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Abstract 

High-quality multivariate time-series datasets are significantly less 

accessible compared to more common data types such as images or text, 

due to the resource-intensive process of continuous monitoring, precise 

annotation, and long-term observation. This paper introduces a cost-

effective solution in the form of a large-scale, curated dataset 

specifically designed for anomaly detection in computing systems’ 

performance metrics. The dataset encompasses 45 GB of multivariate 

time-series data collected from 66 systems, capturing key performance 

indicators such as CPU usage, memory consumption, disk I/O, system 

load, and power consumption across diverse hardware configurations 

and real-world usage scenarios. Annotated anomalies, including 

performance degradation and resource in efficiencies, provide a 

reliable benchmark and ground truth for evaluating anomaly detection 

models. By addressing the accessibility challenges associated with time-

series data, this resource facilitates advancements in ma chine learning 

applications, including anomaly detection, predictive maintenance, 

and system optimization. Its comprehensive and practical design makes 

it a foundational asset for researchers and practitioners dedicated to 

developing reliable and efficient computing systems. 
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1. INTRODUCTION 

The efficacy of modern computing systems is essential for 

ensuring their reliability, efficiency, and longevity across various 

applications, ranging from personal computing to large-scale 

cloud infrastructures. Key system performance indicators, such as 

CPU utilization, memory usage, disk I/O, system load, and power 

consumption, offer critical insights into system behaviour. These 

metrics facilitate real-time monitoring, troubleshooting, and 

optimization, enabling the timely identification of anomalies like 

sudden spikes in CPU usage, memory leaks, or disk bottlenecks. 

Such detection is crucial for maintaining peak system 

performance and preventing failures that could disrupt operations 

or result in significant downtime costs [1], [2]. 

However, monitoring these metrics on a large scale presents 

numerous challenges. The volume of data generated requires 

substantial storage and computational resources. Additionally, the 

variability in system configurations, hardware components, and 

user behaviours across diverse devices complicates the 

development of effective anomaly detection techniques that can 

generalize well across different contexts. These challenges make 

it difficult to create machine learning models that can reliably 

detect anomalies, especially those that are rare or emerge in new, 

unforeseen circumstances [7], [16]. 

Traditional anomaly detection techniques, such as threshold-

based methods, are often inadequate when applied to the high-

dimensional and complex nature of multivariate time-series data. 

These methods typically fail to capture the intricate relationships 

between multiple performance metrics over time, resulting in a 

high rate of false positives or missed detections. Furthermore, the 

existing datasets used for training and evaluating anomaly 

detection algorithms are often small, narrowly focused, or not 

representative of real-world system behaviour [3], [15]. This 

limitation hampers the development and enhancement of machine 

learning models that can effectively adapt to the dynamic nature 

of modern computing systems. 

These issues underscore the increasing need for large, well-

organized, and annotated datasets. Such datasets are crucial for 

advancing machine learning applications in areas like anomaly 

detection, predictive maintenance, and system optimization. The 

lack of high-quality datasets represents a significant obstacle to 

progress in the field, as models trained on limited or non-

representative data are likely to perform poorly in practical 

scenarios [19], [20]. Therefore, there is an urgent demand for 

large, diverse datasets that capture a wide range of system 

behaviours across various hardware configurations and usage 

scenarios. 

This paper addresses these challenges by introducing a large-

scale, carefully curated multivariate time-series dataset 

specifically designed for anomaly de tection in computing system 

performance metrics. The dataset consists of 45 GB of data 

collected from 66 distinct systems, capturing essential 

performance indicators such as CPU utilization, memory usage, 

disk I/O, system load, and power consumption. Data was gathered 

from a range of hardware configura tions and real-world usage 

contexts, ensuring that it reflects the complexity and diversity of 

modern computing environments. Additionally, the dataset is 

anno tated with a variety of anomalies, including performance 

degradation, resource inefficiencies, and system failures, 

providing a reliable ground truth for evaluat ing and improving 

anomaly detection models. Consequently, this dataset serves as a 

valuable resource for researchers and practitioners striving to 

develop more robust machine learning models, enhance anomaly 

detection techniques, and advance predictive maintenance 

strategies [21], [22], [8]. 

