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Abstract 

The identification of breast cancer on histopathology images helps 

pathologists who need precise and reliable computational methods. 

This research proposes a unique framework that integrates 

transformer-based categorization, graph-based tissue modeling, 

federated learning and Generative Adversarial Network (GAN) to 

improve diagnostic accuracy. To enhance feature consistency by 

standardizing histopathology images and to reduce inter-laboratory 

variances, a stain normalization GAN is used. We use SLIC to divide 

the tissue regions while maintaining cellular interactions and spatial 

connectivity and display them as a graph. Connectivity- Aware graph 

transformer uses connectivity-biased self-attention to capture both 

global and local topological relationships, which is used to process the 

retrieved graph features. Federated learning allows collaborative 

learning while protecting sensitive patient data by ensuring privacy-

preserving decentralized model training across several institutions. 

This method improves model robustness and generalization without 

centralizing data. The experimental assessment on openly accessible 

breast cancer datasets shows that our suggested framework performs 

better in terms of accuracy and interoperability than deep learning 

models. This paper presents a scalable, privacy-preserving, and 

clinically practical method for automated breast cancer diagnosis 

integrating transformer-based classification, connective graph 

representation, and GAN-based stain normalization within a federated 

learning paradigm. 
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1. INTRODUCTION 

. Breast cancer is one of the largest health issues in the world 

today, and it needs to be identified early and effectively and 

accurately treated to increase patient survival rates. Since it offers 

vital information on the appearance and characteristics of tissue, 

the tumor histopathological examination is generally accepted as 

the gold standard for detecting breast cancer. Manual histological 

analysis is difficult, time consuming, and subject to observer 

variability because tissue structures are so complicated. Recent 

advances in artificial intelligence (AI) led to the development of 

deep learning-based automated diagnostic systems. And they 

provide alternatives to breast cancer classification. Despite 

advances in stain heterogeneity and data sharing, privacy issues 

with data sharing, are needed to record long-range linkages within 

tissue structures. The existence of inter-class similarities and 

intraclass variations are illustrated in the top and bottom row of 

Fig.1. 

This paper proposes a GAN-Federated Learning and Graph 

transformer architecture for the classification of breast cancer 

from histological images[1],[2] to overcome these issues. The 

advised method integrates transformer architecture, graph-based 

learning, federated learning (FL), and generative adversarial 

network for feature extraction, tissue representation, privacy-

preserving model training, and for stain normalization. This 

approach ensures improved model generalization, greater 

classification accuracy, and robustness to staining variations 

without endangering patient data privacy. In histopathology, 

staining heterogeneity [3] is a big problem since different staining 

techniques, imaging setups, and scanner types cause substantial 

domain shifts that impair model performance. To lessen the effect 

of stain-induced variability, histopathology images from various 

medical facilities are aligned using a stain normalization GAN. 

The proposed method based on GAN learns a join style by 

adversarial training, ensuring consistent image representation, in 

difference to conventional stain normalization techniques, where 

it frequently call for choosing a target template. This improves 

model generalization across various datasets in addition to feature 

extraction.  

However, instability, mode collapse, and hyperparameter 

sensitivity are common problems with traditional GAN training. 

A technique temporal self-distillation regularization technique is 

implemented to balance the training process and improve 

convergence that strengthens the model’s stain normalization 

across dispersed datasets and overcomes the problems. 

 

Fig.1. Existence of inter-class similarities and intra-class 

variations are illustrated in the top and bottom row of Fig.1. 

Breast cancer classification has been successful and 

necessitates accurate modeling of structural arrangements of 

tissue components in addition to stain normalization. They use a 

traditional convolutional neural network (CNN) [4] [5] ignoring 

the spatial relationship between tissue regions that create pixel-

based representations. The nodes are used as tissue regions when 

we create tissue graphs in this research. Through morphological 

similarities and proximity, lymphocytes, stroma, tumor cells, and 

edges define spatial interactions. By effectively representing the 

essential properties of the tissue environment, this graph format 

provides a biologically relevant feature space for classification. 
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The structural information from the tissue graph can be fully 

utilized by using a Connectivity-Aware Graph Transformer. The 

tissue structures of both short and long-range dependencies are 

captured by connectivity-aware self-attention mechanism of the 

advised CGT model, in contrast to the graph neural network 

(GNN). GNN relies on message passing and only propagates 

information among neighborhood nodes. A connectivity bias 

encoding approach is included to highlight spatial interactions 

between tissue sections during attention calculation and ensure 

that a closer region contributes more significantly to feature 

aggregation. To strengthen the ability to distinguish between 

different subtypes of breast cancer, this method improves the 

classification performance of the model.      

