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Abstract 

Accurate segmentation of leaf diseases is critical for early detection and 

treatment in precision agriculture. Traditional segmentation 

techniques often suffer from poor generalization, noise sensitivity, and 

reduced accuracy when dealing with complex backgrounds or 

overlapping disease regions. Existing deep learning-based approaches, 

while powerful, face limitations in balancing detection speed and 

segmentation precision. YOLOv8, though robust for object detection, 

requires adaptation for fine-grained segmentation of irregularly 

shaped leaf disease spots. This work introduces a novel YOLOv8-based 

segmentation framework optimized for leaf disease identification. The 

proposed method integrates an improved feature pyramid network with 

multi-scale attention mechanisms to capture disease patterns across 

varying sizes and textures. Data augmentation strategies, including 

random cropping, color jittering, and background normalization, are 

employed to improve robustness. Post-processing using contour 

refinement ensures accurate boundary detection of diseased regions. 

Experimental evaluation on a benchmark plant disease dataset shown 

a mIoU improvement of 6.4%, Dice coefficient increase of 5.8%, and 

detection speed of 38 FPS, compared to baseline YOLOv8 models. The 

proposed framework achieved both real-time efficiency and high 

segmentation accuracy, making it suiTable.for field-level deployment 

in smart agriculture. 
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1. INTRODUCTION 

The agricultural sector is the backbone of food security, and 

plant health directly determines yield quality and quantity. In 

recent decades, crop productivity has been threatened by various 

plant diseases, particularly those manifesting as leaf infections 

that interfere with photosynthesis and weaken plant growth [1]. 

Accurate detection and segmentation of these leaf diseases play a 

critical role in enabling timely interventions, reducing pesticide 

usage, and supporting sustainable agricultural practices [2]. With 

the rapid progress of artificial intelligence (AI) and computer 

vision, deep learning models have emerged as tool for identifying 

and analyze plant diseases in complex environments [3]. 

Despite advancements, several challenges continue to limit 

the widespread application of deep learning-based segmentation 

models in agriculture. First, leaf images captured in natural 

environments often contain noise, variable lighting, and cluttered 

backgrounds, which reduce model generalization [4]. Second, 

disease symptoms vary in scale, shape, and color intensity, 

making it difficult for standard segmentation models to capture 

fine-grained lesion boundaries [5]. Third, overlapping leaves and 

occlusions present difficulties in distinguishing diseased from 

healthy regions [6]. Finally, the computational requirements of 

many segmentation networks hinder their deployment on low-

power edge devices used in agricultural fields [7]. 

The problem addressed in this work lies in the trade-off 

between segmentation accuracy and real-time efficiency [6]. 

Although classical convolutional neural networks (CNNs) and 

fully convolutional networks (FCNs) have shown competence, 

they struggle with small lesion detection and irregular disease 

patterns [7]. Transformer-based models, while powerful, are 

resource-intensive and unsuitable for real-time agricultural 

applications [8]. Consequently, there is a pressing need for an 

optimized segmentation framework that combines lightweight 

architecture with high precision, specifically designed for 

agricultural conditions. 

The objectives of this research are threefold: 

• To develop a robust segmentation framework capable of 

accurately detecting irregularly shaped leaf diseases in 

diverse conditions. 

• To integrate multi-scale feature extraction and attention 

mechanisms into YOLOv8 for improved lesion localization. 

• To ensure real-time inference speed while maintaining high 

accuracy, facilitating deployment in field-based agricultural 

monitoring systems. 

The novelty of this study lies in extending YOLOv8, 

traditionally optimized for object detection, into an advanced 

segmentation framework tailored for plant disease analysis. 

Unlike conventional approaches, our method employs a multi-

scale attention-enhanced feature pyramid network combined with 

a hybrid loss function (binary cross-entropy + Dice loss), 

specifically designed to refine disease boundary detection. 

Additionally, a post-processing contour refinement strategy is 

introduced to minimize false positives and ensure accurate 

delineation of disease regions. 

The contributions of this research are summarized as follows: 

1. The research proposed an enhanced YOLOv8-based 

segmentation framework for leaf disease detection, 

integrating multi-scale attention and hybrid loss to capture 

fine-grained disease patterns effectively. 

2. The research introduced a lightweight contour refinement 

module that improves segmentation precision and reduces 

boundary misclassification, ensuring real-time 

applicability in precision agriculture. 

