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Abstract 

The accurate prediction of petrophysical properties such as 

permeability and porosity play a vital role in optimizing hydrocarbon 

exploration and reservoir characterization. This study introduces an 

integrated machine learning framework employing Random Forest, 

Support Vector Machine, and Decision Tree algorithms to predict 

permeability and porosity from petrophysical well log data. A high-

quality dataset was curated and split into training (70%), validation 

(15%), and testing (15%) subsets to ensure model generalization and 

minimize overfitting. Hyperparameter optimization was conducted 

using Grid Search, Random Search, and Bayesian Optimization 

techniques. Model performance was evaluated through key metrics 

including accuracy, mean squared error (MSE), R² score, and mean 

absolute error (MAE). The results demonstrate that the optimized 

Random Forest model outperformed the other algorithms in terms of 

accuracy and robustness. Feature importance analysis further 

emphasized the contribution of key geological parameters to model 

predictions. This research highlights the effectiveness of 

hyperparameter tuning in enhancing model performance and provides 

a robust data-driven framework for petrophysical analysis. The 

findings contribute to the advancement of AI-based methodologies in 

hydrocarbon reservoir assessment and support the use of machine 

learning models as efficient tools for reducing uncertainty in 

subsurface characterization. 
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1. INTRODUCTION 

Today, the volume and complexity of data are increasing, 

which complicates the processes of analysis and effective use of 

data. This has made predictive analytics one of the important 

scientific and practical issues when working with complex 

systems and large amounts of data. Complex systems usually 

contain various variables and uncertainties associated with them, 

which reduces the effectiveness of traditional statistical methods. 

Therefore, the need to use modern artificial intelligence and 

machine learning algorithms in data analysis is increasing 

compared to traditional methods. The use of machine learning 

models for predictive analysis creates great opportunities for 

analyzing uncertainty and complexity in data. The most used 

machine learning algorithms today are Random Forest (RF), 

Support Vector Machine (SVM) and Decision Trees (DT) models, 

these models show good results when working with complex and 

large amounts of data. Each of the RF, SVM, and DT models has 

its own advantages, but their effectiveness, especially when 

working with complex data, depends on the characteristics of the 

data used and the ability to find optimal parameters. Therefore, 

optimizing these models and applying new algorithmic 

approaches to them creates great opportunities for improving the 

accuracy and efficiency of predictive analytics [1]-[3]. 

This study aims to analyze new optimization methods for RF, 

SVM, and DT models for predictive analytics in complex data 

systems and apply them to petrophysical data. Petrophysical data 

provides valuable analytical information in oil and gas 

exploration, geological surveys, and other scientific fields. The 

goal of this study is to ensure the most effective use of 

petrophysical data by optimizing these models. In optimizing 

predictive analytics, it is especially important to use innovative 

methods for tuning algorithm parameters, selecting features, and 

analyzing data. At the same time, the approaches proposed in this 

study, unlike existing methods, provide new scientific 

achievements and practical innovations. A large amount of 

scientific research has been carried out in the field of predictive 

analytics and machine learning (ML) methods. Previously studied 

methods and approaches were reviewed. A few researchers [1] [4] 

applied machine learning algorithms to perform predictive 

analysis. These works were mainly aimed at testing Random 

Forest (RF), Support Vector Machines (SVM), and Decision 

Trees (DT) models and comparing their performance.  

Smith et al. [1] showed that the RF model works with high 

accuracy, while Wang and Li [4] noted that the SVM model can 

make accurate predictions with fine parameters. Smith and Patel 

[1], optimized approaches for the Random Forest (RF) model to 

improve predictive analysis in complex systems are considered. 

The authors developed methods aimed at selecting the parameters 

of the RF algorithm and improving its performance.  

Zhang and Liu [2] analyzes the application and optimization 

capabilities of SVM algorithms in regression problems. The 

authors demonstrate the technical aspects of SVM and how it 

works on geological data.  

Wang and Zhao [3] examines the role of decision trees (DTs) 

in predicting petrophysical properties and demonstrates the 

effectiveness of DT algorithms in analyzing geological data.  

Li and Wang [4] developed new methods to tune the 

parameters of a Random Forest model and select optimal 

parameters to achieve accurate results in geological forecasts. 