2. LITERATURE SURVEY 

Anomaly detection in computing systems has become an 

essential area of research due to its critical role in maintaining 

system reliability, optimizing performance, and preventing 

failures. The complexity of modern computing environments, 

coupled with the dynamic nature of their operational contexts, has 

necessitated robust machine learning techniques to identify 

deviations from expected behaviour [1] [19]. However, these 

advancements hinge on the availability of high-quality datasets 

that accurately represent real-world scenarios [20] [2]. 

Unlike domains such as computer vision and natural language 

processing, where large-scale and well-annotated datasets are 

abundant [15], multivariate time-series datasets remain scarce. 
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The challenges of continuous monitoring, long-term data 

collection, and precise annotation make the creation of such 

datasets resource-intensive and technically demanding [22, 8]. 

This scarcity creates a significant bottleneck, limiting progress in 

anomaly detection, predictive maintenance, and system 

optimization [25].  

2.1 EXISTING DATASETS FOR ANOMALY 

DETECTION 

Over the years, several datasets have been developed to 

advance anomaly detection research across various domains. For 

instance, the KDD Cup 1999 dataset [16] and the UNSW-NB15 

dataset [19] are widely used for network intrusion detection, 

capturing patterns indicative of malicious activities within 

network traffic. Similarly, the NASA bearing dataset [11] focuses 

on fault detection in mechanical systems, offering time-series data 

that record degradation in rotating machinery components, 

making it valuable for predictive maintenance.  

In the realm of computing system performance, datasets like 

the AIOps Challenge Dataset and telemetry data from Microsoft 

Azure VMs have frequently been used for analyses like workload 

optimization and fault prediction. However, these datasets often 

face limitations, such as insufficient annotations, small sample 

sizes, or a lack of diversity in scenarios. Datasets like NAB 

(Numenta Anomaly Benchmark) and S5 (Synthetic Control Chart 

Time Series), although popular, are not tailored to computing 

performance data, focusing instead on different domains such as 

time series or environmental data [12, 14].  

While the SMD (Server Machine Dataset) [13] provides 

system metrics for server machines, it does not fully address the 

unique characteristics of laptops. These existing datasets, while 

instrumental in advancing anomaly detection in their respective 

fields, fail to capture the operational dynamics of laptop systems. 

The absence of a large-scale, annotated dataset specifically 

designed for laptop performance metrics creates a significant gap 

in the field of anomaly detection for such devices.  

Addressing this gap by developing a comprehensive, laptop-

specific dataset would significantly enhance the development of 

anomaly detection models for laptop systems. A well-curated, 

annotated dataset focusing on laptop performance could pave the 

way for more accurate and effective anomaly detection, ultimately 

leading to improved system reliability and performance 

optimization. 

2.2 CHALLENGES IN COLLECTING AND 

ANNOTATING TIME-SERIES DATA 

The creation of high-quality multivariate time-series datasets 

is a challenging and resource-intensive process. It requires 

advanced instrumentation, substantial storage capacity, and 

continuous monitoring over extended periods to capture the 

diverse performance metrics that reflect varying usage patterns 

and environmental conditions. Accurately representing 

computing system performance demands meticulous planning 

and execution, as systems must be observed under real- world 

conditions across a variety of hardware configurations. Tools such 

as Open Hardware Monitor [10] and HWMonitor [17] are 

essential for gathering key metrics such as CPU usage, memory 

consumption, disk I/O, system load, and power consumption. 

These tools ensure both the accuracy and consistency of the data 

collected. 

One of the most critical aspects of creating such datasets is the 

annotation of anomalies, which is often the most labor intensive 

and crucial part of the process. Anomalies, including subtle 

variations like gradual increases in CPU temperature or 

occasional spikes in memory usage, can signal underlying issues. 

