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Abstract 

This research presents an advanced multi-criteria optimisation strategy 

to address the complex challenges associated with many-objective 

optimal power flow (MOOPF). This study presents a hybrid algorithm 

that combines the Multiobjective Artificial Bee Colony (MOABC) 

algorithm with the Non-dominated Sorting Genetic Algorithm II 

(NSGA-II), optimising the balance between exploration and 

exploitation in the search space. The hybrid MOABC-NSGAII 

algorithm is rigorously evaluated using the IEEE CEC 2023 

benchmark test instances, showcasing its robustness, efficiency, and 

ability to address complex optimisation challenges. Subsequent to the 

comprehensive benchmarking, the algorithm is implemented on the 

IEEE 118 bus system, to address complex real-time optimisation 

scenarios. This study aims to concurrently minimise the fuel costs of 

thermal generators, active power losses, and deviations in voltage 

magnitude. The research seeks to improve the economic efficiency, 

reliability, and environmental sustainability of the power system 

through the optimisation of three critical parameters. The findings 

from IEEE CEC benchmark test and MOOPF IEEE 118 bus system 

case study analysis confirm the effectiveness of the proposed hybrid 

algorithm, demonstrating notable enhancements in attaining a 

balanced and optimised power system operation. This investigation 

highlights the effectiveness of hybrid MOABC-NSGAII in addressing 

many-objective tasks with statistical validation of performance metrics 

proves its applications in large-scale power system management. 
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1. INTRODUCTION 

Recently, the operation, control, and management of power 

systems have become more complicated and difficult. The system 

severity value should be minimized to improve power system 

security and to avoid line overloading, bus voltage limit 

violations, and finally, line outage conditions. The transmission 

of bulk power and the difference in the loading pattern from the 

originally planned pattern affect the complexity of the power 

monitoring system. Hence, to secure and stabilize the operation of 

a power system, optimal power flow (OPF) performs a crucial 

role. Optimization of the considered objective functions, such as 

generation cost, transmission loss, and severity value 

minimization, is the first target of the OPF problem. Recently, 

many heuristic optimization techniques have been proposed to 

solve the problems in power systems, such as the cost of power 

generation, transmission power loss, and severity value 

minimization. The operation, control, and management of power 

systems have recently grown more complex and challenging.  

Traditional distribution grids, which are designed for passive 

operation characterised by a radial topology and unidirectional 

power flows towards the transformer, lack the capacity to 

accommodate substantial levels of distributed generation (DG). 

To address the anticipated increase in demand, it is crucial to 

implement infrastructure upgrades and adopt new technologies 

for monitoring and regulation. Enhancing investments in existing 

grid infrastructure is essential for transitioning to future grid 

models capable of integrating new renewable energy sources 

(RES) and increased loads. The optimal power flow (OPF) 

problem is essential for informing energy distribution companies 

regarding optimal investment strategies in this challenging 

context. Real-time energy market regulation necessitates 

constraints that impact the attainment of optimal load flow results. 

The primary objective of the OPF problem is the optimisation of 

objective functions, including generation cost, gearbox loss, and 

voltage profile enhancement. Heuristic optimisation techniques 

have been extensively proposed to tackle challenges associated 

with power generation costs, transmission losses, and the 

minimisation of voltage deviation. 

This research presents an advanced multi-criteria optimisation 

strategy aimed at addressing the complexities associated with 

many-objective optimal power flow (MOOPF). A hybrid 

algorithm is developed that integrates the strengths of the 

Multiobjective Artificial Bee Colony (MOABC) algorithm with 

the Non-dominated Sorting Genetic Algorithm II (NSGA-II). The 

hybrid MOABC-NSGAII algorithm achieves an effective balance 

between exploration and exploitation in the search space. The 

method undergoes thorough evaluation using the IEEE CEC 2023 

benchmark test instances, showcasing its robustness, efficiency, 

and ability to address complex optimisation challenges. The 

algorithm is applied to the IEEE 118 bus system, a large-scale 

power system, to optimise and minimise three key objectives: fuel 

cost of thermal generators, active power loss, and voltage 

magnitude deviation. The findings demonstrate notable 

enhancements in power system operation, confirming the efficacy 

of the proposed method for addressing complex, multi-objective 

optimisation challenges in power systems. 

