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Abstract 

Permafrost is an important component of cryosphere, crucial in 

shaping landscapes and regulating ecological processes. A thorough 

analysis of permafrost modeling techniques is presented in this work, 

highlighting the application of machine learning(ML) and deep 

learning(DL) techniques in permafrost conditions. From studies 

investigating permafrost patterns throughout Swiss Alps to the 

formation of new permafrost in response to environmental changes in 

lakes like Zonag Lake, we analyze the effectiveness of ML and DL in 

capturing the complex dynamics of permafrost evolution. Despite 

notable achievements, challenges persist, including the need for more 

comprehensive training data, consideration of local drivers, and the 

integration of multidisciplinary approaches beyond traditional image 

processing. For all, the paper highlights the possibility of ML and DL 

to incorporate exploratory variables by leveraging remote sensing data 

and climate data, paving the way for enhanced understanding and 

prediction of permafrost dynamics in critical regions worldwide. 

 

Keywords: 

Permafrost Mapping, Remote Sensing Data, Satellite Imagery, 

Artificial Intelligence 

1. INTRODUCTION 

Permafrost is characterized by its state of being continuously 

frozen, where temperatures remain below freezing for a minimum 

of two years. Permafrost can be found starting just beneath the 

surface and extending to depths of several hundred meters. 

Depending on the surrounding environmental conditions, its 

depth changes considerably. During the summer, ground 

temperatures above the frozen ground rise above 0°C for a certain 

period, while below the permafrost base, there are consistently 

non-cryotic conditions owing to the impact of geothermal heat 

flux. The layer of the ground above the permafrost that goes 

through seasonal cycles of freezing and thawing is known as the 

Active Layer Thickness (ALT). This dynamic layer is essential 

for understanding permafrost stability and the related ecological 

and hydrological processes, as it directly affects the moisture and 

thermal conditions of the ground. For an illustration of the various 

permafrost Table levels, refer figure1. 

Permafrost, which is soil or rock that has been frozen for 

minimum of two consecutive years, is a key element of our 

ecosystem. The significance of permafrost is emphasized by its 

extensive presence, covering approximately a quarter of the bare 

land in the Northern part of the globe and over 65% of land areas 

above 60° N latitude [41] [2]. Permafrost plays a pivotal role in 

landscape formation, hydrological regulation, and biodiversity 

maintenance [43]. However, permafrost is sensitive to changes in 

temperature, and its thawing is one of the most significant 

consequences of climate change. Recent studies have shown that 

permafrost thawing can have significant impacts on vegetation 

cover and ecosystem health. For example, thawing permafrost can 

lead to the formation of thermokarst lakes, which can change the 

hydrological regime of the surrounding area and alter the 

distribution of vegetation [43]. Additionally, permafrost thawing 

can release significant amounts of carbon trapped therein into the 

atmosphere, which can contribute to global warming [37]. 

Mountain slope stabilities can be impacted by the thickening of 

the active layer, which can increase rock fall activity [17] [31] and 

rock glacier acceleration [21], ultimately boosting sediment flow 

rates [22]. Monitoring and understanding the impact of permafrost 

thawing on vegetation cover and ecosystem health is of great 

importance to the scientific community. However, Traditional 

Remote sensing and GIS techniques of identifying permafrost 

distribution and monitoring changes are often time-consuming, 

costly, and not always able to detect subtle changes. 

Machine Learning (ML) is extensively applied to tackle 

intricate tasks that are challenging for traditional algorithms to 

accomplish [35]. Deep Learning (DL) algorithms improve these 

abilities by automatically identifying a large number of hidden 

features in the data that go unnoticed by humans, making it 

possible to detect intricate patterns within the data [25]. The 

ability of both ML/DL to identify intricate patterns within data 

has significantly broadened their applications in tasks such as 

segmenting and classifying visual data. Recently, ML techniques 

are increasingly being used to advancing our knowledge of 

permafrost and its impact on the ecosystem as they can learn from 

enormous amounts of data, making them useful for monitoring 

and tracking changes in permafrost distribution over time. 

Various studies have employed ML algorithms such as Logistic 

Regression [24], Random Forests [20], Support Vector Machines 

[39], and Neural Networks [30] to analyze permafrost data and 

predict variations in the distribution of permafrost and ALT. 

The primary focus of this survey paper is to review research 

in Geocryology that makes use of ML and DL techniques 

alongside satellite imagery and remote sensing data for mapping 

the geographical spread of permafrost.  

