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Abstract 

Electronic health records (EHRs) are inherently irregularly sampled, 

posing significant challenges for conventional time-series models. In 

this work, we introduce HealthODE—a novel framework that leverages 

neural discretized ordinary differential equations (ODEs) to learn 

robust representations from irregular health data. By integrating a 

decay-gated attention mechanism and rotary positional encoding, 

HealthODE adaptively filters irrelevant historical data while accurately 

capturing continuous dynamics. Our approach supports both 

interpolations within observed intervals and extrapolation beyond 

them, enabling zero-shot forecasting for a range of clinical tasks such 

as diagnostic prediction, drug usage estimation, and phenotype 

classification. Empirical evaluations demonstrate that HealthODE not 

only improves forecasting accuracy but also provides interpretable 

insights into patient risk trajectories, making it a promising tool for 

advanced healthcare analytics. 
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1. INTRODUCTION 

Time-series portrayal learning assumes a vital part in different 

spaces, as it works with the extraction of generalizable fleeting 

examples from huge-scope, unlabeled information, which can 

then be adjusted for assorted errands. Be that as it may, a 

significant test emerges while managing unpredictably tested time 

series, in which perceptions happen at lopsided spans. This 

abnormality presents difficulties for old-style time-series models 

that are confined to normal examination. This issue is especially 

critical in the medical services space since longitudinal electronic 

wellbeing records (EHRs) are refreshed irregularly during short-

term visits or ongoing stays. In addition, individual clinical 

chronicles frequently length a restricted period because of an 

absence of verifiable digitization, deficient protection inclusion, 

and, what’s more, divided medical services frameworks. These 

difficulties make it hard for time series models to catch the hidden 

direction elements [1].  

Tending to these difficulties requires the improvement of 

novel portrayal learning methods that can separate generalizable 

transient examples from unpredictably tested information through 

next token forecast pre-preparing. The pre-prepared model is then 

applied to estimate directions in light of the learned adaptable.  

examples, even when patient information is just noticed to some 

extent. Ongoing advances in displaying sporadically examined 

time series have been accomplished through profound learning 

structures. Be that as it may, these models miss the mark in pre-

preparing generalizable representations [2]. While time-series 

Transformer models stand out enough to be noticed, they are 

fundamentally intended for continuous information and neglect to 

represent sporadic spans between perceptions [3]. To deal with 

both customary and unpredictable time series, Timely GPT 

consolidates relative position implanting to catch positional data 

in fluctuating time holes. BiTimelyGPT broadens this by pre-

preparing bidirectional portrayals for discriminative errands. 

Regardless of these enhancements, the two models depend on an 

information-free rot, which isn’t content-mindful and, in this 

manner, can’t completely catch complex worldly conditions in 

medical care information. The key test stays to foster a viable 

portrayal-gaining approach that extricates significant examples 

from unpredictably tested data [4]. In this review, The Direction 

Generative Pre-Trained Transformer (TrajGPT) is proposed for 

irregular time-series representation learning. the exploration 

offers four significant commitments: First, it presents a Particular 

Repetitive Consideration (SRA) component with an information 

subordinate rot, empowering the model to adaptively fail to 

remember immaterial past data in view of settings. Second, by 

deciphering TrajGPT, as discretized Tributes, catches the 

consistent elements in unpredictably tested information. This 

empowers TrajGPT to perform addition and extrapolation in the 

two headings, permitting a clever time frame explicit derivation 

for precise estimating. Third, TrajGPT shows solid zero-shot 

execution across numerous assignments, including direction 

gauging, drug use forecast, and aggregate arrangement. Finally, 

TrajGPT offers interpretable wellbeing direction examination, 

empowering clinicians to adjust the direction of extrapolated 

sickness movement to hidden patient circumstances. 

2. RELATED WORK 

2.1 TIME-SERIES TRANSFORMER MODELS 

Time-series Transformer models have demonstrated strong 

performance in modeling temporal dependencies through 

attention mechanisms. The informer introduces ProbSparse self-

attention to extract key information by halving cascading layer 

input. Autoformer utilizes Autocorrelation to capture series-wise 

temporal dependencies [5]. FEDformer adopts Fourier-enhanced 

attention to capture frequency-domain relationships. PatchTST 

compresses time series into patches and forecasts all timesteps 

using a linear layer. Despite their effectiveness, these methods fail 

to account for irregular time intervals. TimelyGPT and 

BiTimelyGPT address this limitation by encoding irregular time 

gaps with relative position embedding. However, these models 

rely on data-independent decay, whereas TrajGPT introduces 

data-dependent decay to forget irrelevant information based on 

contexts adaptively. PrimeNet designs a time-sensitive 

contrastive learning and a masking-and-reconstruction task for 

irregular time-series representation learning. ContiFormer 

integrates ODEs into attention and value matrices to model 

continuous dynamics. However, it demands significantly more 

computing resources than A standard Transformer with quadratic 

complexity due to the slow process of solving ODEs [6]. In 

contrast, TrajGPT models continuous dynamics by pre-training 
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on irregularly-sampled data with efficient linear training 

complexity and constant inference complexity. 