Identifying these anomalies requires domain expertise and 

sophisticated analytical techniques [1, 2]. Proper annotation 

ensures that detected anomalies correspond to genuine system 

inefficiencies or potential failures, which is essential for training 

reliable anomaly detection models. Mislabeling anomalies can 

lead to flawed model performance, undermining the accuracy of 

predictions and the overall usefulness of the dataset [3]. 

 Scalability presents another significant challenge when 

collecting and annotating time-series data for anomaly detection. 

Developing a large, representative dataset that encompasses a 

wide range of usage scenarios, including stress conditions and 

real-world operations, is crucial to ensuring that anomaly 

detection models can generalize effectively across different 

environments. Existing benchmark datasets, such as the Numenta 

Anomaly Benchmark (NAB) [11] and Server Machine Dataset 

(SMD) [13], have contributed to advancing anomaly detection 

research. However, these datasets often fail to capture the unique 

dynamics and complexities of laptop systems, lacking the 

granular details and rich annotations necessary for effective 

modelling in this domain [15]. This highlights the need for a 

specialized dataset focused on laptop performance metrics, with a 

broader range of performance indicators and accurately annotated 

anomalies.  

To address these challenges, this paper introduces a large-

scale, curated multivariate time-series anomaly detection dataset 

specifically designed for laptop performance metrics. The dataset 

consists of 45 GB of data   collected from 66 systems, capturing 

a variety of performance indicators across diverse hardware 

configurations and real-world usage scenarios. It includes 

annotated anomalies such as performance degradation and 

resource inefficiencies, providing a reliable benchmark for 

evaluating anomaly detection models [16]. By addressing the 

accessibility challenges associated with high-quality time-series 

data, this resource supports advancements in machine learning 

applications, including anomaly detection, predictive 

maintenance, and system optimization. Its comprehensive and 

practical design positions it as a foundational asset for researchers 

and practitioners working to develop more reliable and efficient 

computing systems. 

2.3 UNIQUE CONTRIBUTION OF OUR DATASET 

This dataset is characterized by its large volume, variety of 

data sources, and the detailed attention given to accurate 

annotation. Previous works, such as those by Chandola et al. 

(2009) [1] and Ahmed et al. (2016) [2], have acknowledged the 

need for more realistic and diverse datasets but have fallen short 

when it comes to including annotated anomalies that reflect 

complex, real-world usage patterns. Unlike existing datasets, 

which often fail to capture subtle anomalies or do not consider the 

impact of hardware diversity, our dataset covers 66 different 

systems, representing a wide range of hardware configurations 

and usage scenarios [3] [7]. 
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Fig.1. Overview of data collection methodology 

The dataset’s inclusion of power consumption metrics is 

another unique feature, addressing the growing need for 

performance data that also considers energy efficiency. As 

computational resources become increasingly constrained by 

energy limitations, especially in portable devices like laptops, 

understanding the power efficiency of systems is critical [8]. Our 

dataset provides a unique platform for training models capable of 

detecting anomalies in both system performance and energy 

consumption, addressing a critical gap often neglected in 

conventional anomaly detection research. [9]. 

3. DATA COLLECTION METHODOLOGY 

We gathered a 45 GB dataset from 66 laptops to study system 

performance and detect anomalies. Using tools like HWMonitor 

and Psutil, we tracked key metrics such as CPU usage, memory 

use, and disk activity. The data reflects real-world conditions, 

covering different hardware setups, system states, and us- age 

habits, making it a well-rounded resource for identifying 

performance issues. By capturing data from a variety of system 

configurations and operational scenarios, the dataset allows for a 

comprehensive analysis of system behaviours under different 

workloads. This diverse collection ensures that the data is 

representative of common user experiences, providing a robust 

foundation for detecting system inefficiencies and potential 

failures. 

