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Abstract 

This research paper explores the application of deep learning 

techniques for the automated classification and segmentation of 

COVID-19, Normal, and Viral pneumonia cases using chest X-ray 

images. The dataset comprises 510 grayscale chest X-ray samples 

collected from publicly available COVID-19 repositories, equally 

distributed across three categories. The primary objectives of this study 

include identifying COVID-19 infection patterns, enhancing medical 

image classification performance, and providing a visual interpretation 

of model outputs for clinical utility. The methodology integrates image 

preprocessing and normalization followed by unsupervised k-means 

clustering to observe data distribution. A U-Net model is employed for 

pixel-level segmentation to highlight infection regions, while hybrid 

CNN and LSTM architecture is developed for image-level 

classification. The classification model achieved a test accuracy of 

74.5%, with a precision of 97% for COVID-19 class and strong macro-

average scores, reflecting balanced performance across all classes. 

Results are visually represented using segmentation overlays, a 

confusion matrix, and bar plots for class distributions. This integrative 

approach supports early detection and decision-making in clinical 

settings, combining segmentation clarity with reliable classification 

metrics. 
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1. INTRODUCTION 

COVID-19, caused by the SARS-CoV-2 virus, emerged as a 

global pandemic that placed immense pressure on healthcare 

systems worldwide. Among various diagnostic tools, chest X-ray 

imaging has proven to be a rapid, cost-effective, and accessible 

method for detecting pulmonary abnormalities associated with 

COVID-19. Unlike RT-PCR tests, which may have time delays 

and limited availability, chest X-rays offer immediate visual 

insights into lung infections, helping clinicians monitor disease 

progression and make critical decisions, especially in resource-

constrained environments.  

Numerous studies have explored the role of chest X-ray 

imaging in identifying COVID-19-related lung conditions such as 

bilateral opacities, ground-glass patterns, and consolidation. 

Recent advancements in artificial intelligence and deep learning 

have further improved the ability to automatically classify chest 

X-ray images into categories such as COVID-19, viral 

pneumonia, and normal cases. These studies demonstrate the 

potential of AI-assisted radiological analysis in supporting timely 

and accurate diagnosis, which is vital in managing patient 

outcomes and reducing transmission rates during pandemics. 

 

2. REVIEW OF LITERATURE 

The application of artificial intelligence (AI) in medical 

imaging, particularly for the diagnosis of COVID-19 using chest 

X-rays, has gained significant attention in recent years. 

Apostolopoulos and Mpesiana [1] were among the first to 

demonstrate that convolutional neural networks (CNNs) could 

accurately classify COVID-19 from chest X-ray images, 

achieving strong performance with limited data. Similarly, Ozturk 

et al. [3] designed a custom deep CNN architecture that achieved 

over 98% accuracy in binary classification of COVID-19 and 

normal cases. Asif et al. [4] utilized deep features extracted from 

pre-trained models like ResNet50 combined with support vector 

machines (SVM) to enhance classification performance. Wang et 

al. [2] proposed COVID-Net, a tailored deep learning model 

capable of identifying COVID-19 in X-rays with interpretable 

predictions. These early efforts laid the groundwork for 

automated diagnostic systems using X-ray modalities. 

Building on these foundations, further studies incorporated 

larger and more diverse datasets. Ronneberger et al. [8] used a 

dataset compiled from multiple open sources and validated 

various deep learning models for multiclass classification, 

achieving promising results with DenseNet and EfficientNet. 

Rajpurkar et al. [6] introduced transfer learning approaches with 

fine-tuned networks that adapted well to COVID-19 X-ray 

patterns. Cohen et al. [5] compared several CNN variants, 

including MobileNet and VGG, and emphasized the importance 

of data augmentation in improving generalization. He et al. [6] 

highlighted the importance of combining deep learning with 

explainable AI techniques to aid radiologists in decision-making. 

Similarly, Khan et al. [15] presented CoroNet, a CNN model 

trained on X-ray images to differentiate between COVID-19, 

pneumonia, and healthy lungs with significant classification 

accuracy. 

Recent works have focused on model robustness, 

interpretability, and integration into clinical workflows. Abbas et 

al. [9] explored ensemble learning strategies using different CNN 

architectures to improve the reliability of COVID-19 detection. 