2.2 ALGORITHMS DESIGNED FOR 

IRREGULARLYSAMPLED TIME SERIES 

Various techniques have been developed to model irregular 

temporal dependencies through specialized architectures. GRU-D 

captures temporal dependencies by applying exponential decay to 

hidden states, [7]. SeFT adopts a set function-based approach, 

where each observation is modeled individually and then pooled 

together. RAINDROP captures irregular temporal dependencies 

by representing data as separate sensor graphs. mTAND employs 

a multi-time attention mechanism to learn irregular temporal 

dependencies. In continuous-time approaches, neural ODEs use 

neural networks to model complex ODEs offer promising 

interpolation and extrapolation solutions. ODERNN further 

enhances this by updating RNN hidden states with new 

observations. HeTVAE addresses sparse input with an 

uncertainty-aware multi-time attention network and represents 

variable uncertainty through a heteroscedastic output layer. MGP-

TCN combines a multi-task Gaussian Process to manage non-

uniform sampling frequencies with temporal convolution network 

to capture temporal dependencies. However, these Methods lack 

a representation learning paradigm and often struggle to capture 

evolving dynamics in partially observed data. In contrast, the 

TrajGPT can be interpreted as discretized ODEs, allowing it to 

learn continuous dynamics via largescale pre-training. Moreover, 

TrajGPT utilizes interpolation and extrapolation techniques from 

the neural ODE family to predict accurate trajectories. 

In addition to existing approaches in irregular time-series 

modeling, several works from related fields provide 

complementary insights that can inform and inspire future 

enhancements to HealthODE. 

Cherukuri [8] presents a novel approach for denoising binary 

images using simulated annealing (SA). Although this work 

focuses on image segmentation, its use of global optimization to 

minimize a non-convex energy function parallels the challenges 

encountered in learning continuous dynamics from sparse, 

irregular data. The optimization strategies introduced in this paper 

can offer valuable perspectives on efficiently navigating complex 

solution spaces in highdimensional medical data. 

Similarly, Awasthi [9] performs a comparative analysis of 

advanced reinforcement learning algorithms—specifically DQN, 

DDQN, DDPG, and PPO—applied to the LunarLanderv2 control 

task. By examining the trade-offs between sample efficiency, 

stability, and computational overhead, this study highlights key 

design principles for sequential decisionmaking in dynamic 

environments. These insights are particularly relevant for 

forecasting health trajectories, where managing temporal 

dependencies and balancing computational complexity are 

critical. 

Furthermore, Malhotra [10] introduces the Self-Organizing 

Interaction Spaces (SOIS) framework, which is designed to 

support pervasive applications in mobile and distributed settings. 

The adaptive and decentralized architecture proposed in this work 

can be leveraged to enhance healthcare analytics, especially in 

scenarios involving real-time data from distributed mobile 

devices. This approach underlines the potential benefits of 

integrating self-organizing principles into healthcare systems to 

improve scalability and responsiveness. 

Collectively, these interdisciplinary contributions underscore 

the potential for cross-domain innovations in representation 

learning and dynamic modeling, offering promising avenues for 

future research in healthcare analytics. 

3. METHODOLOGY: A CLEARER VIEW OF 

HEALTHODE 

In HealthODE, an irregular time series is represented as x = 

{(x1,t1),(x2,t2),...,(xN,tN)}, where each sample (xn,tn) corresponds to 

a clinical observation recorded at time tn. This section details the 

architecture and key components that enable HealthODE to 

capture complex temporal dynamics in irregularly-sampled 

healthcare data. 

3.1 INPUT EMBEDDING WITH TEMPORAL 

ENCODING 

Each clinical observation xn is first projected into a 

highdimensional token embedding space. To account for the 

nonuniform time intervals between observations, HealthODE 

employs Rotary Positional Encoding (RoPE). This mechanism 

explicitly encodes the relative temporal distances between tokens 

by rotating the token embeddings according to their associated 

timestamps. Such encoding ensures that the model differentiates 

between events that occur in rapid succession and those separated 

by longer durations, preserving essential temporal context. 

3.2 SEQUENTIAL RECURRENT ATTENTION 

(SRA) LAYERS 

The token embeddings are then processed through multiple 

SRA layers, which are at the core of the HealthODE architecture. 

Each SRA layer integrates a data-dependent decay mechanism 

with standard attention operations to dynamically focus on 

relevant historical information. 

• Decay Gating:: A learnable decay vector γn is introduced to 

modulate the influence of past observations. This 

mechanism allows the model to: 

• Preserve long-term trends: For chronic conditions, the decay 

is slowed, ensuring that older but relevant information is 

retained. 

• Emphasize recent events: For acute conditions, a rapid decay 

prioritizes more recent observations. 

• Recurrent vs. Parallel Form:: Although the update above is 

defined recursively, it is mathematically equivalent to a 

parallel formulation. This equivalence allows for efficient 

computation while still handling irregular intervals robustly. 