This paper examines classical and contemporary methods, 

including probabilistic and metaheuristic approaches, with a 

focused analysis on applications related to grid topology. The 

non-dominated sorting hybrid multi-objective artificial bee 

colony (NSHMABC) algorithm, which integrates NSGA-II and 

ABC algorithms, is utilised for addressing single and multi-

objective optimisation problems, improving voltage profiles 

through the assessment of voltage deviation. Solutions from the 

Pareto set are chosen based on user preferences through a fuzzy 

decision-making mechanism. The proposed method was 

evaluated using the three-objective IEEE 118 bus standard test 

system. The results obtained were compared with those in existing 

literature, highlighting the superiority and practical applicability 

of the proposed approach. 



ABHISHEK BAJIRAO KATKAR AND HIMMAT TUKARAM JADHAV: ADVANCED MULTI-CRITERIA OPTIMIZATION STRATEGY FOR TACKLING COMPLEX MANY-OBJECTIVE  

                                                   OPTIMAL POWER FLOW CHALLENGES 

778 

2. LITERATURE REVIEW AND RESEARCH 

GAP 

Several metaheuristic algorithms, including the hybrid cuckoo 

search algorithm, have been studied to address convergence [2]. 

The firefly algorithm was used to analyse the OPF solution’s 

unoptimised cost, loss, and emission objective functions [3]. 

Power system security was improved with a multi-objective 

multi-population ant colony algorithm [4]. The OPF problem was 

solved with a dynamic population-based ABC algorithm. The 

results were compared to NSGA-II and multi-objective ABC [5].  

The linear OPF method optimised generator dispatch by 

linearising AC load flow equations. The LOPF method is seven 

times faster than existing methods [6]. TLBO is used to solve 

multi-objective OPF problems in this article. The proposed 

method was tested with 9- and 26-bus systems. To optimise power 

system issues, cost, power loss, and voltage deviation were 

minimised. The results were compared to a mixed-integer PSO 

algorithm [7]. The fruit fly algorithm’s convergence for 

engineering optimisation problems is lower than the ABC 

algorithm [8]. Using knowledge, a MOFOA could reduce cost and 

make span. The non-dominated sorting method optimises multi-

objective problems [9]. The enhanced fruit fly method for 

engineering design problems was compared to GA, PSO, and 

DSLC-FOA [10]. A reproduction operator and two-archive 

concept improved the basic MGWO. This approach was used to 

solve the multi-objective reactive power dispatch problem [11]. 

This hybrid multi-objective genetic algorithm reduced optimal 

power flow calculation computational cost [12]. The optimal 

reactive dispatch problem was solved using the artificial bee 

colony with firefly (ABCFF) algorithm [13], and multi-objective 

optimal power flow (OPF) problems were solved using the novel 

quasi-oppositional modified Jaya (QOMJaya) algorithm [14]. 

Optimal power flow (OPF) problems are solved using the sine–

cosine algorithm [15], while multi-objective optimisation 

problems are solved using the spotted hyena optimiser [16]. 

Firefly was introduced to solve optimisation problems [17]. The 

optimal power flow (OPF) problem was solved using moth swarm 

[18]. To minimise objective functions, convexified multi-

objective models for optimal power flow were used [19]. Two test 

systems assessed the tree seed algorithm’s OPF performance [20]. 

A heuristic Fuzzy Adaptive Heterogeneous Comprehensive-

Learning Particle Swarm Optimisation algorithm was used to find 

optimal reactive power dispatch solutions [21], while Shuffled 

Frog Leaping was used to solve the OPF problem with FACTS 

controllers [22]. Authors have suggested PSO, ABC, and NSGA-

II for multi-objective optimisation in various applications [23–

28]. The single-objective optimisation problem was solved using 

social spider optimisation [29]. The PSO algorithm solved OPF 

problems with and without FACTS controllers [30]. In the current 

study, function severity under abnormal conditions, including line 

outages, was not considered. The proposed algorithm was 

improved by hybridising the selected algorithms. This paper 

introduces a hybrid NSGAII-based artificial bee colony 

(NSHMOABC) objective parameter optimisation algorithm. 

Historically, weighted sum and constraint methods solved multi-

objective optimisation problems. This study proposes 

NSHMOABC, a non-dominated sorting hybrid fruit fly-based 

artificial bee colony algorithm. Standard test functions and the 

IEEE 118 bus system were tested with the proposed algorithm.  

In this paper, section 4 describes the proposed Hybrid ABC-

NSGA II algorithm, Section 4 IEEE CEC 2023 benchmark suite 

test function, section 5 describes the MOOPF 118 bus system case 

study, and section 6 presents results and analysis for proposed 

algorithm along statistical validation using performance metrics 

3. NON-DOMINATED SORTING MULTI-

OBJECTIVE ARTIFICIAL BEE COLONY 

ALGORITHM 

3.1 MULTI-OBJECTIVE ARTIFICIAL BEE 

COLONY ALGORITHM: 

The Multi-objective Artificial Bee Colony (MOABC) 

algorithm is derived from the foraging behaviour of honeybees. 