Zhang et al. [10] proposed a hybrid deep learning framework that 

integrates CNN and LSTM for sequential spatial feature 

extraction from X-ray images. Brunese et al. [11] investigated 

multi-modal inputs using both chest X-ray and clinical metadata 

to enhance model performance. Zhang et al. [12] used a 

combination of ResNet and Grad-CAM visualization to improve 

transparency in AI-driven diagnosis. Further, Panwar et al. [13] 

focused on lightweight AI models suitable for deployment in 

resource-constrained settings. Albahli et al. [14] benchmarked 

multiple deep learning models on COVID-19 datasets. 

Collectively, these studies underscore the evolving landscape of 
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AI in medical diagnostics and its transformative potential during 

global health crises. 

3. DATABASE 

The COVID-19 Chest X-ray image database used in this study 

comprises three distinct categories: COVID-19 infected cases, 

normal (healthy) cases, and viral pneumonia cases, with a total 

sample size of 510 images equally distributed across these classes. 

Each image in the dataset is preprocessed to a uniform size of 

128x128 pixels for consistent analysis.  

These chest X-ray images capture critical medical parameters 

such as lung opacity, consolidation, and infiltration patterns, 

which are essential indicators for diagnosing COVID-19 and 

differentiating it from other respiratory conditions like viral 

pneumonia. The dataset was sourced from publicly available 

repositories and verified clinical collections, providing a reliable 

foundation for developing and evaluating machine learning 

models aimed at automatic detection and classification of 

COVID-19 infections based on radiographic features. The 

following figures shows that the sample size of three category of 

COVID-19 Chest X-ray images (Fig.1) 

 

Fig.1. Distribution of COVID-19 Chest X-ray Images across 

Categories 

4. METHODOLOGY 

The methodology applied in this study combines both 

unsupervised and supervised deep learning techniques to classify 

and segment COVID-19 chest X-ray images. The dataset includes 

three categories of COVID-19, normal, and viral pneumonia 

collected from publicly available sources. To ensure consistency, 

all images were converted to grayscale and resized to a uniform 

resolution of 128×128 pixels.  

Preprocessing involved normalizing pixel intensity values and 

reshaping the images to prepare them for subsequent clustering 

and model training. To maintain balanced class representation, a 

maximum of 170 images per category was selected. Additionally, 

categorical labels were encoded into numerical values for 

effective processing. The overall process is depicted in the 

workflow diagram presented in Fig.2. 

 

Fig.2. Workflow Diagram for Processing COVID-19 Chest X-

ray Images 

To explore underlying structures in the data, K-Means 

clustering was performed on flattened image vectors. This 

unsupervised learning step aimed to reveal natural groupings and 

helped visualize how well the image features aligned with true 

clinical categories. A comparative cluster analysis using a 

confusion matrix and count plots was performed to assess the 

cluster-to-label correspondence. Following this, a U-Net 

architecture was implemented to perform image segmentation. 

The model, comprising an encoder-decoder structure with skip 

connections, was trained using dummy segmentation masks (i.e., 

the original input images themselves). The U-Net helped extract 

spatial features, demonstrating its ability to preserve image 

context through reconstruction layers. 

For the classification task, a hybrid CNN and LSTM model 

was constructed. The CNN layers extracted local spatial features 

from X-ray images through convolution and pooling operations. 

These features were then reshaped and passed into an LSTM 

layer, which treated the image rows as sequential data, enabling 

the model to capture spatial dependencies across regions. Dense 

layers at the end of the network were responsible for classifying 

the images into one of the three categories. The model was trained 

using a categorical cross-entropy loss function with the Adam 

optimizer. Finally, the model's performance was evaluated using 

standard metrics such as accuracy, precision, recall, F1-score, and 

confusion matrices, complemented by visualizations to illustrate 

segmentation quality and classification reliability. 

4.1 PROPOSED ALGORITHM 

Step 1: Involves loading the dataset from the specified 

directory. The dataset contains images categorized into three 

classes: COVID, NORMAL, and VIRUS. For each category, up 

to 170 grayscale images are loaded, resized to a uniform size of 

128x128 pixels to maintain consistency in input dimensions. 