Johnson and Chen [5] comparison was made of the application of 

SVM and RF algorithms in hydrological models. The authors 

showed the similarities and differences between the two models 

and analyzed which one was more effective. Lee and Park [6] 

focuses on optimizing the SVM model for subsurface data 

analysis. The authors recommend new parameter selection 

approaches to improve its accuracy. Robinson and Taylor [7] 

provides more accurate results in subsurface data analysis with an 

optimized version of decision trees are discussed. The authors 

demonstrate the ability of the DT algorithm to efficiently process 

a wide range of complex geophysical data. Brown and Clark [8] 

analyzes the role and effectiveness of machine learning 

algorithms in petrophysical property prediction, compares RF, 

SVM, and DT models. Gupta and Kumar [9] developed new 

approaches to improve the accuracy of SVM models for working 
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with subsurface geophysical data have been developed. They 

achieved advanced results by optimizing the SVM model. 

Mitchell and Zhang [10] discussed the optimized methods of 

decision trees for predicting geological hazards. The authors 

emphasize that the DT algorithm provides accurate and reliable 

results [11]. Luo and Wang [12] analyzes machine learning 

models for petrophysical data. The effectiveness of SVM, RF, and 

DT models is compared. Yang and Zhang [13] developed random 

Forest for Geophysical Anomaly Detection in Seismic Data. An 

analysis of how the Random Forest model works effectively in 

detecting geophysical anomalies in seismic data is presented. 

Zhang and Lu [14] developed machine learning techniques for 

predicting rock properties in medium and deep geological strata 

is presented. In Singh and Mehta [15], machine Learning in 

Subsurface Modeling: SVM vs. Random Forest. SVM and 

Random Forest models are analyzed to study optimized 

approaches for subsurface modeling. Optimization of machine 

learning algorithms, in particular Random Forest (RF), Support 

Vector Machine (SVM), and Decision Tree (DT) models, 

increases efficiency when working with complex data and large 

volumes of data [16-20]. These models allow us to identify not 

only simple statistical relationships, but also complex data and 

unconventional independent features from the data. Their 

optimized versions provide high accuracy and speed, opening new 

possibilities for analyzing complex systems. [21] aimed at 

studying optimized approaches of machine learning algorithms 

for performing predictive analysis on complex data systems. 

Hyperparameter tuning is necessary to improve the efficiency of 

each model in performing predictive analysis [22]. Through 

hyperparameter tuning, it is possible to optimally adjust the 

parameters of the model, which ensures high accuracy of the 

model [23]. Methods such as Grid Search, Random Search, and 

Bayesian Optimization are widely used in optimizing machine 

learning models [24-30]. These optimization processes help to 

increase the accuracy, speed, and performance of the model. At 

the same time, it is possible to optimize the processes of resource 

identification, extraction, and management based on large-scale 

and multidimensional datasets of petrophysical data of subsurface 

layers. However, the high uncertainty and complexity of this data 

makes predictive analysis difficult. Therefore, it is possible to 

effectively analyze petrophysical data using powerful machine 

learning algorithms and optimization techniques [5] [6]. 

 

Fig.1. Data processing graph 

In this study, we will examine in detail the mathematical 

foundations of the Random Forest (RF), Support Vector Machines 

(SVM) and Decision Tree (DT) models used in complex data 

processing and predictive analysis, the methods used to optimize 

them, and the stages of the experimental process. The selected 

models were found to be optimal for this study because they 

provide high accuracy and flexibility. There are several reasons 

for the use of RF, SVM and DT models in complex data 

structures. The RF model is based on the ensemble method and 

provides high prediction accuracy by combining various random 

samples and decision trees. The SVM model can detect hyper 

variances in the separation of linear and nonlinear data. DT has a 

simple and understandable tree structure and is characterized by 

its fast performance. By optimizing these models, their predictive 

capabilities are increased, as well as the detection of hidden 

patterns in complex data. During the study, petrophysical data 

were used to test the models, which include many different 

physical parameters. These data were collected under real 

geological conditions and have complex and uncertain structures. 

The goal of using the models in our study is to achieve high 

accuracy and efficiency [7] [8]. 

The operating principles, mathematical principles, and 

optimization methods of the selected models are described in 

detail in this section. Also, various hyperparameter tuning 

approaches, including Grid Search, Random Search, and 

Bayesian Optimization, were used during the research to ensure 

more efficient performance of the models [9] [10]. 

