the
input.

* Then it generates a bunch of perturbed instances by
randomly assigning superpixels the original value of “on” or
a neutral value, such as gray.

* We use the first hybrid model to determine how likely each
revised case is to belong in the target class.
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2.3.3 Step 3: Learning a Local Surrogate Model:

* LIME uses the new sample dataset and its predictions to
create an understandable and usable model, such as a linear
model with Lasso regularization.

+ In this simple model, the weight of each superpixel indicates
how important it is; people believe that a superpixel with a
positive weight will increase the expected class.

2.3.4 Step 4: Visualization:

A heatmap of the K most relevant superpixels is displayed
over the original image. This image shows the clinician whatever
aspects of the MRI (such as tumors or swelling) the model
considered most essential. The Fig.2 depicts how LIME compares
the original photographs to the reason for hydrocephalus.

LIME Explanation in

Hydrocephalus Original Images

Fig.2. LIME Explanation comparison with Hydrocephalus and
original images

3. RESULTS AND DISCUSSION

The proposed hybrid EfficientNet-ViT model was
implemented and evaluated using an NVIDIA RTX 6000 Ada
GPU (48GB VRAM) with a software stack comprising Python
3.9, PyTorch 2.0, and the LIME library for interpretability. The
model was trained for 50 epochs on a curated dataset of
approximately 2,500 annotated MRI scans, with a total training
time of approximately 15 hours. We test our proposed hybrid
model against three well-known baseline approaches on the same
test set to ensure that it works. The most significant metric for
success is classification accuracy, but Fl-score, recall, and
precision are also useful.

3.1 BASELINE ALGORITHMS

* VGG16: The standard deep CNN VGGI16 is gaining
popularity because its structure never changes. It can benefit
deep models that exclusively employ convolutional neural
networks.

* ResNet50: ResNet50 use residual connections to improve
CNN performance and to address the issue of gradients
disappearing in very deep networks.

» Standard Vision Transformer (ViT-B/16): The Standard
Vision Transformer (ViT-B/16) is a popular ViT model that
does not use a CNN feature extractor and instead accepts raw
image patches as input. As a result, our combined method
outperforms a single transformer.
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Table.1. Performance metrics results
with proposed and existing methods

Model Accuracy|Precision|Recall|F1-Score
VGGl6 92.5 0.93 92 0.92
ResNet50 94.1 0.94 94 0.94
Standard ViT 93.8 0.94 93 0.93
(ViT-B/16)

Proposed Hybrid| 96.8 0.97 97 0.97
Model

The proposed hybrid EfficientNet-ViT model performs
significantly better, as shown in Table.l. It is far more accurate at
96.8%, outperforming ResNet50 in all aspects. This speed gain
may be due to the synergistic design. EfficientNet creates a robust
set of features, whereas ViT’s self-attention technique adds
characteristics that are relevant in the current circumstance. You
can use pre-processed EfficientNet features to make the standard
ViT less data-intensive and more spatially inductive. However,
the hybrid form is preferable to the standard ViT.

This performance gain is attributed to the synergistic
architecture: EfficientNet-B3 provides a rich, hierarchical set of
localized features, while the Vision Transformer encoder
effectively models long-range dependencies between these
features, creating a more globally informed representation for
classification. The hybrid approach also mitigates a key limitation
of the standard ViT, which is its lack of inherent spatial inductive
bias and high data hunger, by using pre-processed, semantically
rich feature maps from EfficientNet as its input sequence.

Confusion Matrix

10

Actual
Hydrocephalus

Normal
\

Hydrocephalus Normal

Predicted

Fig.3. Confusion Matrix

The Fig.3 of the confusion matrix shows that the hybrid model
would make less mistakes when determining which form of tumor
it is, such as meningioma or glioma. This is another evidence that
the global setting is ideal for making minor modifications.

An important practical result is the model’s computational
efficiency during inference. Despite its hybrid nature, the
optimized architecture processes an MRI slice in approximately
120ms, making it suitable for potential integration into a clinical
workflow. Furthermore, the application of LIME provided
consistent and clinically plausible visual explanations,
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highlighting peri-ventricular edema and ventricular enlargement
in hydrocephalus cases, which aligns with standard radiological
markers. This combination of high accuracy, speed, and
transparency addresses critical requirements for a clinical
decision-support system.

4. CONCLUSION AND FUTURE WORK

This study described an innovative hybrid deep-learning
system for hydrocephalus classification that combined
EfficientNet’s local feature extraction with Vision Transformer’s
global contextual modeling capabilities. On a publicly available
benchmark dataset, this model outperformed a few strong solo
CNNs and a standard ViT. We used the LIME framework and
explicit, after-the-fact reasoning for the model’s predictions to
address the major challenge with medical Al: it was difficult to
understand. Our model is a computer-aided design (CAD) tool
that can assist radiologists make diagnoses faster, more
accurately, and with greater confidence because it is both accurate
and simple to explain. In the future, we will go many different
directions. To see if the model works with additional MRI
scanners and approaches, we’ll examine larger datasets from
many universities. Second, we aim to incorporate tumor
segmentation into the framework so that it may be used for both
locating and classifying tumors. The final phase in determining
how well the model makes decisions is to consider other methods
for understanding its choices, such as SHAP and integrated
gradients. A clinical deployment study is required to assess the
tool’s effect on diagnostic workflow and radiologist performance
in real-world scenarios.
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