3.2.1 Discretized Neural ODE Interpretation: 

HealthODE reinterprets the SRA layers as a discretized 

version of a continuous-time Ordinary Differential Equation 

(ODE). This perspective enables the model to perform: 

1. Interpolation: Estimating values within the observed time 

window. 

2. Extrapolation: Forecasting values beyond the observed 

window. 
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Thus, bridging traditional ODE modeling with modern 

attention mechanisms. 

3.3 INFERENCE STRATEGIES 

HealthODE employs two distinct inference strategies: 

• Auto-regressive Inference: This mode generates sequential 

predictions at fixed intervals, where each prediction is 

conditioned on the previous outputs. It follows the 

traditional transformer-style approach. 

• Time-specific Inference: Predictions are made directly at 

arbitrary time points with constant computational 

complexity. Leveraging the continuous dynamics of S(t), 

this strategy enhances forecasting accuracy, especially for 

irregularly spaced data. 

 

Fig.1. Input Embedding and Temporal Encoding: This figure 

illustrates how HealthODE embeds irregular time-series data 

into token space. It demonstrates the application of RoPE to 

input tokens, emphasizing the encoding of relative temporal 

distances that differentiate closely spaced events from those 

separated by longer intervals 

3.4 TRAJGPT AS DISCRETIZED ODES 

In this section, Theoretical connections are established 

between the proposed SRA module and ODEs. The recurrent 

form of SRA is a discretization of continuous time ODE using the 

zero-order hold (ZOH) rule. Given a first-order ODE, the 

recurrent SRA can be derived using a ZOH discretization with a 

discrete step size. 

 C = Qt, Λt = diag(1,γt).  (1) 

This ODE naturally models the continuous dynamics 

underlying irregularly sampled data, with corresponding to the 

varying time intervals between observations. Since the parameters 

(A, B, C) depend on the tth observation X(t); this continuous-time 

model becomes a neural ODE with a differentiable neural network 

f and data-dependent parameters t = (A, B, C). Consequently, a 

single-head SRA serves as a discretized ODE with datadependent 

Parameters (i.e., neural ODE). TrajGPT with multihead SRA 

operates as discretized ODEs, where each head corresponds to its 

own ODE and captures distinct dynamics.  

As illustrated in Fig.2(a), TrajGPT functions as discretized 

ODEs, enabling both interpolation and extrapolation of irregular 

timeseries data. By capturing the underlying continuous 

dynamics, TrajGPT handles irregular input through discretization 

with varying step sizes. For interpolation, the dynamics within the 

observed time frame evolve using a unit discretization step size. 

For extrapolation, the dynamics evolve forward or backward in 

time beyond the observed time frame. Additionally, TrajGPT 

estimates disease risk trajectories by computing token 

probabilities at specific time steps and changing the dynamics 

through interpolation and extrapolation.  

At inference time, two strategies for forecasting irregularly 

sampled time series are explored: auto-regressive and time-

specific inference (Fig.2(b)). Auto-regressive inference, 

commonly used by standard Transformer models, makes 

sequential predictions at equal intervals and selects the target time 

steps accordingly.  

Since TrajGPT functions as discretized ODEs, a novel time-

specific inference is introduced to predict arbitrary time steps. To 

forecast a target time point (xn,tn), TrajGPT utilizes both the target 

timestep tn and the last observation (xn,tn) to predict the 

corresponding observation xn. It calculates the target output 

representation On = QnSn, taking into account the discrete step size 

tn,n = tn and the updated state Sn = Dtn,n Sn + KnVn. 

 

Fig.2. Interpolation and Extrapolation via Discretized Neural 

ODE: This figure depicts how the discretized neural ODE model 

facilitates both interpolation within the observed timeframe and 

extrapolation beyond it. The evolution of the state vector S(t) 

under varying time steps is highlighted, showcasing the model’s 

capability to forecast future or past states based on learned 

dynamics 

3.5 COMPUTATIONAL COMPLEXITY 

TrajGPT, with its efficient SRA mechanics,m achieves linear 

training complexity of O(N) and constant inference complexity of 

O(1) with respect to sequence length N. In contrast, standard 

Transformer models incur quadratic training complexity of O(N2) 

and linear inference complexity of O(N) (Katharopoulos et al., 

2020). This computational bottleneck arises from the vanilla self-

attention mechanism, where Attention(X) = Softmax(QKT)V, 

resulting in a training complexity of O(N2d). When dealing with 

long sequences, the quadratic term O(N2) becomes a bottleneck 

for standard Transformer models. 

As a variant of linear attention, the SRA mechanism in 

TrajGPT overcomes this quadratic bottleneck of the 

taTransformerformer, achieving linear training complexity for 

long sequences. By recursively updating over N tokens, the total 

complexity becomes O(Nd2). For inference, TrajGPT proposes 

auto-regressive and time-specific methods.  