2. PROBLEM STATEMENT  

The goal is to improve prediction accuracy, reduce 

computational costs, and develop robust machine learning models 

that are adapted to geological multimodal data. This research 

focuses on exploring new optimization methods such as 

evolutionary algorithms, Bayesian optimization, and other 

methods to advance the application of artificial intelligence in 

geological data analysis. 

The dataset used in this study was obtained from a major oil 

and gas company that includes petrophysical log data from wells 

located in the Beshkent Basin of the Bukhara-Khiva oil and gas 

region of Uzbekistan. The petrophysical properties and types 

included in the log dataset include gamma ray (GR), resistivity 

(RT), sonic (DT), density (RHOB), and neutron porosity (NPHI), 

among others [11]. 

Table.1. Statistical analysis of collected data 

Statistic AC RT RHOB GR DT NPHI RDEP 

count 787 596 575 692 601 744 576 

mean 192 994 1.56 5.568 0.320 3.618 56.348 

std 36 947 0.81 2.973 0.021 0.661 31.556 

min 137 -999.249 0.002 2.111 0.234 1.846 0.0130 

25% 173 253 1.517 3.889 0.318 3.110 39.505 

50% 180 869 1.914 4.889 0.326 3.837 71.505 

75% 190 1569 2.685 6.167 0.330 4.114 78.807 

max 581 3815 2.676 2.944 0.432 4.700 84.037 
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(a) 

 

(b) 

Fig.2. Heatmaps of the correlation coefficient between missing 

values in the data and all the parameters associated with them 

3. RANDOM FOREST (RF) 

Random Forest (RF) is an ensemble model consisting of 

multiple decision trees, where each decision tree operates on its 

own data. In the RF algorithm, each tree is randomly selected 

from the data set and these trees are combined to make a final 

decision. This approach reduces overfitting and increases the 

generalizability of the model [12]-[14]. 

3.1 FIRST STEP  

Making a random selection from the data set, i.e. taking 

multiple samples of the data using bootstrap sampling 

 
1 1 2 2{( , ),( , ), ,( , )}i n nD x y x y x y   (1) 

where Di is the i - random sample of the dataset, xi - are the input 

features, and yi - are the corresponding target values. 

3.2 BUILDING DECISION TREES 

Each tree is constructed by selecting k - random attributes and 

selecting the best splitting rule: 

  Best Split arg max Gini { } i
k K

k

x D


   (2) 

3.3 THIRD STEP 

The final prediction is obtained by averaging the trees (for 

regression) or by majority voting (for classification): 

 
1
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n

i

i

y f x


   (3) 

where fi(x) is the prediction of the i tree and ŷ is the final decision. 

3.4 IMPURITY REDUCTION (GINI IMPURITY) 

 2

1
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D p

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where pi denotes the probability of each class. 

Average Gini value: 
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4. SUPPORT VECTOR MACHINE (SVM) 

Support Vector Machine (SVM) is a model based on finding 

the optimal hyperplane for linear and nonlinear data, separating 

classes by the maximum distance. It is a classification algorithm 

that tries to find the optimal hyperplane to separate two classes. 

What makes SVM different from other classifiers is that it tries to 

find the maximum margin (i.e., the largest distance between 

classes) [15]-[17]. 

 2

,

1
min

2w b
w  (6) 

where w is the vector coefficient of the line and b is a special 

parameter. 

4.1 BOUNDARY CONDITIONS 

 ( ) 1,i iy w x b i    (7) 

where yi ∈ {-1,1} is the class of each data point, xi is the data point, 

and w*x_i is the scalar value of the straight line. 

4.2 KERNEL FUNCTIONS 

If the data is not linear, we can use kernel functions to 

transform the features into a higher dimensional space: 

 ( , ) ( ) ( )i j i jK x x x x    (8) 

where K is the kernel function and ϕ is the feature space 

transformation function. 

5. DECISION TREE (DT) 

Decision Tree (DT) is a method of constructing a tree that is 

divided according to variable attributes in the decision-making 

process. Each division is made based on the selection of the best 

attribute, and the average entropy or Gini coefficient is used to 

calculate the optimal division for this division [18] [19]. 

Gini impurity (the main criterion for division): 

 2

1

Gini( ) 1
k

i

i

D p


   (9) 

where pi denotes the probability of each class, k is the number of 

classes. 
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5.1 CALCULATING THE SPLIT  

To find the best split for each attribute, we need to minimize 

the Gini coefficient after the split: 

 split

1

Gini Gini( )
T

t

t

t

D
D

D
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∣ ∣

∣ ∣
 (10) 

where Dt is the set formed after the division and T is the number 

of divisions. 