Privacy concerns about the sharing of medical data are now 

significantly hampered by the development of AI-driven 

diagnostic models[6]. The pooling of data from various 

institutions by conventional centralized machine learning 

institutions presents moral and legal dilemmas about patient 

privacy. Federated Learning (FL) offered a workable solution that 

allows several institutions to work together to train a common 

model without replacing raw patient data. In this project, Fl is 

integrated into the GAN-Graph transformer framework allowing 

decentralized learning while preserving data confidentiality. Each 

institution uses its own private dataset to train a local model; for 

aggregation, only model changes are sent to a central server. A 

variety of histopathological data from many sources are used by 

this method, guaranteeing adherence to data privacy laws. 

The efficiency of the suggested approach is demonstrated by 

performing extensive tests on publicly accessible breast cancer 

histological datasets. Metrics such as accuracy, precision, recall, 

F1 score, and AUC-ROC are assessed for classification outcomes. 

The experimental analysis demonstrates the benefits of 

combining GAN-based stain normalization, transformerbased 

feature extraction, graph-based tissue representation, and 

federated learning, which provides better classification accuracy 

than the standalone GNN models and the conventional CNN 

model. 

The following are the primary contributions of this work. 

• A stain normalization system based on GANs that reduces 

domain shifts brought on by staining differences and 

harmonizes histopathology images form various sources. 

• Representation of a tissue graph that provides a medically 

useful feature space by encoding the morphological and 

spatial interactions between tissue patches. 

• A Connectivity-Aware Graph Transfomer (CGT) that 

captures both short range and long-range interdependence 

in tissue architectures by combining connectivity bias 

encoding and self-attention. 

• Decentralized collaboration between healthcare facilities 

without disclosing raw patient data is made possible via a 

federated learning strategy for the training of model 

privacy-preserving. 

• Comprehensive practical tests on datasets related to breast 

cancer histology, providing the superiority of the 

suggested framework over traditional deep learning 

techniques. 

 

2. RELATED WORK 

2.1 STAIN NORMALIZATION IN 

HISTOPATHOLOGY 

The automated breast cancer categorization is the staining 

variability within histopathological laboratories, which is one of 

the biggest obstacles. Traditional stain normalization techniques, 

including color matching [7] methods and stain separation 

models, have been used frequently to deal with these variances. 

These techniques have low color mapping and are unable to 

efficiently extract spatial tissue properties. The capacity to adapt 

to a variety of datasets is limited in traditional normalizing 

techniques, since they require preselected template images. So, 

GAN-based algorithms in deep learning-based stain 

normalization techniques are proposed beyond these restrictions. 

Learning the mapping between several staining techniques has 

helped conditional GANs (cGANs) and cycle-consistent GANs 

(CycleGANs) [8] demonstrate promising outcomes in stain 

transfer. All training data are collected in one place, as these 

models are developed in a centralized environment. Patient data 

cannot be transferred across institutions, which is limited by their 

restriction, and they are used in privacy-sensitive medical 

applications. 

Moreover, mode collapse is an issue with traditional GAN 

based methods in which the generator creates remarkably 

homogeneous stain patterns that are unable to reflect the range of 

real histology images. StainGAN had addressed this issue to 

ensure that morphological tissue structures [9] are 

preserved throughout stain normalization by adding further 

restrictions. The models are unsuitable as they do not account for 

variations in staining methods throughout institutions for 

federated learning environments. In this work, a federated GAN-

based stain normalization [10] framework is proposed for 

decentralized staining across several institutions. By including 

temporal-self-distillation, the proposed method ensures that the 

generator learns a variety of stain styles from different sources 

while preserving steady dynamics. This methodology provides a 

collaborative, privacy-preserving solution for normalizing 

histopathological images for distant learning contexts. 

2.2 FEDERATED LEARNING IN 

HISTOPATHOLOGICAL IMAGE ANALYSIS 

FL is known as a privacy-preserving paradigm [11] [12] which 

is used to train models together for several institutions without 

exchanging raw patient data. The model updates are only shared 

in contrast to traditional centralized learning. FL enables local 

models to be trained on private datasets that aggregate data from 

different sources in a single place. This method ensures 

compliance with laws such as HIPAA and GDPR for medical AI 

applications. FL [13] has shown comparable performance to 

centralized training while maintaining data privacy in radiology 

applications such as brain tumor segmentation and magnetic 

resonance imaging and COVID-19 identification from chest 

radiographs. Histopathology is very different from radiography 

due to normalization [14] of the stain, which is a prerequisite for 

categorization. Existing FL frameworks do not take into 

consideration the added computational complexity caused by 
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stain normalization in histopathology, which is why direct 

adaption from radiology-based FL models is inefficient. 