3.1 DATA COLLECTION TOOLS 

The primary tools used to collect system performance metrics 

were HWMonitor and Open Hardware Monitor, which allowed 

for real-time tracking of key system parameters. These tools 

monitored essential metrics such as CPU utilization, memory 

usage, disk I/O, and network activity. HWMonitor was 

particularly valuable for tracking temperature, fan speeds, and 

voltage levels, providing cru cial insights into the system’s health 

under load [17]. Open Hardware Monitor, on the other hand, 

provided added flexibility, enabling remote monitoring and 

integration with other data-logging systems, which enhanced the 

overall data collection process [10]. These tools were instrumental 

in recording detailed performance logs across different system 

states and stress conditions, ensuring comprehensive data 

coverage. 

Additionally, to further enhance the granularity of the data, the 

psutil Python library was employed. Psutil enabled the extraction 

of system-level metrics such as process resource consumption, 

system load, and I/O opera tions, offering deeper insights into the 

performance of individual processes [18]. 

By utilizing psutil, it was possible to capture detailed statistics 

on process-level activities, such as memory consumption, CPU 

cycles, and disk read/write op erations. This library also supported 

automated, continuous logging, ensuring consistency and 

accuracy in the data collection process, which was crucial for 

maintaining the integrity of the dataset. 

3.2 DATA GATHERING PROCESS 

The process of gathering data for the dataset was meticulously 

planned to ensure its comprehensiveness and applicability to real-

world scenarios. Participants were tasked with capturing detailed 

performance metrics from various systems, with the primary goal 

of building a dataset that could effectively represent diverse 

operational conditions and facilitate anomaly detection and 

performance analysis. 

• Task Assignment: Participants from Internshala were given 

clear in structions and guidelines for collecting performance 

data. The task re quired them to monitor systems under 

different operational conditions, including idle states, 

multitasking scenarios, and resource-intensive tasks. The 

objective was to collect a wide range of system performance 

data that would reflect real-world usage patterns. Each 

participant was expected to gather at least 1 GB of detailed 

performance logs per system. The logs were to include 

critical metrics such as CPU usage, memory consumption, 

disk I/O, and battery status. These metrics were chosen 

because they are fundamental indicators of a system’s health 

and efficiency. The data collection process was conducted 

over extended periods to ensure a thorough understanding of 

how systems behave in various states. This approach 

ensured that the dataset captured a comprehensive range of 

system conditions, making it highly valuable for the task of 

anomaly detection and for analysing overall system 

performance. By capturing data over time, the dataset could 

also account for temporal variations in system behaviour. 

• Data Logging: The process of data logging involved 

running performance monitoring tools on each system for 

prolonged periods, ensuring that enough data was collected 

to meet the 1 GB per system requirement. These tools were 

tasked with continuously recording performance metrics 

across different system states. For example, data was 

captured when the system was idle, when multiple 

applications were running concurrently (multitasking), and 

during scenarios where the system was pushed to its limits 

with resource-intensive tasks. This multi-state approach was 

crucial to ensuring that the dataset was not biased toward a 

single type of system usage. By recording data across 

various operational scenarios, the dataset could better 

simulate real-world environments and the various stressors 

that a system might face. This diversity in the data made the 

dataset more robust, as it could be used to analyse a variety 

of system behaviours and identify performance patterns that 

might not be evident in isolated, single-state data collection 

[2]. 

• Anomaly Identification: An integral part of the data 

collection process was the identification and annotation of 

anomalies. Participants were in structed not only to collect 

standard performance data but also to actively identify and 

mark any unusual system behaviors. Anomalies could mani 

1 
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fest as sudden and unexpected spikes in CPU usage, 

unexplained memory leaks, or irregular disk activity that did 

not align with typical system be havior. These types of 

anomalies are important because they are often early 

indicators of underlying issues such as software bugs, 

hardware mal functions, or inefficient system processes. 

Participants were encouraged to simulate such anomalies in 

controlled settings when they were not nat urally occurring. 