This approach effectively addresses complex problems 

characterised by multiple conflicting objectives, rendering it 

suitable for real-world applications that necessitate the balancing 

of criteria. This article outlines the MOABC algorithm, detailing 

its components and applications.:  

• Foraging Behavior: Honeybees find food and tell other 

bees about it, which inspired the MOABC algorithm. This 

collective behaviour helps bees find the best food sources. 

This principle helps the algorithm exploit search space in 

optimisation problems. 

• Swarm Intelligence: Decentralised, self-organised systems 

behave like swarm intelligence. All MOABC bees are 

potential optimisation solutions. The swarm shares 

information and adjusts positions based on individual and 

collective experiences to find the best solutions.  

3.2 KEY COMPONENTS 

1. Initialization: A bee population is randomly initialised to 

start the algorithm. Each bee represents an objective-

valued candidate solution. This initial population is 

distributed across the search space to explore all possible 

solutions. 

2. Employed Bees Phase: Each employed bee searches its 

neighbourhood for a better solution in this phase. This is 

like a bee looking for better food nearby. The bee moves 

to the new position if the new solution is better. 

3. Onlooker Bees Phase: Onlooker bees use employed bees’ 

information to find food. The selection is probabilistic, 

with better solutions having a better chance. This process 

mimics how natural bees choose the best food sources 

based on peer feedback. 

4. Scout Bees Phase: Scout bees are employed bees that fail 

to find a better solution after a certain number of trials. 

Scout bees randomly search for new solutions. This phase 

keeps the algorithm out of local optima and ensures global 

search. 

5. Solution Update: Employed, onlooker, and scout bees 

share and update their best solutions. We keep going until 

we reach a stopping point, like a maximum number of 

iterations or a good solution quality. 
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3.3 FEATURES OF THE MULTI-OBJECTIVE 

ARTIFICIAL BEE COLONY (MOABC) 

ALGORITHM 

Swarm intelligence and honey bee optimisation are used by 

the Multi-objective Artificial Bee Colony (MOABC) algorithm to 

efficiently navigate the search space, balancing conflicting 

objectives and maintaining diversity through its phased approach. 

It adapts to different problem landscapes, ensuring robustness and 

flexibility across domains and fast convergence to optimal or 

near-optimal solutions. However, parameter sensitivity, 

scalability issues in large or high-dimensional search spaces, and 

diversity-related computational costs plague the MOABC 

algorithm. The quality of the initial population, complexity in 

balancing exploration and exploitation, and need for extensive 

customisation for specific applications also affect its 

performance. Despite these drawbacks, MOABC can be used for 

multi-objective optimisation with careful tuning and problem-

specific adjustments. 

3.4 NON-DOMINATED SORTING GENETIC 

ALGORITHM-II 

Popular multi-objective optimisation algorithm NSGA-II 

solves problems with multiple conflicting objectives. Deb et al. 

proposed it in 2002 as an improvement over NSGA1.  

3.4.1 Features:  

• Non-Dominated Sorting: NSGA-II ranks solutions by 

dominance using non-dominated sorting. Non-dominated 

solutions (Pareto optimal solutions) are in the first front. 

• Crowding Distance: NSGA-II calculates crowding distance 

for each solution to maintain population diversity. This 

metric measures the objective space density of solutions 

surrounding a solution to ensure even distribution.  

• Elitism: Elite solutions are preserved from generation to 

generation by the algorithm, preventing their loss during 

evolution.  

• Binary Tournament Selection: A binary tournament 

selects mating solutions based on rank and crowding 

distance in NSGA-II. The solution with lower rank and 

higher crowding distance wins. 

• Crossover and Mutation: SBX and PM are used to 

generate new offspring solutions by the algorithm. 

• Diversity Preservation: NSGA-II preserves population 

diversity by combining non-dominated sorting and 

crowding distance, preventing premature convergence to 

suboptimal solutions.  

3.4.2 Stepwise Procedure of Working Procedure as follows: 

• Initialization: The algorithm starts with a randomly 

generated initial population of solutions. 

• Evaluation: Each solution in the population is evaluated 

based on the given objective functions. 

• Non-Dominated Sorting: Solutions are sorted into different 

fronts based on their dominance relationships. 

• Selection: A binary tournament selection process is used to 

select parent solutions for mating. 

• Crossover and Mutation: Offspring solutions are 

generated using crossover and mutation operators. 