An overview of the artificial intelligence (AI) techniques 

employed in the research reviewed within this article is given in 

section3. Section 4 concludes by summarizing the recent 

advancements in ML and DL applied to permafrost research, 

offering insights into the future prospects for studying permafrost. 

Finally, section 5 presents a summary of key insights, future 

prospects and takeaways obtained from the reviewed literature.  

This systematic review approach will help researchers 

understand how studies have addressed the challenges and 

discoveries related to permafrost Dynamics. 

2. METHODOLOGY 

This survey paper explores the use of ML and DL algorithms 

to model the distribution of permafrost in the northwest  

Himalayas. A detailed review of articles published between 2017 

and 2023 was conducted. We explored research that  
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Fig.1. Permafrost Table 

addressed the integration of AI in permafrost dynamics, and 

sourced papers from well-known scientific sources like PubMed, 

IEEE, and Google Scholar. Original research with notable 

findings that were published in peer-reviewed journals was a 

prerequisite for inclusion in our review process. To find relevant 

studies, we employed specific keywords and phrases such as 

permafrost distribution, artificial intelligence, deep learning, and 

permafrost mapping.  

A systematic search and screening procedure was used, with 

full-text evaluations of the shortlisted publications conducted 

after the titles and abstracts were first evaluated for quality and 

relevancy. In order to present a coherent narrative on the 

developments and applications of AI in permafrost dynamics, data 

from a selection of publications was methodically retrieved, 

including objectives, techniques, results, and conclusions. 

The review begins by providing a concise introduction to 

various AI algorithms employed in the context of permafrost 

dynamics. To ensure a comprehensive evaluation, the accuracy 

achieved by these algorithms in tackling specific research 

challenges was carefully assessed. This assessment encompassed 

a thorough examination of the experimental results reported in the 

reviewed papers, aiming to determine the extent to which the AI 

and permafrost mapping approaches proved successful in 

mapping permafrost. Through the implementation of this 

methodological framework, the goal of this review article is to 

present a thorough summary of the most recent advancements in 

the integration of AI and permafrost mapping for environmental 

applications. The meticulous analysis of the reviewed papers 

seeks to reveal the potential and limitations of this combined 

approach, shedding light on the future directions and 

opportunities for further research and development in this exciting 

field. 

 

3. ARTIFICIAL INTELLIGENCE 

Notable advancements driven by improvement in computing 

power, processing and refinements of DL/ML models, AI has 

impacted almost every aspect of existence, including cryospheric 

sciences. AI is now being used extensively in the field of 

permafrost monitoring and analysis, climate modeling.  

 

Fig.2. General Workflow Diagram for Permafrost Mapping 

The entire process of mapping permafrost employing AI is 

Summarized in Fig.2, starting with data collection, which 

involves the collection raw environmental and geospatial data 

from different sources. Data preparation, which entails cleaning 

and preparing the data to guarantee its quality and usefulness, 

comes next. The preprocessed data is then subjected to ML and 

DL algorithms so as to evaluate and forecast the distribution of 

permafrost. The algorithm identifies patterns in the data by 

leveraging its inherent features, enabling it to predict outcomes 

for new data. The last stage in this process is the creation of a 

thorough permafrost distribution map, which illustrates the 

likelihood and spatial extent of permafrost existence based on 

model predictions. AI algorithms that have been employed in 

reviewed study are discussed below, as illustrated in the Fig.3. 

3.1 MACHINE LEARNING 

Although the phrases AI and ML are sometimes used 

interchangeably, however ML is a subfield of AI that focuses on 

leveraging pre-existing data and examples to identify patterns and 

generate predictions for new related challenges [6]. ML 

Algorithms can be categorized as Supervised, Unsupervised or 

Semi supervised. This classification is based on whether the 

algorithms learn from examples where the solutions are provided 

in the training data or by identifying patterns in the data without 

any predefined labels [35]. They either come into classification 

algorithms for classifying data or regression algorithms for 

making predictions. Some ML algorithms that have been utilized 

in the reviewed study are discussed hereunder. 
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Fig.3. Models Employed in the Permafrost Study 

3.1.1 Logistic Regression: 

Logistic Regression (LR) is a statistical method for modeling 

the probability of a binary outcome [24]. LR looks at how 

different features affect the chance of a specific outcome, 

performing well when the data exhibits linear separability. The 

fundamental equation of LR is: 
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where (Y = 1|X) denotes the probability that the dependent 

variable equals 1 given the vector of independent variables X . The 

parameters β0,β1,...,βn are estimated from the data. This equation 

represents the logistic function, which maps any linear 

combination of the input variables to a value between 0 and 1, 

thus serving as the basis for predicting binary outcomes [28]. 