During loading, any missing or unreadable images are safely 

skipped, and a count is maintained to ensure the maximum 

number of images per class is not exceeded. 

Step 2: The labels are encoded numerically to facilitate 

machine learning model training. Each category is assigned a 

unique integer label. The images are normalized by scaling pixel 
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values to the range [0, 1] to improve model convergence and 

performance. 

Step 3: Before proceeding with deep learning, the algorithm 

applies k-Means clustering on the flattened image data to perform 

an unsupervised grouping of images. Flattening transforms each 

2D image into a 1D vector. k-Means with three clusters are equal 

to the number of categories  is used to cluster the images, 

providing insight into how well the images naturally group 

without labels. The cluster assignments are then compared to true 

labels using a cross-tabulation and visualized with a count plot to 

evaluate clustering quality. 

Step 4: The dataset is prepared for deep learning models by 

reshaping the images back to 128x128 with a single grayscale 

channel and splitting into training and testing sets with stratified 

sampling to maintain class balance. 

Step 5: Image segmentation, the algorithm defines and trains 

a U-Net model, powerful convolutional neural network 

architecture for pixel-wise prediction tasks. The U-Net consists of 

an encoder that downsamples the input image extracting 

hierarchical features and a decoder that upsamples and combines 

these features to produce an output segmentation mask. Since true 

masks are not provided, the input images themselves are used as 

dummy masks to train the U-Net for demonstration. After 

training, the model predicts segmentation masks on the test 

images. 

Step 6: Classification, a combined CNN and LSTM model is 

constructed. The CNN layers extract spatial features from the 

images through convolution and pooling operations. The output 

of the CNN is reshaped so that one spatial dimension is treated as 

time steps and the other dimension as features, allowing the 

subsequent LSTM layer to capture sequential patterns along that 

axis. This combination leverages spatial feature extraction (CNN) 

and sequential modeling (LSTM) to improve classification 

accuracy. The model ends with fully connected layers to predict 

the class probabilities. 

Step 7: The CNN and LSTM classifier is trained on the 

training dataset with a validation split to monitor overfitting and 

performance. After training, the model is evaluated on the test set, 

providing the test accuracy, a detailed classification report 

(precision, recall, f1-score per class), and a confusion matrix 

visualization to assess prediction quality across classes. 

Step 8: The algorithm visualizes sample segmentation results 

by plotting the original grayscale test images, their U-Net 

predicted segmentation masks, and an overlay of both for 

qualitative assessment. This step helps in visually verifying the 

segmentation performance and identifying any discrepancies. 

5. RESULT AND DISCUSSION 

The dataset comprised 510 chest X-ray images, evenly 

categorized into three classes: COVID-19, Normal, and Viral 

Pneumonia. The data loading process was successful, ensuring a 

balanced dataset that provided a strong foundation for the 

subsequent analyses and modeling efforts. 

To explore the intrinsic structure of the image data, k-means 

clustering was applied to the flattened grayscale images, aiming 

to detect natural groupings without any prior label information. 

The clustering process allocated the images into three distinct 

clusters, corresponding to the three known categories. Results 

revealed that a significant portion of the COVID-19 images 

clustered into Group 0, while Normal and Viral Pneumonia 

images were primarily distributed across Clusters 1 and 2. 

However, overlaps were observed particularly with 57 Normal 

and 57 viral images falling into the same cluster highlighting the 

difficulty of distinguishing these visually similar categories using 

unsupervised techniques alone. This outcome underscores the 

limitation of clustering based solely on pixel-level features and 

supports the necessity for supervised deep learning models for 

accurate medical image classification. 

The next phase involved training a U-Net model for 

segmentation purposes. In the absence of annotated segmentation 

masks, the images themselves were used as pseudo-masks during 

training. Over three training epochs, the model demonstrated a 

reduction in loss, although the accuracy remained relatively low, 

as expected. While these results do not reflect meaningful 

segmentation accuracy due to the dummy masks, the U-Net was 

able to learn basic image reconstruction patterns. Visual outputs 

from the segmentation phase showed that the model could 

approximate lung shapes and structures, offering a foundation for 

future improvements using actual segmentation labels. 