6. OPTIMIZATION METHODS 

6.1 HYPERPARAMETER TUNING  

The following hyperparameter tuning methods were used to 

improve the performance of the models: 

To define hyperparameters: 

  
Θ

arg min ( ; ),L f x y


 


  (11) 

where: 

θ - hyperparameter vector 

Θ - hyperparameter search space 

L - loss function 

f(x;θ) - model prediction 

y – true value 

6.2 GRID SEARCH METHOD  

The Grid Search algorithm considers all possible 

combinations and selects the optimal parameters by examining 

the parameters along a defined grid: 

  
Grid

arg min ( ; ),L f x y


 


  (12)           

where Grid is a set of predefined combinations of parameter 

values [20] [21]. 

6.3 RANDOM SEARCH METHOD 

The Random Search algorithm searches for optimal 

parameters by selecting random values from the parameter space: 

  
RandomSubset

arg min ( ; ),L f x y


 


  (13) 

where Random Subset is the values randomly selected from the 

parameter space [22]. 

6.4 BAYESIAN OPTIMIZATION METHOD 

The Bayesian Optimization method uses a probabilistic 

approach to search the parameter space: 

  arg max ( ) ( )


        (14) 

where, 

μ(θ) - the average value of the parameter being searched 

σ(θ) - the degree of uncertainty of the parameter 

κ - the coefficient determining the balance between exploration 

and exploitation. 

Bayesian Optimization increases computational efficiency, 

making the search process much more efficient. The research 

initially involves data collection. For the quality and accuracy of 

the data to have a high impact on the model results, the following 

steps are performed:  

1. Data Cleaning: Incorrect or missing values are removed 

from the data set.  

2. Feature Selection and Outlier Detection: Important 

features are identified, and outliers are removed.  

3. Data Normalization: The data is scaled to the same size to 

better train the model.  

4. Data Splitting: The data is split into 70% train and 15% 

test, and 15% validation.  

5. Model Processing and Optimization: Three artificial 

intelligence models were used in the model processing and 

optimization stages and within the research: Random 

Forest (RF), Support Vector Machine (SVM), Decision 

Tree (DT).  

Hyperparameter selection is performed for each model. The 

hyperparameter optimization process was performed using the 

following methods: Grid Search - checking all combinations in 

each range, Random Search - searching for random combinations, 

Bayesian Optimization - selecting the best parameters based on 

mathematical probability. The proposed algorithm can be seen in 

Fig.3 [23] [24] [25]. 

 

Fig.3. Algorithm for predicting porosity and permeability using 

RF, SVM, and DT models from geological multimodal data. 

7. COMPUTATIONAL EXPERIMENT 

During the study, the optimization results of Random Forest 

(RF), Support Vector Machines (SVM), and Decision Tree (DT) 

models were comparatively analyzed. By adjusting the 

hyperparameters of the models using various optimization 
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methods (Grid Search, Random Search, Bayesian Optimization), 

their accuracy, computational costs, and efficiency were 

evaluated. The optimization methods were tested on the models. 

The results can be seen in Fig.4. 

 

Fig.4. Results of RF, SVM, DT model optimization methods 

The results of model optimization are shown in the diagram 

above, which compares the performance of RF, SVM, and DT 

models before and after applying the optimization methods (Grid 

Search, Bayesian Optimization, and Random Search). Below is a 

summary of the accuracy in Table.2. 

Table.2. Results of optimization methods 

Model 

Before 

Optimization 

(%) 

Grid 

Search 

(%) 

Bayesian 

Optimization 

(%) 

Random 

Search (%) 

RF 84.1 93.2 95.3 92.7 

SVM 82.3 91.6 93.1 90.2 

DT 80.4 89.7 91.2 89.5 

The results of Random Forest (RF), Support Vector Machine 

(SVM) and Decision Tree (DT) models for determining porosity 

and permeability were examined. The results presented below are 

the results of tests carried out on real data. The performance of 

each model was evaluated based on criteria such as accuracy, root 

mean square error (RMSE), mean absolute error (MAE) and 

coefficient of determination (R²). 