The auto-regressive inference sequentially generates 

sequences with equally spaced time intervals like the GPT model, 

incurring linear complexity of O(N). In contrast, timespecific 

inference directly predicts the target time point with a constant 

complexity of O(1). Thus, TrajGPT achieves O(N) training 

complexity and O(1) inference complexity, making it 

computationally efficient for long sequences. 
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4. EXPERIMENTAL DESIGN 

4.1 DATASET AND PRE-PROCESSING 

Population Health Record (PopHR) data set has monstrous 

measures of longitudinal case information from the commonplace 

government well-being backup plan in Quebec, Canada, on well-

being administration use. Altogether, there are around 1.3 million 

members in the PopHR data set, addressing a haphazardly 

examined 25% of the populace in the metropolitan area of 

Montreal is somewhere in the range of 1998 and 2014. 

Associate participation is kept up progressively by eliminating 

perished occupants and effectively selecting babies and workers. 

Sporadically inspected time series were extracted from the 

PopHR dataset. Specifically, ICD-9 diagnostic codes were 

converted into integer-level aggregate codes (PheCodes) using 

the PheWAS list. A total of 194 novel PheCodes were selected, 

each with more than 50,000 events. Patients with fewer than 50 

PheCode records were excluded, resulting in a final dataset of 

489,000 patients, with an average of 112 records per person. The 

dataset was then divided into preparing (80%), approval (10%), 

and testing (10%) sets. The eICU Cooperative Exploration Data 

set is a multi-focus emergency unit information base containing 

north of 200,000 affirmations from ICUs observed by eICU 

programs in the US. It offers de-recognized EHR information, 

incorporating patient socioeconomics, judgments, medicines, and 

medications. To extricate sporadically tested time series, ICD-9 

codes were converted to 288 numeric-level PheCodes. Drugs with 

similar characteristics but varying names and dosages were 

grouped, resulting in 228 novel medications. Representation 

learning was performed at a 15-minute interval for clinical events 

(diagnosis and medication). This brought about a last dataset of 

139,367 patients, with a normal of 19 medications, with 3 ICD 

codes for each tolerance. 

4.2 POPHR EXPERIMENT DESIGN 

Forecast irregular diagnostic codes The long-term forecasting 

task was evaluated using a look-up window of 50-time points 

(e.g., diagnosis codes) to predict the remaining codes in the 

forecasting windows. Model performance was measured using the 

top-K recall with K = (5, 10, 15). This metric mimics the behavior 

of doctors conducting differential diagnoses, where they list the 

most probable diagnoses based on a patient Choi et al. (2016) 

[11]. Since next-token prediction is inherently forecasting, 

TrajGPT enables zero-shot forecasting without requiring fine-

tuning. Drug usage prediction In this application, The task 

involved predicting whether each diabetic patient started insulin 

treatment within 6 months of their initial diabetes diagnosis. 

Following the pre-processing from previous work (Song et al., 

2021), 78,712 diabetic patients with PheCode 250 were extracted, 

of which 11,433 patients were labeled as positive. Due to class 

imbalance, the area under the precision-recall curve (AUPRC) 

was used as the evaluation metric. To avoid information leakage, 

sequence representations were truncated at the first diabetes 

record. To assess generalizability, zero-shot classification, few-

shot classification with 5 samples, and fine-tuning on the full 

dataset were performed. 

For phenotype classification, the PopHR database provides 

rule-based labels for congestive heart failure (CHF), with 3.2% of 

the total population labeled as positive. Given the class imbalance, 

the AUPRC metric was used to evaluate performance on the rare 

positive class. To assess the generalizability of the pre-trained 

TrajGPT, zero-shot classification, few-shot classification with 

five samples, and fine-tuning on the entire dataset were also 

conducted. 

4.3 EICU EXPERIMENT DESIGN 

Forecast irregular diagnoses and drugs. The forecasting task 

was conducted using a 10-time point look-up window to predict 

the remaining codes in the forecasting windows. Forecasting 

performance was assessed using the top-K recall with K = (10, 

20). To detect sepsis early, a 72-hour observation period 

following ICU admission was defined. Patients without sepsis 

during the first 8 hours were identified, and sepsis onset was 

predicted in the remaining windows. This task was performed 

using both zero-shot learning and fine-tuning on the full dataset. 

5. BASELINES 

For the PopHR dataset, the model was compared against 

several time-series transformer baselines. including TimelyGPT, 

BiTimelyGPT, Informer, Fedformer, AutoFormer, PatchTST, 

TimesNet, ContiFormer, PrimeNet [12], and Mamba. 

BiTimelyGPT and PatchTST are encoder-only models that 

require fine-tuning for forecasting tasks, while other Transformer 

models with decoders can forecast without additional fine-tuning. 

Models designed for irregularly sampled time series were also 

evaluated, including mTAND, GRU-D, RAINDROP, SeFT, 

ODE-RNN, HeTVAE, and MGP-TCN. For the eICU dataset, 

TrajGPT was compared. against efficient models from Section 

5.2, including TimelyGPT, PatchTST, TimesNet, ContiFormer, 

PrimeNet, Mamba-2, MTand, and SeFT. Since these models do 

not have a pre-training method, they were trained from scratch on 

the training set. Previous works were followed to set Transformer 

parameters to approximately 7.5 million (Table.5).  

 

Fig.3. (a) Visualization of token embeddings across 15 disease 

categories, where token nodes are colored and clustered by 

categories 

Transformer Pre-training paradigm with a cross-entropy loss, 

TrajGPT employs a next-token prediction task to pre-train 

generalizable temporal representations from unlabeled data. 