Once identified, these anomalies were annotated within the 

data logs to ensure they could be easily recognized during 

subsequent analysis. This step was crucial for enhancing the 

utility of the dataset for anomaly detection tasks. The 

annotated anomalies provided labeled data that could be 

used to train machine learning models or to develop heuris 

tics for detecting similar issues in other systems. By adding 

this layer of anomaly identification, the dataset was not only 

useful for performance analysis but also for researching 

system irregularities [3].   

3.3 METRICS COLLECTION 

The data collection process was executed iteratively based on 

the total number of samples, which was determined using the 

following formula: 

Total samples = duration (minutes) × sampling rate (samples) × 

60 

For each iteration: 

• Timestamp Capture: The current timestamp was recorded 

using the datetime.now() function to precisely track each 

data point. 

• CPU Temperature and Power: The w.Sensor() method 

from the WMI client was used to gather real-time sensor data 

from Open Hardware Mon- itor, specifically capturing the 

CPU temperature and power consumption metrics. 

• CPU Usage: The psutil.cpu percent() function was 

employed to mea- sure CPU usage as a percentage, 

providing an accurate representation of processor activity 

[18]. 

• CPU Load: The 1-minute average CPU load was retrieved 

using psu- til.getloadavg()[0], giving insights into system 

load over short time inter- vals [18]. 

• Memory Usage: Memory utilization was recorded using the 

psutil.virtualmemory().percent attribute, which reflects the 

percentage of used memory [18]. 

• Battery Level: Battery status, including current charge 

level, was ac- cessed using psutil.sensors battery(), 

providing important data about the system’s energy state 

[18]. 

• Sampling Interval: To maintain the desired sampling rate, 

the script paused briefly after each cycle using 

time.sleep(1/sampling rate hz) to en- sure that each data 

point was captured at the correct interval. 

To collect system performance data for anomaly detection, the 

Python script should be run with the Open Hardware Monitor app 

in the background. This app provides real-time data on CPU 

usage, memory, disk I/O, and other metrics, which the script 

extracts for analysis. The collected data will contribute to a dataset 

for performance analysis. You can download the Open Hardware 

Monitor app using the following link: Open Hardware Monitor. 

3.4 DATA PREPROCESSING AND SCALING 

TECHNIQUES 

For the preprocessing of the dataset, we applied three    

different scaling techniques to ensure that the features were 

transformed appropriately for machine learning models. These 

methods were chosen based on the characteristics of the data and 

the requirements of the models being employed. The scaling 

techniques helped normalize the data, ensuring that each feature 

contributed equally to the model’s performance. Additionally, 

these methods addressed issues such as varying feature ranges and 

the potential dominance of certain features over others, improving 

the model’s convergence and accuracy. Below is an explanation 

of the preprocessing steps and the specific scaling methods used. 

3.4.1 Standardization Using StandardScaler: 

To address the varying scales of the features, we first 

standardized the data using the StandardScaler. This method 

transforms each feature by removing the mean and scaling it to 

unit variance. Standardization is particularly bene f icial when the 

data follows a normal distribution. Features such as cpu usage, 

memory usage, and cpu power were scaled using this method, 

ensuring that each feature contributes equally to the machine 

learning model, particularly for algorithms that rely on distance-

based metrics or gradient descent optimization. The 

transformation follows the formula: 

 z = (x-µ)/σ (1) 

where µ is the mean and σ is the standard deviation of the feature. 

This method is particularly effective for algorithms like Logistic 

Regression, Support Vector Machines, and Neural Networks that 

require the data to be centered and scaled to a similar range [4]. 

3.4.2 Robust Scaling Using RobustScaler: 

In addition to standardization, we applied the Robust Scaler to 

handle the presence of outliers in certain features. Unlike the 

Standard Scaler, which uses the mean and standard deviation, the 

Robust Scaler uses the median and interquartile range (IQR) to 

scale the data. This method is particularly useful when the dataset 

contains significant outliers that could distort the results of the 

model. The transformation formula is: 

 Xscaled =(x-median(X))/(IQR(X)) (2) 

where median(X) is the median value of the feature and IQR(X) 

is the interquartile range (Q3- Q1). This scaling method ensures 

that outliers do not disproportionately influence the model, 

making it ideal for features with extreme values or skewed 

distributions [5]. 