3.1.2 Random Forest: 

An ensemble learning technique called Random Forest (RF) 

uses several decision trees, and the final output is determined by 

the results of each decision tree based on either majority vote or 

averaging. [20]. With this approach, a huge number of 

independent decision trees are built, each with a unique bootstrap 

sample of the training set. At every split, a random subset of 

features is chosen for every tree, increasing the variety between 

the trees. The prediction process involves combining the output 

from each tree. In the case of classification problems, the final 

result is decided by majority voting among the individual trees, 

which can be mathematically expressed as 

  1
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c bb
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where I is the indicator function, Tb(x) is the prediction of the bth 

tree, and c stands for the class labels [4]. The result for regression-

related problems is the mean of every tree’s predictions, which is 

provided by 
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By combining the advantages of many decision trees, this 

ensemble method produces high accuracy and tolerance against 

overfitting, which makes RF a flexible and popular tool for both 

regression and classification tasks 

3.1.3 Support Vector Machine: 

Support Vector Machine (SVM) is supervised learning 

technique primarily intended for problems involving regression 

and classification [39]. SVM was first developed to deal with 

linearly separable data; however, it was later improved with the 

kernel trick to efficiently handle non-linear data. The SVM 

method seeks to find the best hyperplane that maximizes the 

margin separating two classes in a high-dimensional feature space 

[8]. This involves solving the optimization problem shown below: 
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subject to the constraints: 

                    yi(wTϕ(xi) + b) ≥ 1 − ξi,ξi≥ 0,i= 1,...,n (5) 

where w denotes the weight vector, b represents the bias term, ξi 

denote slack variables, C represent regularization parameter, yi 

denote class labels, xi are the input vectors, and the function that 

transform input vectors into a higher-dimensional space is 

represented by ϕ(x). The aim is to balance maximizing the margin 

and minimizing classification errors. 

3.1.4 Extremely Randomized Trees: 

Extremely Randomized Trees (ERT), or Extra Trees builds 

several trees over whole of the dataset during train time [14]. The 

ERT algorithm introduces strong randomization in both feature 

and cut-point selection during the tree nodes splitting process. 

Unlike traditional decision trees, ERT constructs fully 

randomized trees, not influenced by the output values of the 

training data. The degree of randomness is adjusted based on 

specific problem requirements, resulting in adjustments to both 

bias and variance. 

The following is an expression for the ERT splitting criteria: 
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where D is the dataset, j is the attribute, t is the threshold, and I is 

the indicator function. 

This process enhances model robustness and generalization, 

effectively mitigating overfitting, especially in high-dimensional 

datasets. ERTr’s capability to handle large datasets with complex 

interactions makes it particularly suitable for applications in fields 

such as remote sensing and geospatial analysis. 

3.1.5 Gradient Boosting Machine: 

      Gradient Boosting Machine (GBM) is an advanced 

ensemble machine learning technique for regression and 

classification tasks, that systematically combines several weak 

learners to create a powerful prediction model. [7]. It operates by 

continuously tuning new models to reduce the errors of prior 

models as Gradient descent is used to minimize model loss. 

Despite its advantages, such as high accuracy and flexibility, 

GBM can be computationally intensive, prone to overfitting, and 

sensitive to hyperparameter tuning. Popular implementations 

include XGBoost, LightGBM, and CatBoost, each offering 

optimizations for performance and efficiency. The fundamental 
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equation driving the gradient boosting process for a loss function 

L(y,F(x)) is: 

 Fm(x) = Fm-1(x) + ρmhm(x) (7) 

where Fm(x) is the model at iteration m, ρmis the step size, and 

hm(x) is the base learner added at iteration m. [11] [12]. This 

approach has shown to be reliable and efficient, particularly when 

handling raw data and generating models for tasks involving both 

regression and classification. 

3.1.6 eXtreme Gradient Boosting 

The Extreme Gradient Boosting (XGBoost) algorithm [7], 

commonly referred to as XGB, is a powerful machine learning 

technique designed for classification and regression problems. 