Given a sequence with a [SOS] token, TrajGPT predicts 

subsequent tokens by shifting the sequence to the right. The 

output representation of each token is fed into a linear layer for 

next-token prediction. For other models without an established 

pre-training paradigm, A masking-based method was employed 

by randomly masking 40% timesteps with zeros. All Transformer 
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models underwent 20 epochs of pre-training with crossentropy 

loss. When fine-tuning was applicable, five epochs of end-to-end 

fine-tuning were performed on the entire model. 

6. RESULTS 

6.1 QUALITATIVE ANALYSIS OF EMBEDDINGS 

In this section, A qualitative analysis of the token embeddings 

and sequence representations learned by TrajGPT on the PopHR 

database was provided (Fig.3). Uniform Manifold Approximation 

and Projection (UMAP) was applied to visualize the global token 

embedding, with nodes colored and clustered by disease 

categories. The results reveal 12 clearly separated clusters. Some 

nodes are projected into other categories but still reflect 

meaningful clinical relationships; for instance, the mental 

disorders cluster (in green color) includes a black dot representing 

adverse drug events and drug allergies, implying a high risk of 

opioid usage among the psychiatric group. Related disease 

categories with clinical relevance tend to cluster near each other. 

For example, mental disorders are closely clustered with 

neurological diseases, and circulatory diseases are adjacent to 

endocrine/metabolic diseases. The projected head-specific decay 

vectors wh are visualized using UMAP techniques. It shows that 

the eight decay vectors are projected into distinct 2-D vectors, 

indicating that they capture different patterns. In Fig.3(b), The 

sequence representations are visualized to demonstrate the ability 

to perform zero-shot classification of initial insulin usage among 

diabetic patients. To prevent information leakage, the sequence 

representations were truncated at the first diabetes record. These 

sequence representations were projected onto the same scale as 

the token embeddings in Fig.3(a), allowing for direct comparison 

with the disease clusters. Patients taking future insulin treatment 

have embeddings closely aligned with the endocrine/metabolic 

cluster, indicating a strong association with diabetes-related 

conditions. In contrast, non-insulin patients are dispersed across 

various clusters, suggesting less severe diabetes histories. The 

clear separation between these groups highlights TrajGPT’s 

ability to perform zero-shot classification, showcasing the 

generalizability of its learned representations. 

6.2 QUANTITATIVE RESULTS ON POPHR 

DATASET 

TrajGPT with time-specific inference achieves the highest 

recall at K = 10 and K = 15, with scores of 71.7% and 84.1%, 

respectively (Table.1). At K = 5, TrajGPT achieves the 

secondhighest recall with 57.4%. Notably, time-specific inference 

outperforms the auto-regressive inference approach, 

demonstrating its effectiveness in forecasting based on the learned 

continuous dynamics. These results highlight the strength in pre-

training underlying dynamics from sparse and irregular time-

series data, facilitating accurate trajectory forecasting over 

irregular time intervals. The distributions of top 10 recall across 

three forecast windows are then examined, comparing the two 

inference methods of TrajGPT as well as TimelyGPT, PatchTST, 

and mTAND (Fig.6). TrajGPT’s time-specific inference 

consistently outperforms auto-regressive inference as the 

forecasting window increases, as it accounts for evolving states 

and query time-steps over irregular intervals. As expected, all 

models experience a performance decline as the forecast window 

increases, reflecting the increased uncertainty in long-term 

trajectory prediction. Despite this, TrajGPT achieves superior and 

more sTable.performance within the first 100 steps. In 

comparison, PatchTST shows a drastic decline as the window size 

increases, reflecting its difficulty with extrapolation. Therefore, 

TrajGPT excels in forecasting health trajectories through its time-

specific inference. Two classification tasks—insulin usage 

prediction is evaluated, and CHF phenotype classification— 

under three settings: zeroshot learning, few-shot learning with S 

= 5 samples, and fine-tuning on the entire dataset. Notably, non-

transformer models designed for irregularly sampled time series 

(i.e., the last five methods in Table. 1) were trained from scratch. 

The results are summarized in Table. 1. For classification tasks, 

TrajGPT achieves the highest zero-shot results, with 67.2% for 

insulin and 72.8% for CHF. This success can be attributed to 

TrajGPT’s ability to learn distinct clusters of sequence 

representations, as discussed in Section 5.1. For 5shot 

classification, TrajGPT achieves the second-best performance in 

both tasks. For fine-tuning, it obtains the second-best performance 

of 83.9% in insulin prediction, only 0.3% behind the best-

performing BiTimelyGPT. A comparison was also made between 

TrajGPT and algorithms specifically designed for irregularly 

sampled time series. These methods generally perform worse in 

insulin usage prediction, likely due to their difficulty in capturing 

meaningful temporal dependencies from truncated sequences. 

However, stand outperforms all models in the CHF task, 

achieving the best result at 85.4%. 