2. RELATED WORKS 

Several studies have investigated plant disease detection and 

segmentation using deep learning, showing both progress and 

limitations in this domain. Early works employed traditional 

machine learning with handcrafted features, such as color and 

texture descriptors, combined with classifiers like SVMs and 

Random Forests [7]. While these methods achieved moderate 

success, they lacked robustness in complex backgrounds and were 

unable to handle large-scale agricultural datasets. 
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The advent of deep learning revolutionized plant disease 

analysis. Convolutional Neural Networks (CNNs) became widely 

adopted due to their ability to automatically extract hierarchical 

features from leaf images [8]. Researchers shown that CNN-based 

classifiers outperformed traditional methods in accuracy and 

generalization. However, these models primarily focused on 

classification rather than segmentation, limiting their application 

in precise disease boundary detection. 

To overcome this, Fully Convolutional Networks (FCNs) and 

U-Net architectures were introduced for semantic segmentation of 

leaf diseases [9]. U-Net, with its encoder-decoder structure and 

skip connections, gained popularity for medical imaging and was 

later adapted to plant pathology. Studies reported improved 

performance in delineating diseased and healthy leaf regions. 

Nevertheless, U-Net and its variants often required extensive 

computational resources and large annotated datasets, making 

them less feasible for real-time agricultural deployment. 

Subsequent research explored hybrid and attention-based 

models. For instance, the integration of attention gates into U-Net 

allowed models to focus selectively on disease-prone regions, 

improving segmentation accuracy under challenging conditions 

[10]. Similarly, researchers introduced multi-scale feature fusion 

strategies to capture both coarse and fine-grained disease details. 

These methods achieved higher Intersection-over-Union (IoU) 

scores but still suffered from slow inference speeds, limiting their 

usability in field scenarios. 

Object detection models, such as Faster R-CNN and SSD, 

were also applied to leaf disease identification [11]. These 

approaches localized disease spots but often lacked the fine 

segmentation capability required for precise lesion boundary 

extraction. YOLO (You Only Look Once) models, known for 

real-time detection, emerged as strong candidates for agricultural 

applications. Early YOLO versions showed promise in disease 

localization, but segmentation accuracy was insufficient. 

With the introduction of YOLOv8, segmentation capabilities 

were integrated alongside detection, opening new possibilities for 

agricultural applications [12]. YOLOv8 provides a lightweight 

architecture with improved performance over its predecessors. 

However, baseline YOLOv8 segmentation struggles with small 

lesions and irregular disease shapes, necessitating enhancements. 

Researchers have recently begun adapting YOLOv8 with 

customized modules, such as multi-scale feature aggregation and 

attention mechanisms, to improve performance in complex 

domains [13]-[20]. 

3. PROPOSED METHOD 

The proposed method enhances YOLOv8’s segmentation 

capability by incorporating multi-scale feature attention, 

optimized data augmentation, and post-segmentation contour 

refinement. Initially, input images undergo pre-processing with 

color normalization and noise reduction to minimize 

environmental variability. YOLOv8 is extended with an attention-

enhanced feature pyramid network to better capture small-scale 

lesion details. The model is trained using a hybrid loss function 

that combines binary cross-entropy and Dice loss to improve 

boundary precision. Finally, contour refinement based on 

morphological operations ensures that disease spots are 

segmented with high fidelity. This pipeline balances detection 

accuracy with computational efficiency for real-time agricultural 

applications. 

1) Data Collection and Preprocessing 

a) Collect diseased and healthy leaf images. 

b) Apply resizing, normalization, and augmentation (rotation, 

brightness, contrast). 

2) Model Enhancement 

a) Base architecture: YOLOv8 segmentation model. 

b) Add multi-scale attention to the Feature Pyramid Network. 

c) Integrate hybrid loss: BCE + Dice Loss. 

3) Training Phase 

a) Feed augmented dataset. 

b) Train using Adam optimizer with learning rate scheduling. 

c) Validate using IoU and Dice coefficient metrics. 

4) Post-processing 

a) Apply contour refinement using morphological filtering. 

b) Remove false positives via thresholding. 

5) Evaluation 

3.1 DATA COLLECTION  

High-quality datasets form the foundation of deep learning-

based segmentation. Images of healthy and diseased leaves are 

collected from both controlled experimental environments and 

open-field conditions. To ensure consistent model training, 

preprocessing includes resizing images to a uniform dimension 

640×640 pixels, followed by normalization into the range [0,1]. 

For robustness, extensive data augmentation is applied. Each 

input image I(x,y) undergoes transformations T, such as rotation, 

flipping, and color jittering: 

 ( , ) ( ( , ))I x y T I x y   (1) 

where T∈{rotate,flip,jitter,noise} 

This increases dataset diversity and minimizes overfitting. 

The Table.1 summarizes the preprocessing steps with parameters. 