XGBoost enhances the gradient boosting framework by 

optimizing the handling of sparse data and implementing a novel 

tree learning algorithm. XGBoost achieves this through parallel 

processing, distributed computing, and a regularization technique 

that reduces overfitting. 

In order to minimize the residual errors of the existing models, 

XGBoost sequentially adds more models. In XGBoost, the 

prediction function is provided by: 

 
1
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where ˆ
iy is the predicted value, fk are the individual trees, F 

represents regression tree space, and K denotes total count of 

trees. The objective function includes a regularization term to 

simplify the model, along with a convex loss function to evaluate 

the gap between the predicted values and the actual targets. 
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i i k
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where, l represents convex loss function that measures the gap 

between the predicted value ˆ
iy and the actual values yi. The 

regularization term, given by Ω(f) = 21

2
w • , aims to limit 

model complexity, with T being the number of tree leaves and w 

the vector of predicted values on leaves. 

3.2 DEEP LEARNING 

A cutting-edge subfield of machine learning known as deep 

learning has revolutionized both technological and scientific 

research by taking inspiration from the complex neural networks 

seen in the human brain [25]. Deep learning algorithms are able 

to automatically extract complex patterns and representations 

from data by utilizing large amounts of data and computational 

power. This paper reviews some of the DL algorithms, which are 

discussed below. 

3.2.1 Artificial Neural Network: 

Artificial Neural Networks (ANN) are computational models 

structured with interconnected nodes known as artificial neurons, 

arranged in layers: an input layer to receive data, one or more 

hidden layers where computations occur, and an output layer that 

produces the network’s predictions [34]. The connections 

between these neurons are weighted, influencing the flow of 

information from one neuron to other. The neuron’s output, 

denoted as y, is determined by: 
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where activation function is denoted by f, weights are represented 

by wi, input features by xi, and bias term by b. This equation 

represents how the input features are processed through the 

network to generate the final output. This equation represents the 

transformation of the input features through the network to 

produce the final output. To reduce the discrepancy between the 

expected and actual outputs, the network modifies these weights 

during training in response to the input data [47]. 

3.2.2 Convolutional Neural Network 

Convolutional Neural Networks (CNNs) are specialized DL 

architectures designed to analyze matrix-based data, like images 

or sequences. With extra layers like convolutional and pooling 

layers, this multi-level perceptron assists in identifying notable 

features in visual input [30]. CNNs are particularly good at 

extracting abstract elements from visual data that humans might 

not be able to identify. This characteristic enhances their 

usefulness in tasks like image identification and classification. 

Popular CNN models that have made unique contributions to deep 

learning for visual recognition tasks are ResNet, MobileNet, 

AlexNet etc. 

A CNN usually has several layers, each of which implements 

a non-linear transformation [23]. Convolution, the core function 

of a CNN, is defined as follows: 

 ( )( ) ( ) ( )f g t f g t d



  


    (11) 

This operation can be expressed as follows when applied to 

discrete data, such as digital images: 

 ( )( , ) ( , ) ( , )
m n

f g i j f m n g i m j n      (12) 

where, g stands for the kernel or filter, and f for the input image. 

Convolutional layers apply several filters to the input, generating 

a collection of feature maps. To lessen their dimensionality while 

keeping the most noticeable features, these feature maps are 

subsequently run through pooling layers and non-linear activation 

functions. Optimizing the performance and complexity of the 

network requires careful consideration of the depth, stride, and 

zero-padding hyperparameters. 

3.2.3 Long Short-Term Memory: 

Long Short-Term Memory(LSTM) [15] networks are adept at 

processing and modeling sequential data having long-term 

dependencies by selectively retaining and updating information. 

LSTM is an recurrent neural network (RNN) [45] variant that 

addresses the issue of vanishing gradient faced by other traditional 

RNN networks. LSTMs are designed with memory units that 

maintain information for extended durations. These memory units 

are equipped with three gates: input gates, output gates, and forget 

gates, controlling how the information flows through the cell. The 

equations governing the behavior of these gates and the cell state 

are as follows:  

 Input Gate: 
1( )t i t i t ii W x U h b     (13) 

 Forget Gate:
1( )t f t f t ff W x U h b     (14) 

 Output Gate:
1( )t o t o t oo W x U h b     (15) 

Cell State Update:
1 1tanh( )t t t t c t c t cc f c i W x U h b     (16) 
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 Hidden State: tanh( )t t th o c  (17) 

where, the symbol σ denotes the sigmoid activation function, ⊙ 

indicates element-wise multiplication, and xt refers to the input at 

the t-th time step, hidden state is represented by ht, cell state by ct, 

weight matrices and bias vectors are represented by W, U, and b 

for respective gates. 