Differences in tissue morphology, staining, and scanner types 

result in inconsistent properties of the local data set. The existence 

of heterogeneous data distributions (non-IID data) in FL-based 

histopathology presents this difficulty. These variations could 

lead to the local model diverging, which could reduce the 

effectiveness of the global model. The influence of current FL 

methods on stain-normalized histopathology images has not been 

well investigated, despite their attempts to handle data 

heterogeneity through strategies like adaptive model aggregation 

and personalized federated learning. By incorporating stain 

normalization [15]-[17] directly into the FL pipeline, our work 

suggests a federated learning approach designed specifically for 

histopathological image analysis. BY implementing self-

distillation-based consistency, the advised approach ensures 

steady model convergence differences between institutions in 

staining and imaging procedures. This method makes it possible 

to use it in a federated medical AI system in the real world and 

reduces computational overhead. 

2.3 HISTOPATHOLOGY: GRAPH-BASED AND 

TRANSFORMER-BASED LEARNING 

The mainstay of traditional deep learning models for 

histopathological classification is patch-based CNNs. Whole 

Slide images (WSIs) are divided into smaller fixed-size sections. 

The spatial interactions between tissue components are not 

captured, which is essential for the classification [18] of breast 

cancer. This method makes efficient feature extraction possible. 

To represent histopathological images, graph-based deep learning 

is used, which uses networks. In the graph, the edges indicate the 

spatial and morphological links between them, and the nodes in 

the graph represent  [19], [20] the tissue regions. To perform tasks 

such as modeling cellular interactions, study of the tumor 

environment, and categorization of the breast cancer subtype in 

histopathology, we use graph neural networks (GNNs). Examples 

of Message-Passing GNNs (MP-GNNs) are Graph convolutional 

Networks (GCNs) [21] and Graph Attention Networks (GATs) 

[22] that have shown promise in obtaining significant structural 

representations from tissue graphs. Node embeddings become 

indistinguishable due to deep network layers, MP-GNNs suffer 

from over-smoothing which leads to a loss of discriminative 

information. Between distant tissue patches, long-distance 

connections are identified using MP-GNN capacity, and their 

aggregation is limited to the localized neighborhood. 

To describe the local and global feature interactions, 

transformer-based graph learning models have been proposed and 

they employ self-attention mechanisms. To employ positional 

encoding and attention bias to enhance structural awareness in 

graph-based learning, we use methods such as Graphormer 

[23],[24] and SAN (Structural Awareness Transformer). 

Molecular graphs and social network analysis were developed. 

The main reason is as these are not the best for identifying 

histopathological images. In this research, the method based on 

the connectivity-aware graph transformer is presented to classify 

breast cancer for histopathology images. Existing transformer-

based graph models CGT integrate spatial connection bias into 

self-attention calculations, ensuring that nearby tissue regions 

make a greater significant contribution to feature aggregation. To 

distinguish between the characteristics of the tumor, the stromal, 

and the normal tissue, this method improves the accuracy and 

interpretability of the model’s classification by strengthening its 

capacity. This work introduces a novel privacy-preserving, 

scalable, and medically interpretable AI framework that combines 

GAN-based stain normalization, federated learning, and graph 

transformer-based classification to diagnose breast cancer using 

histopathological images. 

3. METHODOLOGY 

3.1 PROBLEM FORMULATION AND 

ASSUMPTIONS 

The consequence of stain heterogeneity, privacy concerns in 

data sharing, and the need for robust feature extraction techniques 

describe different challenges in breast cancer classification in 

histopathological images. Due to privacy restrictions and 

institutional policies, deep learning models depend on large, often 

unavailable, centralized datasets. They proposed a Federated 

Learning approach (FL)-based learning to address this issue, 

which allows collaborative model training across multiple 

institutions without compromising data privacy. GAN is 

integrated with tissue graph construction and the connectivity-

aware graph transformer (CGT) for classification, which is the 

proposed work. Stain variations arise due to differences in 

staining protocols, scanner settings, and laboratory conditions 

between different organizations, which is one of the fundamental 

challenges in histopathological image analysis. Generalization 

leads to domain shifts and makes it difficult for deep learning 

models. We utilized a GAN-based stain normalization 

[25]technique in a federated learning environment to overcome 

the problem. This model learns an optimal stain-invariant 

representation instead of using a fixed stain normalization target. 

This aggregates knowledge from multiple local discriminators; 

each of which represents a different institution’s staining style. 

The cancerous and non-cancerous regions reveal complex spatial 

relationships, where the key challenge is the high-resolution 

nature of histopathology images. We construct tissue graph 

instead of dealing with images as a simple grid of pixels where 

nodes represent distinct tissue regions, and edges capture spatial 

dependencies between them. This permits the model to diagnose 

cancer and better encode biological structures. To train both local 

discriminators for GAN-based stain normalization and tissue 

graph models, each client (institution) has access to its dataset and 

computational resources. They donate model updates to the global 

server since the medical data are highly sensitive, institutions 

cannot share raw images. 