In the first step, the models were tested without 

hyperparameter tuning. During this test, the root means square 

error (RMSE), mean absolute error (MAE), and R² of each model 

were calculated. The Table.3 below shows the initial results: 

Table.3. Results of models before optimization 

Model R²  RMSE MAE Accuracy (%) 

RF 0.84 3.98 3.13 84.1 

SVM 0.82 4.45 3.48 82.3 

DT 0.80 4.96 3.98 80.4 

As can be seen from the above results, the RF model has the 

highest performance, recording an R² of 84.1%. However, the 

results of the SVM and DT models are lower than the RF model, 

with their prediction accuracy being 82.3% and 80.4%. Fig.5 

compares the predictions generated by these models with the 

actual values. 

8. RESULTS 

During the optimization phase, hyperparameters were tuned 

using Grid Search, Random Search, and Bayesian Optimization 

methods. The best parameters were selected for each model: 

• Random Forest (RF): Estimators = 200, Max Depth = 20, 

Min Samples Split = 4 

• SVM: Kernel = RBF, C = 10, Gamma = 0.1 

• Decision Tree (DT): Max Depth = 15,  

• Min Samples Split = 5 

The models were tested using the best optimization method, 

and the results are presented in Table 5 below: 

 

Fig.5. Results of RF, SVM, DT models before and after 

Bayesian optimization 

Table.4. Results of models after optimization 

Model R² RMSE MAE Accuracy (%) 

RF 0.95 1.86 1.47 95.3 

SVM 0.93 2.11 2.05 93.1 

DT 0.91 2.78 2.12 91.2 

According to the results, the results of all models improved 

because of hyperparameter optimization. In particular, the 

accuracy of the Random Forest model increased from 84.1% to 

95.3%, the accuracy of the SVM model increased from 82.3% to 

93.1%, and the accuracy of the Decision Tree model increased 

from 80.4% to 91.2%. We can see that the optimization methods 

contribute to the accuracy and correct performance of the models. 

In Fig.6, we can also see the results of the evaluation visualization 

of each model. 

From this Fig.6, we can see that the application of 

optimization methods to RF, SVM, DT models led to high results. 

The use of optimization methods served to better integrate the 

data set, increasing the accuracy of the models. In the RF model, 

the blue data set represents the results before optimization, while 

the green data set represents the results after optimization. 

Similarly, we can see the results before and after optimization of 

SVM and DT models. In the SVM model, the yellow data set 

represents the results before optimization, while the pink data set 

represents the results after optimization. In the DT model, like the 

two models above, the red data set represents the results before 

optimization, and the blue data set represents the results after 

optimization. These methods were used to select the optimal 
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parameters for each model and evaluated through cross-

validation. 

 

Fig.6. Visualizations of the results of RF, SVM, DT models 

before and after optimization 

9. CONCLUSION 

In this study, we demonstrate the effectiveness of machine 

learning models in predicting hydrocarbon permeability and 

porosity using geological datasets. Optimization methods were 

also proposed to improve the accuracy of RF, SVM, and DT 

models, and the accuracy of the models was significantly 

improved. Furthermore, a comparative analysis of RF, SVM, and 

DT models before and after hyperparameter optimization shows 

that the optimization methods significantly improved the 

accuracy of the model. Among the models used, the RF model 

demonstrated superior predictive performance, achieving the 

highest R² score and the lowest error rates after Grid Search, 

Random Search, and Bayesian Optimization. The inclusion of a 

validation set (15%) ensured the selection of the optimal 

hyperparameter and reduced the risk of overfitting. The results of 

the model optimization methods before the RF model showed an 

accuracy of 84.1%, while the SVM and DT models showed an 

accuracy of 82.3% and 80.4%, respectively. After applying the 

optimization methods, the results showed that the RF model 

recorded an accuracy of 95%, while the SVM and DT models 

represented 93% and 91% accuracy.  

The results show that the processing methods for the main 

geological dataset parameters affect the model performance and 

show that we can see their importance in estimating hydrocarbon 

permeability and porosity at high accuracy. The results indicate 

that the optimized machine learning models provide a more 

reliable, data-driven approach for reservoir characterization, and 

ultimately support better decision-making in hydrocarbon 

exploration. 

Future work will explore deep learning architectures and 

hybrid AI models to further refine predictions and integrate 

additional seismic and geophysical datasets to improve reservoir 

modeling. This research highlights the transformative potential of 

AI-based solutions in the oil and gas industry, leading to more 

accurate, efficient, and cost-effective methods for estimating 

hydrocarbon reservoirs. 
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