4. PERMAFROST MODELLING 

The popular Swiss Alps are part of the Alpine range that 

crosses many European countries, offering abundant biodiversity 

and playing a vital role in environmental conservation initiatives. 

Rosablanche, a peak in the Swiss Pennine Alps was selected for a 

study in order to delineate permafrost extent in the region [9]. ML 

model have proven useful in analyzing the Swiss Alps’ permafrost 

distribution. A pool of 15 features were considered such as mean 

annual air temperature (MAAT), Altitude, aspect, slope, lakes, 

man-made infrastructure etc. some variables showed a strong 

correlation with the presence or absence of permafrost, while 

others required for generalization. Out of a total 2,95,680 samples, 

6,193 showed permafrost presence while 1,82,173 showed 

permafrost absence. The remaining 1,07,314 samples were used 

for testing purposes. SVM model was employed and resulting 

probabilities were categorized as: less than 0.4 indicated 

”permafrost absent,” 0.4 to 0.7 indicated ”permafrost possible,” 

and 0.7 to 1.0 indicated ”permafrost probable.” To map the 

possible extent of permafrost, the PERMAL model merged SVM 

outputs with a rock wall permafrost map [42]. The OAR and 

AUROC values were determined to be 0.967 and 0.975, 

respectively, for quantitative analysis. Another study investigated 

western Swiss Alps with LR, RF, and SVM for mapping mountain 

permafrost distribution [10]. Aspect, altitude, potential incoming 

solar radiation (PISR), MAAT, and terrain slope angle were 

among the environmental factors chosen for permafrost modeling. 

Evidence of permafrost was also gathered from rock glacier 

inventorying, and field data, particularly geoelectrical and 

temperature data, with LR showing a linear relationship with 

altitude but lacking spatial discontinuity representation. RF 

exhibited excellent classification performance but differed in 

smoothness compared to LR, while SVM offered a conservative 

yet accurate representation with the best reproduction of 

permafrost discontinuity. AUROC assessments yielded 0.81 for 

LR, 0.85 for SVM, and 0.88 for RF, indicating robust modeling 

capabilities. The work emphasized how ML models can 

effectively understand permafrost distribution and related data 

properties. 

The Qinghai-Tibet Plateau is a high-altitude region in Central 

Asia. Given Its average elevation of more than 4,500 meters, 

making it as the world’s largest and highest plateau, hence 

referred to as the “Roof of the World”. The QTP is a focus for 

environmental research because of its susceptibility to climate 

change, especially in understanding permafrost dynamics and 

their wider ecological implications. Few investigations focusing 

on the QTP provide a comprehensive examination of permafrost 

distribution mapping and associated changes. A study employed 

ground-penetrating radar (GPR) with 100 and 200 MHz antennas 

carried a thorough examination of ALT in northeastern QTP [5]. 

The Study considered mechanical probing, pit observations, and 

soil thermal property to assessing ALT obtained from GPR. The 

study revealed that GPR accurately detects ALT with an error 

margin of ±0.08 meters at sites where midpoints are co-located. 

The ALT ranged from 0.81 to 2.1m meters, with an average 

measurement of 1.32±0.29m meters at Eboling Mountain. The 

average ALT in Yeniu Gou was 2.72 ± 0.88m meters. This varied 

from 1.07m meters on slopes facing north to 4.86m meters close 

to the permafrost’s lower edge. In peat-covered areas, ALT 

dropped as elevation increased at rates of –2.1m/km in Yeniu Gou 

and –1.31m/km in Eboling Mountain. This rate increased to –

4.18m/km in Yeniu Gou’s mineral soil. In comparison to the 

slopes facing north, the ALT on the slopes’ facing south was 

thicker, While there was relatively little variation in the peat 

covered area. Another study investigates the geographical extent 

of permafrost on the Tibetan Plateau (TP) and the maximum 

thickness of seasonally frozen ground (MTSFG) and any 

prospective changes to these features using LR, SVM, and RF 

[44]. The statistical and ML methods utilized in this study were 

validated against 106 boreholes across the TP. Results 

demonstrated high prediction accuracies for permafrost presence, 

with LR achieving 97.8%, RF 96.7%, and SVM 94.4%, 

respectively. The study also reveals that during the baseline 

period, permafrost covers 45.9% of the TP, with projections 

indicating 25.9% loss of permafrost by 2040s and 43.9% by 

2090s. High spatial generalization is demonstrated by SVM, 

predicting a significant MTSFG decrease in the southwestern TP 

exceeding 50cmby the 2090s. Furthermore, two ML techniques 

were utilized to simulate the mean annual ground temperature 

(MAGT) and ALT for the past, present, and future on QTP [29]. 