They ensure that privacy is maintained by a decentralized 

setup while still benefiting from collaborative learning. Due to 

non-i.i.d. data distributions, federated learning setups often suffer 

from model divergence. We integrate temporal self distillation to 

overcome the problem of smoothing parameter updates between 

multiple training iterations, preventing mode collapse, and 

improving convergence stability. By incorporating connectivity-

aware self-attention mechanisms, classification is performed 

using CGT and improves the representation of tissue graphs. 
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Fig.2. Schematic overview of the proposed framework of Breast Cancer Classification System 

3.2 STAIN NORMALIZATION GAN 

3.2.1 Generator and Discriminator:  

The performance of stain normalization in histopathological 

images is utilized by the optimized U-Net architecture while 

preserving the fine-grained morphological structures of the 

tissues in the generator framework. Generates high-quality stain-

normalized histopathological images [26]. The U-net architecture 

consists of an encoder and decoder, the encoder down samples the 

input image to extract hierarchical feature representation, and the 

decoder reconstructs the image with preserved spatial details. The 

downsampling procedure integrates convolutional layers, in-

stance normalization, and LeakyReLU activation to ensure stable 

training and enhance feature extraction. The upsampling layers 

use transposed convolutions to refine the reconstructed images. A 

Tanh activation function is applied at the final output layer, which 

guarantees that the generated images have pixel intensities. By 

preserving both the spatial distribution of tissue structures and the 

morphological characteristics of cells, the generator effectively 

learns to map histopathological images into the stain-

normalization domain by leveraging this structure [27]. 

The discriminator evaluates whether the given image is real or 

generated by a U-net-based generator, and it follows a PatchGAN 

architecture. The discriminator is performed at the patch level and 

is focused on the finer details of the tissue regions. By the local 

receptive field approach, the discriminator ability is increased. It 

consists of multiple convolutional layers with instance 

normalization and LeakyReLU activation, which reduces spatial 

resolution and preserves essential textural details. The indication 

of each patch being real or, synthetically, the final layer has a 

probability map. The generator produces high-quality stain-

normalized images leveraging PatchGAN. 

3.2.2 Perceptual Loss:  

To enhance the semantic consistency between the original and 

stain-normalized images, we use perceptual loss. From a pre-

trained deep neural network, perceptual loss evaluates images 

based on feature representations extracted. L1 or L2 loss focuses 

on the differences in the intensity of the pixels. For medical image 

analysis, this method enables the model to capture structural 

characteristics. To extract feature maps from intermediate layers, 

we use a VGG16 network, a pre-trained model. This evaluation 

evaluates the similarity between real and generated images as 

these feature maps represent high-level hierarchical structures. 

 2

perceptual 2( ) ( ( ))i i

i

L x G x    (1) 

where, ϕi(x) represents the feature maps extracted from the i-th 

layer. They use multiple layers to capture both low and high-level 

structural patterns, as they reserve diagnostic information from 

normalized images. This prevents the generator from producing 

smooth images by merging with other loss functions. 

3.2.3 Adversarial loss: 

The primary objective of adversarial loss function is to 

produce a high quality stain normalized image in the GAN 

training process. The discriminator is trained to increase the 

difference, and the generator is trained to decrease the similarity 

between real and synthetic images. For adversarial loss, we use 

BCE with LogitsLoss, which stabilizes learning and prevents 

degrading gradients. A soft label approach is used assigning 1 for 

generated images and 0 for fake images to enhance the generator. 
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It trains the generator to produce images different from real 

histopathology images guided by adversarial loss. Based on the 

interactions, the loss is formulated between the generator and 

PatchGAN. 

 
data genadv [log ( )] [log(1 ( ( )))]x P x PL D x D G x   E E  (2) 

where, D(x) is the real image discriminator’s prediction, D(G(x)) 

is the generator’s prediction. The adverse loss function is used to 

improve the generator to produce a high-quality normalized 

image. 

3.2.4 Pattern-Preserving Loss: 

The structural integrity of histopathological images is not 

compromised by stain normalization, so we integrate loss-

preserving patterns. It enforces similarity between the original and 

normalized images to maintain morphological and textual details 

as this loss encourages the generator. To penalize large deviations 

between input and generated images, we use L1 loss that ensures 

smooth and stable outputs. The comparison of high-level feature 

representation is made instead of pixel-wise differences, as we 

employ a VGG-16 network. Critical histopathological patterns, 

such as cellular structures and tissue boundaries, allow our model 

to focus on preservation. We employ pattern preserving loss 

during stain normalization to ensure that the tissue structure 

remains intact. This process minimizes the similarities between 

the original and generated images and maintains morphological 

characteristics. The L1 norm between the pixel-wise values: 

 
pp 1( )L x G x   (3) 

The stain normalization does not affect diagnostic accuracy 

because our proposed work inhibits over-smoothing or loss of 

histopathological details by implementing pattern-preserving 

loss. To maintain sharp boundaries between different tissue, this 

loss is used and it preserves fine-grained details. 