Table.1. Preprocessing and augmentation applied to dataset 

Step Technique Parameters Purpose 

Resizing 
Bilinear 

Interpolation 

640 × 640 

pixels 

Uniform input 

dimension 

Normalization 
Min–Max 

Scaling 
[0, 1] range 

Pixel value 

consistency 

Rotation 
Random 2D 

Rotation 
±25° 

Increase 

orientation 

robustness 

Color Jitter 

Brightness, 

Contrast, 

Saturation 

±20% 

variance 

Handle lighting 

variations 

Noise 

Injection 
Gaussian Noise μ=0, σ=0.01 

Improve noise 

tolerance 

As shown in Table.1, augmentation ensures variability in 

environmental conditions, which strengthens model 

generalization. 
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3.2 MODEL ENHANCEMENT (YOLOV8 + MULTI-

SCALE ATTENTION) 

YOLOv8 segmentation model is adopted as the baseline 

architecture. It consists of a backbone for feature extraction, a 

neck for feature fusion, and a segmentation head. To enhance 

performance on small and irregular disease lesions, a multi-scale 

attention mechanism is integrated into the Feature Pyramid 

Network (FPN). Let feature maps at different scales be 

s sh w c

sF
 

 , where s∈{1,2,3}. The attention weight αs is 

computed as: 

 
3

1

exp( )

exp( )
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s
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W F
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



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The refined feature map F′ is given by: 

 
3

1

s s

s

F F


    (3) 

This formulation ensures that smaller lesions with subtle 

variations are not overshadowed by dominant large-scale features. 

The Table.2 presents the architectural modifications. 

Table.2. YOLOv8 modifications for enhanced segmentation 

Component Baseline YOLOv8 
Proposed  

Enhancement 

Backbone CSPDarknet-53 
Attention-augmented  

CSPDarknet 

Neck Standard FPN + PAN 
Multi-scale  

attention FPN 

Segmentation  

Head 

Conv layers with 

mask outputs 

Hybrid loss- 

optimized head 

As described in Table.2, attention mechanisms prioritize 

regions of interest, enabling precise disease segmentation even in 

cluttered backgrounds. 

4. TRAINING PHASE (HYBRID LOSS 

FUNCTION) 

The segmentation head outputs pixel-wise disease probability 

maps. To train effectively, a hybrid loss function is employed by 

combining Binary Cross-Entropy (BCE) and Dice Loss. The BCE 

loss for a single pixel prediction p against ground truth y∈{0,1} 

is: 

 log( ) (1 ) log(1 )[ ]BCE y p y p      L  (4) 

Dice Loss, which emphasizes overlap between prediction and 

ground truth, is defined as: 

 
2 | |

1
| | | |

Dice

P G

P G


 


L  (5) 

where P is the predicted mask and G is the ground truth mask. 

The final hybrid loss is: 

 
1 2Hybrid BCE Dice    L L L  (6) 

with weights λ1=0.6, λ2=0.4. The Table.3 shows the training 

parameters. 

Table.3. Training hyperparameters 

Parameter Value 

Optimizer Adam 

Learning Rate 0.001 (decayed) 

Batch Size 16 

Epochs 100 

Loss Function BCE + Dice 

As shown in Table.3, the hybrid loss ensures boundary-

sensitive learning and prevents bias toward majority background 

pixels. 

Raw segmentation masks from YOLOv8 may contain jagged 

boundaries or false positives. To address this, a morphological 

filtering and contour refinement step is introduced. Given a binary 

mask M, morphological closing ϕ(M) removes small holes: 

 ( ) ( )M M B B   !  (7) 

where ⊕ and ⊖ represent dilation and erosion with structuring 

element B. Contours are then extracted and smoothed using spline 

fitting, producing refined masks M̂ . The Table.4 shows the 

refinement process. 

Table.4. Post-processing refinement steps 

Step Technique  Effect 

Morphological Closing Dilation + Erosion 
Removes holes,  

smooths regions 

Contour Detection Boundary Extraction 
Isolates disease  

lesion edges 

Contour Smoothing 
Cubic Spline  

Interpolation 

Produces accurate  

lesion boundaries 

As seen in Table.4, the refinement ensures clean lesion 

segmentation, suitable for disease severity estimation. 

Model performance is assessed using multiple metrics. Mean 

Intersection-over-Union (mIoU) evaluates overlap between 

prediction P and ground truth G: 

 
| |

| |

P G
IoU

P G





 (8) 

Dice Coefficient (F1 Score) quantifies similarity: 

 
2 | |

| | | |

P G
Dice

P G





 (9) 

Pixel Accuracy (PA) measures correctly predicted pixels: 

 
Number of correct pixels

Total pixels
PA   (10) 

Table.5. Evaluation results of proposed framework vs. baseline 

Model 
mIoU  

(%) 

Dice  

(%) 

Pixel Accuracy  

(%) 
FPS 

Baseline YOLOv8 78.6 80.1 85.4 42 

Proposed Framework 85.0 86.5 90.3 38 

Additionally, Frames Per Second (FPS) is reported to ensure 

real-time performance. The Table.5 lists evaluation results 
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compared with baseline YOLOv8. As shown in Table.5, the 

proposed framework improves segmentation accuracy while 

maintaining near real-time speed. 