These algorithms include the generalized boosting method [32] 

and RF, the study additionally employed two statistical methods 

generalized linear modeling and generalized additive modeling. 

Results indicated reliable simulation of MAGT and ALT, with 

significant future shrinkage of permafrost under varying climatic 

conditions. Present permafrost area is estimated at 1.04 ∗ 106km2, 

with 37.3% at risk of disappearance. Under the RCP8.5 scenario, 

future projections suggest a reduction to 42% of the current area, 

highlighting pronounced, region specific MAGT and ALT 

variations. The combined method reveals how permafrost on the 

QTP responds to climate change. A similar approach utilizing 

statistical models and ML techniques has also been applied to 

examine permafrost dynamics on the QTP [38], a region 

experiencing significant climate-driven transformations. The 

study investigated permafrost degradation on the TP using 

empirical models which incluse Temperature at top of permafrost 

Model (TTOP) [46], Stefan model [33]) and ML techniques 

(XGB), mapping permafrost distribution and ALT at a resolution 

of 1 km over four decades. The XGB classification model 

demonstrates superior performance compared to the TTOP, 

achieving Accuracy, Precision, and Recall values all exceeding 

90.0%, indicating its effectiveness in permafrost distribution 

estimation. Also, ML models outperforms empirical approaches 

in modeling permafrost distribution, while the Stefan model better 

captures ALT. The findings revealed that between 1980 and 2010, 

the ALT increased by 18.94 cm while the Permafrost area 

decreased by 15.5%, highlighting spatial patterns of permafrost 

degradation that reflect greater vulnerability at lower latitudes and 

altitudes. 

Deep learning algorithms have also been used for studying 

permafrost dynamics. In 2022, the inter-annual variations in ALT 

was estimated on QTP by RF, CNN, and LSTM [27]. The study 
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also assessed the seasonal thaw depth during the same period. 

Meteorological data, on-site ALT measurements, and geospatial 

data collected between 2002 and 2011 were used as predictive. 

The Digital Elevation Model, slope, wind velocity, atmospheric 

pressure, air temperature, soil moisture, rainfall, relative 

humidity, and the combination of downward short-wave and 

downward long-wave radiation were used to compute ALT. The 

Pearson correlation coefficient [19], Spearman correlation 

coefficient [19] offered directions in selecting the model inputs. 

The thaw depth reflected stronger positive correlations with 

temperature, pressure, relative humidity, downward shortwave 

radiation, downward longwave radiation, and soil moisture when 

analyzed using Pearson and Spearman correlation coefficients. 