3.4.3 Min-Max Scaling Using MinMaxScaler: 

Finally, we used the MinMaxScaler to scale the data to a fixed 

range, usually between 0 and 1. This technique is useful for 

machine learning algorithms that require all features to be on the 

same scale, such as neural networks or gradient descent-based 

optimization methods. The MinMaxScaler ensures that the data 

fits within a specified range, preventing any one feature from 

dominating due to its larger magnitude. The formula for the Min 

Max scaling is: 

 xscaled = (x-xmin)/(xmax-xmin) 
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where xmin and xmax represent the minimum and maximum values 

of the feature, respectively. This method is particularly beneficial 

when using algorithms that are sensitive to the range of the input 

features, ensuring that the learning process proceeds smoothly and 

efficiently. 

4. EXPERIMENTS AND RESULTS  

The main aim of this study is to create a detailed, curated 

dataset that can be used by researchers and practitioners to assess 

and enhance anomaly detection models. The dataset comprises 45 

GB of multivariate time-series data collected from 66 systems, 

featuring key performance indicators such as CPU usage, memory 

consumption, disk I/O, system load, and power consumption. 

With annotated anomalies, this dataset enables users to gain 

insights into the frequency and distribution of performance issues 

across various system configurations and real-world usage 

scenarios.  

4.1 DATA OVERVIEW AND ANOMALY 

DISTRIBUTION 

The dataset contains a diverse range of anomalies, such as 

performance degradation, resource inefficiencies, and system 

overloads. These anomalies were carefully annotated to provide a 

reliable ground truth for understanding abnormal behaviours in 

computing systems. The frequency and type of anomalies vary 

across metrics, depending on the system’s operational state. For 

instance, anomalies in CPU temperature and usage are more 

frequent under stress conditions, while memory usage and CPU 

power anomalies occur less often but are still present during 

intensive workloads [21, 22]. Categorizing these anomalies by 

metric allowed us to quantify the number of abnormal instances 

for each performance indicator, offering valuable insights for 

researchers exploring anomaly detection [23]. To evaluate the 

effectiveness of anomaly detection techniques, we applied five 

distinct methods: Percentile, Z-Score, IQR, Moving Average, and 

Isolation Forest to key performance metrics, including CPU 

temperature, usage, load, memory usage, and power. Each method 

was tested on a subset of the dataset, and the results were analyzed 

to compare detected anomalies with normal data points. 

Table.1. Comparison of anomaly counts detected by various 

techniques across key performance metrics. 

Key Per Z-Sco IQR Mov Ave Iso 

Temp 7 4 4 4 8 

Usage 7 7 7 3 7 

Load 9 4 4 6 9 

Mem 4 4 4 4 4 

Pow 9 3 3 2 7 

The Percentile Method identifies anomalies by flagging data 

points outside the 0th and 99th percentiles. In our experiments, it 

consistently detected anomalies across all metrics, showing a 

similar anomaly count for different features. Percentile-based 

methods are effective for detecting extreme values, though they 

may struggle with context-dependent anomalies [1]. The Z-Score 

Method flags data points with z-scores exceeding ±4. This method 

produced results comparable to the Percentile Method, 

particularly for CPU temperature. It is widely used in anomaly 

detection for identifying outliers in normally distributed data [3]. 