3.2.5 Temporal-self Distillation loss: 

Due to the unstable nature of adversarial learning, GAN 

training suffers from insecurity. The regularization of the 

generator’s output is done by this loss function, which executes 

regularization between various training iterations. This function 

uses the stable teacher model exponential moving average. With 

this training the loss of L1 is compared with the output generated 

by the ema model for purposes of analysis. Improves the overall 

strength of federated learning, and mode fall-over is eliminated. 

There are some challenges such as model divergence and 

instability, so we use this loss function, which stabilizes the 

training and applies consistency between the generator’s output 

and the ema of the generator. 

 (1 )E E E E        (4) 

λE controls the update rate of the E weights. The self-

distillation is calculated as: 

 
tsd 1( ) ( )EL G x G x    (5) 

The model updates from multiple clients and introduces noise 

in the training process. The generator will be stable and maintain 

consistent outputs. 

3.2.6 Overall loss: 

We add all the weight of adversarial loss, perceptual loss, 

pattern-preserving loss, and temporal self-distillation loss. 

 
total al 1 pl 2 ppl 3 tsdL L L L L        (6) 

γ1, γ2, γ3 equipose different loss functions and achieve stain 

normalization across medical datasets and preserves the privacy 

of data. 

3.3 GRAPH CONSTRUCTION 

A tissue graph representation is constructed to model spatial 

and morphological relationships between different tissue regions 

as it captures the topological organization of the tissue 

structures[28],[29]. We converted histopathological images into 

structured graphs despite processing high-resolution images 

directly because they are computationally expensive. It has good 

feature extraction, improved tissue structures, and breast cancer 

subtype classification in this graph-based approach. 

3.3.1 Superpixel-based Tissue Segmentation:  

Segmenting the histopathology images into meaningful tissue 

regions is the first step in graph construction. For segmentation, 

we use the Simple Linear Iterative Clustering(SLIC) [30] 

algorithm, which is an unsupervised segmentation technique. 

Homogeneous regions are partitioned over tissue regions 

according to color, texture, and spatial proximity. Each region in 

the tissue graph represents the biological structures such as 

stroma, epithelium, and necrotic tissue, and this superpixel 

segmentation ensures it. Similar superpixel values are merged 

with spatial and morphological features into distinct tissue regions 

when the image is segmented into N superpixels. We point to a 

centroid in each tissue region that is a graph node. Each node has 

its own significant structural and functional tissue features. 

3.3.2 Feature Extraction:  

To extract the feature embeddings, we use a pre-trained 

ResNet34 model. It extracts deep features and represents 

histopathological characteristics. The node on the tissue graph is 

assigned a representation of the characteristic, hiKF, where F is 

the dimension of the characteristic. For downstream classification 

tasks, node embeddings are crucial, as they provide discriminative 

information about cancer subtypes based on the tissue 

microenvironment. 

3.3.3 Graph Construction using Spatial Connectivity:  

In the tissue regions, E represents the edges, and V captures 

spatial interactions between the tissue regions. Based on spatial 

adjacency and biological relevance, the edges are made. The 

region Adjacency Graph (RAG) [31] is constructed if the 

corresponding tissue regions are adjacent where the edge e(u,v)  

E is added between two nodes u and v. An edge e(u,v) is added 

between two nodes u, v when their represented tissue regionsare 

adjacent according to the region adjacency graph. The topology 

of the tissue graph is indicated by a binary adjacency matrix 

ARNN, where Au,v = 1 if two nodes u,v are connected. Whenever 

two nodes u and v have adjacent tissue regions according to the 

region adjacency graph, an edge e(u,v) indicates a learnable 

embedding function that maps different degrees to distinct 

representations. Thus, the connectivity embedding (CE) is added 

to the node features at every transformer layer is added between 

them. The topology of the tissue graph is defined by a binary 

adjacency matrix, where A(u,v) = 1 means that the two nodes u 

and v are connected. Finally, the tissue graph of a pathology 

image is constructed as TG(V, E, K). 
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3.4 CONNECTIVITY AWARE GRAPH 

TRANSFORMER 

The idea of the Connectivity-Aware Graph Transformer 

(CGT) is to improve the representation of tissue graphs by 

integrating spatial connectivity and long-range dependencies 

between tissue regions. However, while CGT employs global 

attention mechanisms, the structure of the histopathology remains 

unchanged. Essentially, CGT tries to improve the classification of 

breast cancer subtypes by studying the complex interactions in the 

microenvironment of a tumor through message passing, Unlike 

traditional message-passing graph Neural Networks, which base 

their operations on localized neighborhood aggregation. The CGT 

model incorporates a Transformer encoder framework, where 

every graph node (i.e., a tissue region) attends to all the other 

nodes in the graph to understand both local and global spatial 

dependencies. It consists of a number of Graph Transformer 

Layers (GTLs), each of which includes multi-head self-attention 

(MHA) mechanisms and position-wise feed-forward networks 

(FFNs). CGT takes input from the tissue graph (G), constructed 

from histopathology images, where the nodes (V) represent the 

tissue regions and the edges (E) encode their spatial connectivity. 