The study revealed that while RF models perform worse, CNN 

and LSTM models estimate thaw depth more accurately with 

increased lagging duration. Also, ALT on the QTP increased 

between 2003 and 2011, particularly in the north. In 88.7% of the 

permafrost regions had a deeper thaw in summer, followed by 

68.8% in spring, 52.5% in autumn, and 47.5% in winter. While 

the seasonal thaw depth and active layer thickness in this study 

were estimated using deep learning algorithms, revealing 

significant correlations with environmental variables, a separate 

investigation in 2023 extracted the boundaries of bare permafrost 

on the TP using random forest models, highlighting the 

importance of remote sensing in permafrost mapping [26]. By 

integrating multisource remote sensing data, expert knowledge, 

and random forest model, the approach achieved high overall 

accuracies of 90.79% for permafrost classification and 97.47% for 

bare land extraction. The study revealed that the Perennial 

permafrost on the TP predominantly occurs above 2000m, with 

the widest distribution around 5000m, and exhibits elevation-

dependent variations influenced by slope direction and solar 

radiation. Most studies have utilized numerical, equilibrium, and 

ML models to simulate MAGT in permafrost research. While 

numerical models offer detailed hydrothermal descriptions, they 

suffer from high computational demands and uncertainty due to 

numerous assumptions. Equilibrium models like the TTOP model 

are widely used but struggle with permafrost boundary 

measurements. As a result of better permafrost observations, ML 

models have grown in popularity. They are good at delineating 

permafrost borders but struggle to represent a wide range of MGT 

values. To overcome this, a novel approach using the difference 

between MAAT and MAGT as the target variable has been 

developed, demonstrating superior accuracy in model validation 

[48]. Utilizing shared socioeconomic pathways(SSPs) climatic 

information, the study used ML to forecast the MAGT and ALT 

of permafrost in the QTP for further assessment. With SSP1-2.6 

scenario, projections suggest comparatively stable permafrost 

whereas for SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, 

substantial degradation is expected past 2050. Permafrost area 

losses of 30.15%, 58.96%, and 65.97% are projected for the 2090s 

compared to the period from 2006 to 2018. Additionally, 

permafrost in the Qilian range and many Rivers origin area’s are 

identified as particularly vulnerable, with south facing slopes 

more susceptible to loss, accentuating the slope orientation effect 

on permafrost presence under climate warming. In a related study 

[49], the authors examined permafrost formation following the 

Zonag Lake overflow, which caused the lake’s size to shrink by 

around 100km2. Findings showed rapid permafrost formation on 

the bare lakebeds, reaching depths of 4.9 m to 5.7 m in the first 

three years. Simulations suggest continued permafrost 

development, influenced by ground temperature and thermal 

amplitude. Unlike bidirectional formation in Arctic taliks, 

unidirectional permafrost development is observed. Additionally, 

snow cover and vegetation play significant roles in future 

permafrost formation on the bare lakebeds. 

The Hindu Kush Himalaya (HKH) is another vast and diverse 

mountain range that contains potential permafrost stretches. The 

HKH area, sometimes referred to as the “Third Pole” considering 

its extensive ice and snow reserves, has a significant impact on 

overall global climatic phenomenon. Despite its significance, the 

permafrost in this area remains less studied compared to the 

Arctic and Antarctic regions, presenting a unique set of challenges 

and opportunities for scientific research. A study visually 

identified rock glaciers in the HKH region mapping 4,000 

samples, each consisting of a square area with a latitudinal extent 

of 0.05 degrees, corresponding to approximately 5.53 km [36]. 

Out of the 4,000 samples, 3,432 (86%) received consistent 

classifications from both mappers: 70% had no rock glaciers, 12% 

were of poor quality, and 4% contained rock glaciers. This 

equates to 155 samples, encompassing 702 rock glaciers. Out of 

these 702 mapped rock glaciers only 5 were lying outside the 

scope of permafrost zonation index(PZI) [16]. Therefore, the 

overall analysis indicates a strong alignment between the study 

and PZI. In Another study, the authors utilized S-2A MSI imagery 

to identify and map rock glaciers and to analyze the permafrost 

distribution in Sikkim Himalayas [18]. The study also estimated 

topographic features and climate factors at rock glacier locations. 

Correlation analysis revealed that steep slopes and high MAAT 

contribute to the loss of glaciers at lower altitude, while slope, 

aspect, and incoming solar radiations influences the mass melting 

of glaciers at higher altitudes, leading to the formation of glacier-

derived rock glaciers. Several LR models were developed, and 

their results were used to create probability maps depicting the 

spread of permafrost across the sikkim himalayas. Finally, the 

degree of likelihood of permafrost (p≥0.5) within the transect 

under observation was determined by analyzing the probability 

maps generated from the LR models. The results revealed that 

models employed for estimation of permafrost likelihood such as 

LRM1 predicted 68%(918km2), LRM2 predicted 69%(923km2), 

LRM3 predicted 52%(705km2), and LRM4 predicted 

60%(800km2) of the transect under observation, respectively. This 

indicates extensive permafrost presence in the Sikkim Himalayas 

and suggests possible effects of climate change on permafrost in 

the near future. In a related study [1], the authors developed 

probability maps of permafrost distribution in the northeastern 

Himalayan region of Sikkim, utilizing data from remote sensing 

combined with ML techniques. The study utilized two distinct 

sets of training data. The first comprised of elevation, slope, and 

surface reflectance data from Sentinel-2A spectral bands, whereas 

as the other dataset only contains MAAT and PISR. Eight models, 

employing LR, RF, SVM, and ANN, with two different input 

datasets, yielded consistent permafrost extent estimations with 

varied probability distribution patterns. Despite differences, 

approximately 60% of the observed area is identified as highly 

likely to contain permafrost. Additionally, the study also suggests 

the combined use of surface reflectance, elevation, and slope 

parameters as another approach for permafrost mapping in 

Himalayas. 
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Alaska, with its vast and varied landscapes, is a key region for 

studying permafrost dynamics due to its extensive discontinuous 

permafrost zones. Understanding the behavior and spread of 

permafrost in this specific area is essential for evaluating how 

climate change affects infrastructure and geomorphic processes. 