For image classification, hybrid CNN-LSTM architecture was 

employed. The convolutional layers captured spatial hierarchies 

within the chest X-rays, while the LSTM layers modeled the 

extracted features as sequences, leveraging temporal 

dependencies within the image representations. The model, 

comprising approximately 638,000 trainable parameters, was 

trained for 10 epochs. Training accuracy improved steadily, 

reaching up to 84%, while validation accuracy peaked at 80%, 

reflecting good model generalization and learning stability. The 

model was evaluated on an unseen test set, where it achieved an 

overall accuracy of 74.5%. 

The classification performance was particularly strong for the 

COVID-19 category, with precision and recall values of 0.97 and 

0.88, respectively. These metrics suggest the model was highly 

reliable in detecting COVID-positive cases. In contrast, 

classification performance for Normal and Viral classes was 

comparatively moderate, with precision and recall ranging from 

0.62 to 0.68. This variation can likely be attributed to the similar 

visual appearance of Normal and Viral Pneumonia X-rays, 

making them harder to distinguish a challenge evident in the 

misclassifications shown in the confusion matrix (Fig.3). These 

results are summarized in Table.1. 

Table.1. Classification Performance Metrics for COVID-19 

Chest X-ray Images 

Class Precision Recall F1-score Support 

Covid 0.97 0.88 0.92 34 

Normal 0.68 0.62 0.65 34 

Virus 0.62 0.74 0.68 34 

accuracy 0.75 - - 102 

macro avg 0.76 0.75 0.75 102 

weighted avg 0.76 0.75 0.75 102 
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Fig.3. Confusion Matrix for Classification of COVID-19 Chest 

X-ray Images 

 

 

 

Fig.4. U-Net Segmentation Output on COVID-19 Chest X-ray 

Images 

The confusion matrix in Fig.3 offered further clarity, 

confirming the model’s strong recognition of COVID-19 images 

while identifying occasional misclassifications between Normal 

and Viral images. This finding suggests that while the model 

architecture is effective, future enhancements such as 

incorporating deeper layers, increasing dataset size, or utilizing 

advanced data augmentation could lead to more robust 

classification across all categories. 

Finally, the visual inspection of U-Net segmentation outputs 

offered promising qualitative insights as in Fig.4. Even though the 

model was trained on placeholder masks, the overlays of 

predicted masks on the original grayscale images illustrated the 

model’s ability to highlight key lung regions. This demonstrates 

potential for future work involving true mask annotations, which 

would likely yield improved segmentation outcomes (Fig.4). 

Thus, this research successfully demonstrated a 

comprehensive deep learning approach that integrates 

unsupervised clustering, image segmentation, and hybrid 

classification for analyzing COVID-19 chest X-ray images. The 

results affirm the promise of deep learning in enhancing 

diagnostic support in radiology while also identifying critical 

avenues for future refinement. 

6. CONCLUSION 

This study demonstrates the potential of integrating deep 

learning models such as U-Net and CNN and LSTM for the 

effective analysis of COVID-19 chest X-ray images. The 

implementation of k-Means clustering provided valuable insight 

into the natural grouping of X-ray features across different clinical 

categories, which was further validated through visualizations and 

cluster-label comparisons. The U-Net model successfully 

segmented essential regions of interest in the X-rays, even when 

trained on simplified dummy masks, showcasing its strength in 

feature localization and spatial representation. The CNN and 

LSTM classifier, trained on segmented images, achieved a test 

accuracy of approximately 75%, highlighting its capability to 

differentiate between COVID-19, normal, and viral pneumonia 

cases based on radiographic features. 

The findings underscore the potential application of 

automated image analysis in clinical decision support systems, 

particularly during pandemics where rapid diagnosis is crucial. By 

leveraging both spatial and sequential features, the hybrid deep 

learning framework presented here offers a scalable and efficient 

solution for radiological screening. The outcomes of this study 

can contribute to faster triaging in hospitals, aid radiologists in 

identifying patterns across large volumes of chest images and 

promote further research in AI-assisted medical diagnostics for 

respiratory illnesses. 
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