For a specific node v contained in the tissue graph, there are 

update equations which the Graph Transformer Layer uses for its 

working. 

 ( ) ( ( ( 1))) ( 1)k M L k k       (7) 

 ( ) ( ( ( ))) ( )k F L k k    (8) 

where L is the layer normalization function, M is the multihead 

attention, F represents feed-forward network, k is the input of 

GTL. Such that k(ℓ) isn’t merely the node features at the ℓ-th GTL, 

but of course there is also LN for layer normalization and MHA 

for multi-head self-attention, which allows nodes to aggregate 

information regarding each other over the whole graph. 

3.4.1 Connectivity Aggregation: 

Connectivity embedding for aggregating the local 

connectivity is different from the GNNs standard Transformers, 

considering all nodes of the graph as completely connected. It 

designedly connects local connectivity to tissue by encoding 

learnable connectivity embeddings (CEs). The degree centrality 

of a node gives an importance score for that particular node 

regarding connectivity of the tissue region in the histopathology 

image. This is defined as: 

(0) (Deg( ))i ice n v  (9) 

where Deg(v) denotes the degree of node v , while g(·)  

 (0) (0)

i i ik k ce   (10) 

where, λ is the scaling factor that weighs the contribution of 

original node features against connectivity embeddings. This 

condition ensures that the model retains the inherent topology of 

the graph and does not distort the relationship between tissues 

based on the self-attention mechanism. There’s also the Local 

Connectivity Aggregate (LCA), which further enhances local 

connectivity by updating the node connectivity embeddings in 

each layer. 

 ( ) ( 1) ( 1)( , ), ( )i ce i jce f ce ce j N i     (11) 

where, N(i) denotes the neighborhood of node i, and fce() is an 

aggregation function that updates connectivity embeddings 

depending on adjacent nodes. 

3.4.2 Self-Attention: 

Long-range dependencies in spatial proximity information 

modeling are performed with such introduced connectivity bias in 

self-attention computation. Weights of attention will be biased 

towards nodes that are spatially closer in the tissue graph, very 

much like biological intercellular signaling in a cancerous tissue 

environment. The connectivity bias is calculated as: 

 2

2( , )i j i jv v q q    (12) 

where qi and qj are the spatial coordinates of nodes i and j 

respectively. The self-attention mechanism modifies as follows: 

 
( )( )

( , )
i P j R

ij i j

k Y k Y
B G v v

e
 

•

 (13) 

 CB-Attn( ) softmax( )ij ij j RK B k Y  (14) 

The projection matrices for queries, keys, and values are YP , 

YQ, and YR, respectively, while C is a learnable parameter that 

scales the connectivity bias. This makes it possible for CGT to 

give emphasis to tissues that are nearer while still being able to 

consider the macrostructure relationships. 

4. EXPERIMENTAL SETUP 

4.1 DATASETS 

For a proper evaluation of the proposed framework, three of 

the most widely used histopathological datasets were used, 

namely, BRACS, CRC-VAL-HE-7K, and NCT-CRCHE-100K. 

These datasets have different staining protocols, tissue 

architectures, and cancer subtypes, therefore ensuring the 

robustness of the model in real-life clinical scenarios. 

4.1.1 BRACS Dataset [4]: 

The BRACS is a large-scale breast cancer histopathology 

dataset made of 4,391 regions of interest (RoIs) extracted from 

325 whole-slide images (WSIs) stained via Hematoxylin and 

Eosin(H&E). Collected from 151 patients, the dataset was 

annotated on seven categories by expert pathologists, evil to good. 

The dataset was scanned and digitized on the high-resolution 

figure-40× (the Aperio AT2) with a resolution of 0.25 µm per 

pixel. Thus, allowing for a balanced account and clinically 

relevant evaluation on the deep learning models. The classes of 

BRACS are: 

• Normal, 

• Benign, 

• Usual ductal hyperplasia (UDH), 

• Atypical ductal hyperplasia (ADH), 

• Flat epithelial atypia (FEA), 

• Ductal carcinoma in situ (DCIS), 

4.1.2 Invasive Carcinoma: 

At the ROI level, the dataset is split into training, testing, and 

validation with a split ratio of 70%,15%, and 15%. ADH and FEA 

are two difficult diagnostic categories that frequently provide 

challenges in clinical settings because of their propensity to 
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evolve into cancer. BRACS encompasses the entire 

histopathological spectrum of breast cancer. It is a reliable 

baseline for assessing the effectiveness of graph-based models 

because of its size and diversity. 