In this context, a study [40] employed ML techniques to create 

high-resolution maps of permafrost in Alaska’s discontinuous 

permafrost region. Three classifiers, ERTr, SVM, and ANN, were 

trained using reference data of permafrost presence, which was 

derived from measurements of electrical resistance and ground 

temperature. While ERTr exhibits the highest accuracy (70%–

90%) for on-site predictions, SVM and ANN models demonstrate 

better transferability to non-training sites (62%–78%), 

showcasing the potential of integrating high-resolution spatial 

data with ML for permafrost mapping. 

The Table.1 presents a brief summary of various ML/DL 

models and the best outcomes they produce in the permafrost 

analysis and prediction field. The table presents an overview of 

the several models that have been applied in the field of 

permafrost analysis, emphasizing the ML/DL models employed, 

best outcomes achieved, and date of publication. The results make 

it evident that machine learning methods like XGB, RF, SVM 

have been essential for achieving high accuracy in analyzing and 

predicting the permafrost dynamics. Linear regression models, 

also demonstrate good performance in certain studies despite their 

simplicity. Notably, research conducted between 2012 and 2024 

demonstrate improvement in prediction, with recent ML models 

such as ERT and GBM demonstrating better regression 

performance and accuracy. These results indicate the employment 

of ML/DL models in permafrost research and emphasize how 

important they are for improving our comprehension and 

prediction of environmental dynamics specifically permafrost 

phenomenon. 

5. DISCUSSION AND CONCLUSION 

Traditional modeling approaches, such as numerical and 

equilibrium models, have limitations in accurately representing 

permafrost dynamics, prompting the adoption of ML and DL 

techniques. AI models demonstrate promising capabilities in 

simulating permafrost distribution and interannual changes in 

ALT, offering finer-scale insights compared to conventional 

methods [29] [38]. 

Table.1. Summary 

Sl. No Model Best Results 

1 SVM OAR: 0.967; AUROC: 0.975 

2 RF AUROC: 0.88 

3 
LR 

Accuracy: 89.6% 

4 Accuracy: 90.8% 

5 ANN AUROC: 9.20; Accuracy: 96% 

6 

RF 

MAGT: RMSE: 0.53, R: 0.69;  

ALT: RMSE: 0.85, R: 0.71 

7 R²: 0.87; RMSE: 0.55 

8 Accuracy: 90.77%; Kappa: 0.806 

9 XGBoost Accuracy: 96.9%;  

Precision: 92.8%; Recall: 96.9 

10 

ERT 

Accuracy: 91% 

11 
TFactor: R²: 0.86, RMSE: 0.41; 

EFactor: R²: 0.78, RMSE: 3.12 

Thus, the studies highlighted the potential of AI techniques in 

advancing our understanding of permafrost dynamics. Accurate 

mapping, prediction, and understanding of permafrost dynamics 

have been made possible by these advanced algorithms at 

different regions such as Alaska, the Hindu Kush Himalaya, the 

Qinghai Tibet Plateau, and the Swiss Alps. According to the 

reviewed studies, ML and DL models perform better in predicting 

the spatial distribution of permafrost, especially when they make 

use of diverse high resolution data and climate data. However, the 

choice of the optimal band combinations is crucial for mapping 

applications, and as a result, the input of multispectral bands has 

a significant influence on the prediction accuracy of the AI 

models, requiring appropriate band combination adjustment [3]. 

Although the results show promise, a number of issues still 

need to be resolved, such as the need for more accurate and high 

resolution training data, and the consideration of local 

environmental variables. Moreover, the accuracy of these models 

can be greatly improved by incorporating microwave data 

alongside standard high resolution remote sensing datasets, and 

climatic variables [13]. Most of the permafrost mapping models 

used in the reviewed study make use of simple machine learning 

models such as LR, RF, SVM etc. However, using advanced AI 

models is essential to increase the accuracy of permafrost 

investigations. Also, Future studies should focus on further fine-

tuning the techniques in order to effectively address the effects of 

climate change on these vital regions and advance our knowledge 

of permafrost dynamics. 
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