5. RESULTS AND DISCUSSION 

The experiments were conducted to validate the proposed 

YOLOv8-based segmentation framework for leaf disease 

detection. All simulations and model training were carried out 

using the PyTorch deep learning framework with CUDA 

acceleration. Model development and experimentation were 

performed on a workstation equipped with an NVIDIA RTX 3080 

GPU (10 GB VRAM), an Intel Core i9-11900K CPU (3.5 GHz, 

16 threads), and 32 GB RAM running on Ubuntu 22.04 LTS. 

The dataset used for training and evaluation consisted of a 

combination of publicly available plant disease image repositories 

and manually annotated leaf images. To ensure diversity, the 

dataset included leaves captured under different lighting 

conditions, orientations, and backgrounds. Approximately 8,000 

images were collected, of which 70% were used for training, 15% 

for validation, and 15% for testing. 

The YOLOv8 segmentation framework was trained using the 

Adam optimizer, with a learning rate scheduler to gradually decay 

the learning rate. To improve generalization, data augmentation 

strategies such as random rotation, flipping, and color jitter were 

applied. 

Table.6. Parameters 

Parameter Value/Configuration 

Framework PyTorch 2.0 + CUDA 11.7 

GPU NVIDIA RTX 3080 (10 GB VRAM) 

CPU Intel Core i9-11900K, 3.5 GHz 

RAM 32 GB DDR4 

Dataset Size 8,000 leaf images 

Train/Val/Test Split 70% / 15% / 15% 

Input Image Size 640 × 640 pixels 

Optimizer Adam 

Learning Rate 0.001 (decayed by factor of 0.1/20 epochs) 

Batch Size 16 

Epochs 100 

Loss Function BCE + Dice Loss (Hybrid) 

The experimental setup was designed to evaluate the 

efficiency and accuracy of the proposed model compared with 

existing methods. The Table.6 provides the key experimental 

parameters and their values. 

As seen in Table.6, the chosen parameters ensure a balance 

between computational efficiency and segmentation accuracy.  

To validate the effectiveness of the proposed framework, 

results were compared with three widely adopted methods from 

related works: U-Net-based Segmentation [9], Attention U-Net 

[10] and Baseline YOLOv8 Segmentation [12]. 

 

Fig.1. mIoU 

 

Fig.2. DC 

 

Fig.3. PA 

 

Fig.4. FPS 
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The experimental results show the effectiveness of the 

proposed YOLOv8-based segmentation framework compared to 

U-Net, Attention U-Net, and baseline YOLOv8 models. As 

observed in Table.6, the proposed method consistently achieved 

higher accuracy across all metrics. Specifically, the proposed 

model obtained an average mIoU of 85.0%, compared to 78.6% 

for YOLOv8, 70.2% for Attention U-Net, and 66.4% for U-Net. 

Similarly, the Dice coefficient improved to 86.5%, outperforming 

baseline YOLOv8 (80.1%), Attention U-Net (73.5%), and U-Net 

(68.7%). Pixel Accuracy (PA) further validated the superiority of 

the proposed approach, with an average PA of 90.3%, which is 

approximately 4.9% higher than YOLOv8, 7.8% higher than 

Attention U-Net, and 11.6% higher than U-Net. In terms of 

efficiency, the model maintained 38 FPS, close to the YOLOv8 

baseline (42 FPS) and significantly faster than U-Net (10 FPS) 

and Attention U-Net (8 FPS). These findings confirm that the 

integration of multi-scale attention and hybrid loss in the 

YOLOv8 framework significantly enhances boundary precision 

and robustness while retaining near real-time inference. Hence, 

the proposed model provides the best balance between 

segmentation accuracy and computational efficiency (Table.6). 

6. CONCLUSION 

This work presented an enhanced YOLOv8-based 

segmentation framework for accurate and efficient detection of 

leaf diseases. By addressing challenges of small lesion detection, 

irregular disease patterns, and real-time applicability, the 

proposed method successfully outperformed three widely used 

existing approaches, U-Net, Attention U-Net, and baseline 

YOLOv8. The experimental findings show several key 

achievements: (i) superior segmentation accuracy with mIoU of 

85.0% and Dice score of 86.5%, (ii) robust classification of 

diseased versus healthy regions with 90.3%-pixel accuracy, and 

(iii) real-time capability with 38 FPS, ensuring its suitability for 

deployment in agricultural monitoring systems. Unlike U-Net and 

Attention U-Net, which are computationally expensive and slow, 

the proposed framework offers a scalable balance between speed 

and precision. 
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