4.1.3 CRC-VAL-HE-7K dataset: 

The collection contains 7180 high-resolution images of 

colorectal histopathology annotated into nine different tissue 

types like tumor epithelium, adipose, lymphocytes, stroma, 

necrosis, and others, as its name implies[32],[33]. The dataset 

contains significant staining artifacts, making it an important 

resource for evaluating the stain normalization capacity of deep 

learning models. The collection of heterogeneous tissues ensures 

that the model has to be trained on complex tissue structures and 

thus prepares it for use in downstream classification and 

segmentation tasks. It consists of 9 classes: 

• Adipose (ADI), 

• Background (BACK), 

• Debris (DEB), 

• Lympocytes (LYM), 

• Mucus (MUC), 

• Muscle (MUS), 

• Normal (NORM), 

• Stroma (STR), 

• Tumor (TUM) 

4.1.4 NCT-CRC-HE-100K:  

This is a dataset that consists of 100,000 non-overlapping 

image patches from (H&E)-stained colorectal cancer tissues, all 

taken at a 40× magnification. Nine different tissue categories were 

assigned to the image patches, each capturing histopathological 

structures in different but balanced proportions. This dataset is 

likely to help feed the big models of deep learning and is very well 

known for examining the adaptation of models to variation in 

staining-to-stain changes since it combines many, many high-

resolution image patches having varying staining. This has been 

benchmarked for applications in research on cancer subtype 

classification and stain normalization. Thus, it forms a very 

critical part of our experimental evaluation. It also contains the 

same class as CRC-VAL-HE-7K. 

4.2 EVALUATION MEASURES 

SSIM is an effective measure to evaluate the quality of images 

as perceived by an observer. Unlike older metrics, such as Mean 

Squared Error (MSE), which treat the input as an array of 

numbers, the SSIM metric deals with human visual perception 

and is related to how we observe differences in images. The range 

of SSIM varies from -1 to +1, with the value of 1 depicting perfect 

similarity. This is useful for image compression, denoising, and 

restoration.  

FSIM mainly relies on image features and does not treat 

images as just a series of pixels [34]. Its quality assessment 

methodologies are based on phase congruency and gradient 

magnitude. FSIM values lie between 0 and 1, with 1 for identical 

images. Useful for imparting enhancement and restoration to 

images, especially topical where structural features are of prime 

interest. 

Table.1. Comparison of models with Proposed Work 

Method Precision Recall F1-Score Accuracy 

ResNet50 85.12 77.89 75.6 77.78 

Swin Transformer 88.2 87.5 85.8 80.95 

Proposed 88.9 85.9 85.9 87.22 

Accuracy is a naive measure that tells you what percentage of 

the model’s predictions were correct overall. It could be easily 

misleading when it comes to imbalanced datasets. Scores lying 

between 0% and 100%, an imbalanced dataset would score high 

on accuracy, though all the wrong predictions would be for the 

minority class. 

Table.2. Evaluation Results across Datasets 

Dataset F1-score Precision Recall Accuracy 

CRC-VAL-HE-7K 85.9 88.9 85.9 87.22 

NCT-CRC-HE-100K 84.9 84.9 89.0 85.4 

The model training is optimized to fully utilize GPU 

capabilities; this has significantly facilitated faster convergence 

and large-scale batch processing. The assigned computation 

platform is designed in such a way that it can process high 

resolution histopathology images and large functional graphs 

without running into memory bottlenecks.  

 
TP TN

Accuracy
TP TN FP FN




  
 (15) 

Precision tells us how good the positive predictions are. It 

matters the most when the cost of false positives is high. The 

precision value ranges from 0 to 1, higher meaning better 

performance. This is again very much useful in medical diagnosis, 

spam detection, and other areas with substantial consequences 

from false positives. 

 Precision
TP

TP FP



 (16) 

Recall quantifies the ability of a model to detect all the 

relevant instances. It becomes very important in scenarios where 

missing a positive case is critical. Recall also varies from 0 to 1. 

Important in disease detection, fraud detection, and any context 

where false negatives incur high costs. 

 Recall
TP

TP FN



 (17) 

F1-score is a measure for a test’s accuracy that considers both 

the precision and the recall scores of that test in computing the 

overall score. Most important, it can be used for highly 

imbalanced datasets where one class may be important as 

compared to the other. Ranges from 0 to 1, where the value 1 

indicates perfect precision and recall. Used in binary classification 

problems most commonly in the area of medical diagnosis, fraud 

detection, and information retrieval. 

 
2Precision Recall

F1-score
Precision Recall





 (18) 

4.3 IMPLEMENTATION DETAILS 

All hyper-parameters used in training and testing to an 

arbitrary configuration were implemented using PyTorch [35] and 
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the Deep Graph Library (DGL) [36]. The training was performed 

for 100 epochs with the Adam optimizer [37], having a base 

learning rate of 1e-3 and a batch size of 4. The use of a weight 

decay of 1e-3 was enforced for preventing overfitting. The 

dimension of the node feature is fixed to 514 to balance model 

complexity against computational efficiency. The sum function 

was finally selected for local connectivity aggregation, as it 

offered better performance than the other contenders in this space: 

mean, max, and min. All experimental runs were done on an 

NVIDIA GeForce RTX 3090 GPU with 36 GB memory. 