6.3 TRAJECTORY ANALYSIS 

This analysis aimed to demonstrate effectiveness in trajectory 

modeling and provide insights into its classification performance. 

Case studies were conducted on two patients: one diagnosed with 

diabetes and the other with CHF. The observed and predicted 

disease trajectories for both patients were visualized, along with 

the estimated risk trajectories over their lifetimes. As discussed in 

Section 3.2, risks were interpolated within the observed 

timeframe and extrapolated beyond it in both directions, with risk 

computed as the token probability at each timestep. Risk growth 

was calculated by comparing each timestep to the previous one, 

identifying ages with high-risk growth, as well as the associated 

phenotypes. By comparing disease and risk trajectories, 

phenotype progression, disease comorbidity, and long-term risk 

development were evaluated. In Fig.4(a), TrajGPT with time-

specific inference achieves a top-10 recall of 90.1% for this 

diabetic patient. TrajGPT accurately predicts most diseases in the 

endocrine/metabolic and circulatory systems. Although this 

patient has no prior diabetes diagnosis in the observed data, 

TrajGPT successfully forecasts diabetes onset by identifying 

related metabolic and circulatory symptoms. The Fig.4(b) 

illustrates the predicted risk trajectory for this patient, indicating 

a gradual increase in diabetes risk with age. Specific phenotypes 

that contribute to the noticeable high-risk growth are highlighted 

between ages 59 and 62, including chronic IHD, hypothyroidism, 

obesity, and arrhythmia [13]. These conditions are common 

comorbidities of diabetes, substantially elevating the likelihood of 

diabetes onset over time. In Fig.4(c), The disease trajectory of a 

CHF patient was visualized, for whom TrajGPT produced a top-

10 recall of 84.7%. TrajGPT accurately predicted a broad range 

of circulatory, respiratory, and endocrine/metabolic diseases. 

Despite the absence of prior CHF diagnosis, TrajGPT 
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successfully predicts the onset of CHF based on a series of related 

circulatory conditions Correale et al. (2020). In Fig.4.d, the 

expected risk trajectory reveals two spikes in risk growth at ages 

65 and 74, corresponding to successive occurrences of circulatory 

diseases. This analysis demonstrates TrTrajGPT’ ability to 

forecast unseen phenotypes based on disease comorbidity and the 

risk with age. As a result, TrTrajGPT’ ability to model health 

trajectories and capture disease progression enhances its 

classification performance. The ability to forecast diagnostic 

codes highlights the potential of Transformer models for health 

trajectory analysis. These codes can serve a broad range of 

administrative purposes, such as estimating the diagnostic related 

group (DRG) for inpatients to improve the efficiency and quality 

of inpatient care. They also hold significant potential for 

informing clinical care, including directing the need for 

preventive care and identifying potential complications. 

6.4 QUANTITATIVE RESULTS ON EICU 

DATASET 

For the eICU datasets, TrajGPT was evaluated on irregular 

clinical event forecasting (diagnoses and drugs) and early 

detection of sepsis, with the results summarized in Table.2. Note 

that the recall values for the joint prediction of diagnoses and 

drugs are lower due to the larger hypothesis space for this task. 

Despite the increased complexity compared to predicting 

diagnoses alone, TrajGPT with time-specific inference achieved 

superior performance over baseline models, resulting in a top-10 

recall of 57.8% and a top-20 recall of 69.3%. This superior 

performance can be attributed to the effectiveness of time-specific 

inference, which improves top-10 and top-20 recall rates by 3.7% 

and metrics are reported as average (standard error) from a 

bootstrap evaluation of variance. the bold and underline indicate 

the best and second best results, respectively. s indicates the 

number of few-shot examples. 

The representation learning methods designed specifically for 

irregularly sampled time series demonstrated better overall 

performance. Additionally, ODE-RNN achieves the second best 

performance with a top-20 recall of 67.8%. These findings 

highlight that both Time-specific inference and ODE-RNN 

leverage the strengths of modeling underlying dynamics to 

enhance forecasting accuracy. For the sepsis prediction task, 

TrajGPT outperforms all baselines in the zero-shot setting, 

achieving an AUPRC of 45.1%. While MTand performs best 

when trained from scratch; its reliance on a bespoke shallow 

model targeting a single outcome limits its scalability and 

applicability in clinical settings. In summary, TrajGPT leverages 

pre-trained generalizable patterns to enable zero-shot learning, 

effectively detecting early sepsis without additional training. 

Table.1. Quantitative results on the diagnosis forecasting, insulin 

usage, and CHF classification performance on the POPHR 

dataset  

Methods / 

Tasks (%) 
 

Forecasti

ng 
  

Diabete

s-

Insulin 

  
CH

F 
 

(lr)2-4 

(lr)5-7 

(lr)8-10 

K = 

5 
10 15 

S = 

0 
5 all 

S = 

0 
5 all 

TrajGPT 

(Time-

specific) 

57.

4 

(3.2

) 

71.7 

(2.6) 

84.

1 

(2.4

) 

67.

2 

(3.1

) 

70.2 

(3.0) 

75.

5 

(2.6

) 

72.

8 

(2.4

) 

75.