The Interquartile Range (IQR) Method, based on the 1.5 × IQR 

rule, effectively detected anomalies, especially in CPU usage. It 

is commonly used in anomaly detection tasks, such as network 

traffic analysis [2]. The Moving Average Method calculates the 

rolling mean of the data and flags anomalies when data points 

deviate by more than 3.5 standard deviations. It was particularly 

effective for detecting subtle anomalies in CPU power, often 

overlooked by other methods [7]. The Isolation Forest algorithm, 

a machine learning-based technique, effectively identifies 

complex outliers, particularly in CPU power data. It isolates 

anomalies by recursively partitioning the data, making it adept at 

handling high-dimensional datasets with intricate patterns. 

Isolation Forest outperforms simpler methods in capturing multi-

dimensional anomalies. 

4.2 VISUALIZING ANOMALIES IN THE DATASET 

A key aspect of our analysis was to identify the consistency of 

anomalies across the dataset, particularly in relation to the 

timestamp. By examining the visualizations of each performance 

metric (CPU temperature, CPU usage, CPU load, memory usage, 

and CPU power), we observed that anomalies frequently occurred 

at specific time intervals, forming a pattern consistent across 

multiple metrics [1, 2]. The anomalies, as visualized in the plots, 

were marked as distinct deviations from normal behaviour at 

certain timestamps. We observed that at certain moments, when 

one performance metric exhibited an anomaly, other metrics such 

as CPU temperature, CPU usage, and CPU load also showed 

corresponding spikes or irregularities at the same timestamp. This 

temporal consistency across multiple metrics strongly indicated 

the presence of an actual anomaly rather than random fluctuations 

or noise [7, 9]. 

 

Fig.2. CPU Temperature Plot Across Various Techniques: 

Consistent Anomaly Behavior Observed 

 

Fig.3. CPU Power Plot Across Various Techniques: Consistent 

Anomaly Behavior Observed 
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Fig.4. Memory Usage Plot Across Various Techniques: 

Consistent Anomaly Behavior Observed 

 

Fig.5. CPU Usage Plot Across Various Techniques: Consistent 

Anomaly Behavior Observed 

 

Fig.6. CPU Load Plot Across Various Techniques: Consistent 

Anomaly Behavior Observed 

 

Fig.7. Sample of the laptop performance dataset, showcasing 

various system metrics with classifications as ’0’ or ’1’ to aid in 

anomaly detection analysis. 

This observation served as the foundation for our labelling 

process. Data points corresponding to timestamps where 

anomalies were consistently observed across multiple key metrics 

were labelled as anomalies, while timestamps without significant 

deviations across these metrics were classified as” normal.” The 

alignment of anomalies across various performance metrics at the 

same timestamps enabled accurate and reliable labelling of data 

points, ensuring that the anomaly detection process remained both 

precise and meaningful [16, 20]. To further improve the reliability 

and consistency of the labelling process, the labelled anomalies 

were cross-verified with expert knowledge of typical system 

behaviour and established performance thresholds. This 

additional verification step helped reduce false positives and 

ensured that the anomalies truly represented deviations in system 

performance. By utilizing this approach, a well-structured and 

accurate dataset for anomaly detection was created, enhancing the 

effectiveness of subsequent analyses. Moreover, the consistency 

in anomaly patterns across different metrics and timestamps 

provided strong validation for the labelling strategy. This 

approach not only strengthened the dataset but also contributed to 

more reliable anomaly detection in real-world applications. 

5. CONCLUSION  

The dataset presented in this paper serves as a valuable 

resource for the continued analysis and improvement of anomaly 

detection in computing systems. By offering detailed, 

multivariate performance metrics, it provides researchers with a 

foundation to explore new methods of system monitoring, 

predictive maintenance, and performance optimization. The 

annotated anomalies, spanning key indicators such as CPU 

temperature, usage, load, and memory usage, allow for the 

development of robust detection models. As the dataset evolves, 

it can be expanded to include additional performance metrics and 

integrated with advanced machine learning techniques to further 

enhance system analysis. The ability to incorporate real-time data 

and personalization features will not only refine anomaly 

detection but also contribute to the long-term reliability and 

efficiency of computing systems, ensuring its relevance in a wide 

range of applications. 
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