5. EXPERIMENTAL RESULTS 

5.1 COMPARISON BETWEEN PROPOSED AND 

TRADITIONAL METHODS 

We first demonstrate the work without stain normalization 

with the BRCACS dataset for breast cancer classification. Then, 

the stain normalization GAN work is proposed for better 

classification accuracy on CRC-VAL-HE-7K and NCT-CRCHE-

100K.  

Since the dataset is large we have also calculated the F1-score, 

Precision, Recall for performance evaluation. To predict the 

classification, we calculated accuracy. We classify it on two 

datasets where their evaluation results are reported in You can 

refer to the table as Table.2 and it is visualized as graphs in Fig.3. 

The CGT model is compared with other models for test set [38].  

The other two network architectures used are, ResNet50 and 

Swin Transformer for classification. But our proposed achieved 

better classification accuracy other than that. The model 

comparison is calculated with evaluation metrics and comparison 

is given in Table.1.  

For image generation using stain normalization GAN, we 

calculated the average generator and discriminator loss, and 

SSIM, FSIM score for each class in the dataset. And it is also 

differentiated in colors in Fig.3.  

5.2 ABLATION STUDY 

We perform ablations on the pattern preserving loss, temporal 

self-distillation, etc. Here, the pattern preserving loss is such a loss 

in performance as a result of an absence that it is more than that 

of other components. The ablation provides empirical evidence 

for the efficacy of different components. Thus, we have designed 

a pattern preserving loss to tackle the problem of preserving the 

structural components. Ablations can then be carried out first to 

test whether pattern preserving loss has some significance on the 

preservation of semantic structure information, the degree of 

which can be evaluated through the SSIM established between an 

original image and the normalized image. 

Our connectivity attributes include CE and CB. Both were 

shown in the ablation study before, where both these attributes 

had rather considerable effects on the performance of the model 

with respect to breast cancer classification. CE incorporates graph 

topology adding learnable connectivity embedding to node 

features, which is initialized by graph node degree. Further, CB 

aggregates spatial distance between two nodes by mapping node 

pair distance to learnable vector while computing self-attention 

among nodes. Noteworthy is that our CE and CB are tied to the 

structure of the input graph, e.g., the number and degree of nodes, 

and denseness or sparseness of the graph. 

 

(a) Generator Discriminator Loss 

 

(b) Training Loss over epochs 

 

(c) Accuracy over epochs 

 

(d) SSIM vs. FSIM Score 
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(e) Precision, Recall and F1-Score 

Fig.3. Evaluation measures of our proposed system 

6. CONCLUSION 

The CGT framework for classifying breast cancer using stain-

normalized histopathology pictures with tissue graph 

representations. The methodology used GAN-based stain 

normalization, graph based histopathological representation 

learning, and self-attention mechanisms to boost the classification 

performance. This as CGT model has been able to capture spatial 

views of tissue regions improving accuracy in classification as 

compared to CNNs and message-passing GNNs.  

Experimentations with the BRACS, CRC-VAL-HE-7K, and 

NCT-CRC-HE-100K datasets proved our approach very effective 

in achieving good results. The improvement on the robustness of 

a model through staining artifacts brought about by the stain 

normalization module, coupled with the graph-based 

representation learning, enabled better understanding of structural 

analysis of tissues.  

Apart from this GCNs, transformer-based GNNs, vision 

transformer models form comparisons with state-of-the art 

message passing. Our method holds promise for enhanced 

understanding breast cancer classification while making the 

approach explainable through self-supervised learning, 

hierarchical tissue representations, and transformer-based GNNs. 

In sum, the framework establishes a new benchmark in the 

analysis of histopathological images by bringing together deep 

learning-based stain normalization with graph-based cancer 

diagnosis. 

Some of the areas in which improvements could eventually be 

made towards making the CGT framework more efficient and 

relevant for application to the real clinical environment have been 

identified despite its having already shown stateof-the-art 

performance with respect to stain normalization and 

histopathological classification. For example, Integrating next-

gen multi-model medical data genomics profiles, clinical reports, 

radiological scan, for a better in-depth insight about cancer 

progression, will try to embrace WSI metadata and molecular 

biomarkers towards better diagnosis within future research.  

An explainable AI (XAI) module to visualize attention maps, 

tissue interactions, and classification reasoning will promote 

model interpretation. This will go a long way toward helping 

pathologists understand model predictions and thereby increase 

trust in AI-based diagnostics. Improving generalizability of the 

model across different multicenter histopathology datasets by 

improving stain normalization using unsupervised domain 

adaptation and contrastive learning techniques. 
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