9 

(2.1

) 

83.

9 

(2.0

) 

TrajGPT 

(Auto-

regressive) 

53.

3 

(3.9

) 

65.5 

(3.4) 

77.

2 

(2.7

) 

— — — — — — 

TimelyGPT 

58.

2 

(3.7

) 

70.3 

(3.1) 

82.

1 

(2.5

) 

58.

2 

(2.8

) 

64.4 

(2.5) 

70.

7 

(2.6

) 

66.

9 

(2.3

) 

71.

0 

(2.2

) 

81.

2 

(2.0

) 

BiTimelyG

PT 

48.

2 

(3.3

) 

63.3 

(3.2) 

70.

5 

(2.8

) 

65.

3 

(3.1

) 

70.8 

(2.9) 

75.

8 

(3.0

) 

70.

4 

(2.4

) 

74.

5 

(2.3

) 

83.

8 

(2.1

) 

Informer 

46.

4 

(2.9

) 

60.1 

(2.8) 

71.

2 

(2.6

) 

62.

1 

(4.6

) 

66.2 

(4.5) 

71.

5 

(3.8

) 

62.

9 

(4.2

) 

67.

4 

(3.9

) 

80.

8 

(3.5

) 

Autoformer 

42.

9 

(2.9

) 

57.4 

(2.7) 

68.

6 

(2.4

) 

63.

5 

(3.8

) 

66.8 

(3.6) 

72.

7 

(3.4

) 

65.

3 

(3.5

) 

69.

6 

(3.7

) 

81.

6 

(3.2

) 

Fedformer 

43.

3 

(2.7

) 

58.3 

(2.5) 

69.

6 

(2.4

) 

64.

2 

(4.3

) 

68.4 

(4.2) 

73.

1 

(3.8

) 

68.

2 

(3.8

) 

69.

8 

(3.5

) 

81.

9 

(2.9

) 

PatchTST 

48.

2 

(2.7

) 

65.5 

(2.4) 

73.

3 

(2.2

) 

66.

8 

(2.6

) 

69.7 

(2.7) 

75.

1 

(2.4

) 

72.

2 

(2.3

) 

76.

3 

(1.9

) 

84.

2 

(2.1

) 

TimesNet 

46.

5 

(3.7

) 

64.3 

(3.0) 

71.

5 

(2.5

) 

64.

2 

(3.2

) 

67.9 

(2.8) 

72.

8 

(2.9

) 

67.

8 

(3.1

) 

72.

5 

(3.0

) 

82.

6 

(2.8

) 

ContiForm

er 

52.

8 

(3.1

) 

67.2 

(2.8) 

76.

9 

(2.5

) 

63.

5 

(3.3

) 

68.0 

(3.1) 

75.

0 

(2.9

) 

68.

4 

(2.4

) 

74.

9 

(2.2

) 

83.

1 

(2.3

) 

PrimeNet 

52.

5 

(3.2

) 

69.7 

(2.8) 

81.

8 

(2.3

) 

65.

6 

(3.0

) 

69.5 

(2.9) 

73.

8 

(2.7

) 

71.

5 

(2.7

) 

75.

5 

(2.9

) 

84.

0 

(2.4

) 

Mamba-1 

46.

5 

(3.6

) 

62.4 

(3.1) 

73.

6 

(2.6

) 

61.

5 

(3.6

) 

67.4 

(3.2) 

72.

5 

(3.0

) 

65.

2 

(3.1

) 

70.

1 

(2.9

) 

81.

4 

(2.4

) 

Mamba-2 

51.

4 

(3.2

) 

69.8 

(2.9) 

80.

7 

(2.5

) 

64.

6 

(3.1

) 

69.9 

(2.8) 

74.

8 

(2.4

) 

69.

6 

(2.7

) 

73.

9 

(2.8

) 

83.

4 

(2.3

) 

MTand 

52.

6 

(2.8

) 

70.2 

(2.5) 

83.

7 

(1.9

) 

— — 

74.

6 

(3.1

) 

— — 

85.

4 

(2.5

) 
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GRU-D 

54.

2 

(4.0

) 

69.5 

(3.4) 

80.

5 

(3.1

) 

— — 

72.

1 

(3.2

) 

— — 

79.

9 

(2.7

) 

RAINDRO

P 

46.

5 

(2.9

) 

67.2 

(2.5) 

72.

2 

(2.2

) 

— — 

70.

5 

(2.8

) 

— — 

82.

4 

(2.4

) 

SeFT 

49.

3 

(2.6

) 

68.1 

(2.2) 

79.

4 

(1.7

) 

— — 

71.

7 

(2.6

) 

— — 

83.

4 

(2.3

) 

ODE-RNN 

54.

7 

(4.2

) 

70.6 

(3.5) 

78.

6 

(2.8

) 

— — 

73.

5 

(3.6

) 

— — 

82.

9 

(3.0

) 

HeTVAE 

51.

1 

(3.9

) 

70.1 

(3.4) 

83.

2 

(3.2

) 

— — 

71.

4 

(3.6

) 

— — 

81.

6 

(3.2

) 

MGP-TCN 

43.

5 

(3.5

) 

57.2 

(3.1) 

69.

1 

(2.9

) 

— — 

73.

9 

(3.6

) 

— — 

82.

4 

(3.5

) 

 

Fig.4. Inferred disease trajectories with look-up and forecast 

windows. Matched predictions are shown as solid circles, with 

larger circles for correctly predicted diabetes or CHF 

Table.2. Evaluation of TRAJGPT and baselines on the EICU 

dataset for event forecasting and sepsis prediction. metrics are 

reported as average (standard error) from a bootstrap evaluation 

of variance. bold and underlined values indicate the best and 

second-best results, respectively 

Methods/Tasks (%) Forecasting Sepsis 

(lr)2-3 (lr)4-5 K = 10 K = 20 S = 0 All 

TrajGPT 

(Time-specific) 
57.8 (2.9) 69.3 (2.1) 45.1 (2.7) 51.3 (2.4) 

TrajGPT  

(Auto regressive) 
54.1 (3.2) 64.9 (2.3) - - 

TimelyGPT 56.9 (3.2) 67.1 (2.4) 42.0 (2.5) 48.5 (2.2) 

PatchTST 55.2 (2.7) 66.0 (1.7) 44.5 (2.2) 51.8 (1.8) 

TimesNet 52.9 (3.1) 60.3 (2.3) 41.2 (3.1) 47.5 (2.6) 

ContiFormer 57.1 (2.2) 66.8 (2.2) 41.7 (2.5) 50.6 (2.8) 

PrimeNet 53.4 (2.3) 67.5 (2.0) 44.0 (2.3) 51.2 (1.9) 

Mamba-2 55.7 (2.8) 65.2 (2.3) 43.6 (2.8) 49.5 (2.3) 

MTand 53.9 (2.4) 67.4 (1.6) - 52.5 (2.1) 

ODE-RNN 55.7 (3.4) 67.8 (2.8) - 49.2 (2.9) 

Table.3. Ablation results of TRAJGPT by selectively removing 

components and comparing inference methods. performance is 

evaluated on the forecasting task with the top 10 recall 

Model Variants 

Time- 

specific 

Auto  

Regressive 

Inference Inference 

TrajGPT 71.7 65.5 

w/o decay gating (i.e., fixed γ) 70.3 64.0 

w/o RoPE (i.e., absolute PE) 67.8 63.2 

w/o linear attention (i.e., GPT-2) - 61.2 

TrajGPT (without Pre-training) 67.1 ? 

6.5 ABLATION STUDY 

To evaluate the contributions of key components in TrajGPT, 

Ablation studies were performed by selectively removing 

elements such as decay gating, RoPE, and the linear attention 

module. The time-specific inference and auto-regressive 

inference were compared under different ablation setups. Notably, 

removing all components results in a vanilla GPT-2, which is 

limited to performing only auto-regressive inference. The ablation 

studies were assessed on the forecasting task using the top-10 

recall metric. As shown in Table.3, removing the data dependent 

decay and RoPE results in performance declines of 1.4% and 

2.5%, respectively. This highlights the critical role of these 

modules in handling irregular time intervals by prioritizing recent 

data while attenuating the influence of distant ones. Replacing 

time-specific inference with auto-regressive inference leads to 

performance drops ranging from 4.6% to 6.2%, with the most 

significant drop in TrajGPT. Furthermore, vanilla GPT-2 with 

auto-regressive inference produces the lowest performance, 

falling behind TrajGPT with time-specific inference by 10.5%. 

Time-specific inference uses varied time intervals for a single 

inference, reducing both computational steps and error 

accumulation for better performance. 

7. CONCLUSION AND FUTURE WORK 

The ongoing worldview in clinical practice depends on 

custom-tailored shallow models focusing on single results, 

featuring the requirement for models equipped for anticipating 

assorted patient results with insignificant or no refinement. 

Growing such models for medical services needs to represent the 

unpredicTable.examining of clinical records, as inappropriate 

displaying can prompt personnel derivations. the exploration 

proposes an original engineering, TrajGPT, intended for sporadic 

timeseries portrayal learning and examination. To accomplish 

this, TrajGPT presents an SRA component with an information 

subordinate rot, permitting the model to fail to remember 

unimportant past specifically data in light of settings. Deciphering 

TrajGPT as discretized Tributes really catches the constant 

elements of fundamental sporadically tested time series, 

empowering both introduction and extrapolation. For the 

determining task, TrajGPT gives a powerful time-explicit 
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derivation by advancing the elements as indicated by differing 

periods. TrajGPT exhibits solid zeroshot execution across various 

assignments, including conclusion anticipating, drug use 

expectation, and aggregate arrangement. TrajGPT additionally 

gives interpreTable.direction examination, helping clinicians 

understand the extrapolated infection movement alongside risk 

development. Additionally, to approve generalizability, the work 

focuses on irregularly sampled time series with discrete data (e.g., 

diagnoses and medications). It plans to extend it to continuous 

multivariate time series, such as ICU measurements. Future 

research will also explore representation learning and trajectory 

analysis on out-of-distribution data. 
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