• Survival Selection: The combined population of parents 

and offspring is sorted again, and the best solutions are 

selected to form the new population. 

• Termination: The algorithm repeats the evaluation, 

selection, and survival steps until a stopping criterion till, 

such as a maximum number of generations or a solution 

quality. 

3.5 NON-DOMINATED SORTING GENETIC 

ALGORITHM II  

NSGA-II has several features that make it stand out compared 

to other multi-objective evolutionary algorithms (MOEAs). The 

NSGA-II algorithm efficiently solves large-scale optimisation 

problems by balancing exploration and exploitation to quickly 

converge to optimal or near-optimal solutions. Its versatility 

makes it suitable for multi-objective optimisation problems in 

engineering design and healthcare. The algorithm solves 

benchmark problems well and maintains solution diversity. Its 

simplicity has also made it popular in academic research and 

practice. However, NSGA-II has limitations. Population size and 

mutation rate affect its performance. Scalability issues may arise 

with large or high-dimensional problems, and implementation and 

tuning complexity must be considered. Its convergence speed 

depends on problem complexity and search space landscape, but 

it is generally efficient. A hybrid approach using NSGA-II and 

MOABC can overcome these limitations. Exploration, 

exploitation, and solution diversity are balanced in the hybrid 

model to improve performance in complex multi-objective 

optimisation problems. 

3.6 OVERCOMING INDIVIDUAL LIMITATIONS  

• Enhanced Exploration and Exploitation: MOABC’s 

swarm intelligence-based exploration and NSGA-II’s 

efficient exploitation through non-dominated sorting and 

elitism improve the hybrid algorithm’s ability to search and 

exploit promising regions. This method improves diversity 

maintenance because MOABC scout bees prevent premature 

convergence and NSGA-II’s crowding distance mechanism 

evenly distributes solutions across the Pareto front. The 

hybrid algorithm handles complex and dynamic multi-

objective optimisation landscapes efficiently due to its 

robustness and flexibility. The hybrid approach accelerates 

convergence to high-quality solutions, balances exploration 

to avoid local optima, and efficiently refines solutions by 

integrating both algorithms. It also uses constraint handling 

mechanisms from both algorithms to optimise objectives 

and meet problem constraints for real-world applications. 

Exploration and exploitation are balanced to reduce 

computational costs and optimise the algorithm for large 

problems.  

3.7 STEPWISE OPERATIONS OF HYBRID MOABC 

AND NSGA-II APPROACH 

1) Initialization: 

a) Step 1: Initialize a population P with N random 

solutions. 
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b) Step 2: Evaluate the objective values of each solution in 

P. 

c) Step 3: Perform non-dominated sorting on P to 

determine Pareto fronts. 

d) Step 4: Calculate the crowding distance for each solution 

in P. 

2) Main Loop: Repeat until a termination criterion (e.g., 

maximum number of iterations, convergence) is met. 

a) Employed Bee Phase (ABC): 

i) Step 5: For each employed bee in P: 

(1) Generate a new solution by modifying the 

current solution using neighborhood search. 

(2) Evaluate the objective values of the new 

solution. 

(3) If the new solution dominates the current 

solution, replace the current solution with the 

new solution. 

b) Onlooker Bee Phase (ABC): 

i) Step 6: Select solutions based on their fitness (using 

Pareto front and crowding distance). 

ii) Step 7: For each onlooker bee: 

(1) Generate a new solution based on selected 

solutions. 

(2) Evaluate the objective values of the new 

solution. 

(3) If the new solution dominates the current 

solution, replace the current solution with the 

new solution. 

c) Scout Bee Phase (ABC): 

i) Step 8: For each scout bee in P: 

(1) If a solution has not improved for a certain 

number of iterations, replace the solution with 

a new random solution. 

d) Crossover and Mutation (NSGA-II): 

i) Step 9: Combine the current population P and the 

newly generated offspring into a new population Q. 

ii) Step 10: For each pair of parent solutions selected 

based on binary tournament selection from P: 

(1) Perform crossover to generate offspring. 

(2) Perform mutation on offspring. 

iii) Add the offspring to Q. 

e) Evaluation: 

i) Step 11: Evaluate the objective values of each 

solution in Q. 

f) Non-Dominated Sorting and Crowding Distance 

Calculation (NSGA-II): 

i) Step 12: Perform non-dominated sorting on Q to 

determine Pareto fronts. 

ii) Step 13: Calculate the crowding distance for each 

solution in Q. 

g) Selection (NSGA-II): 

i) Step 14: Select the N best solutions from Q based 

on their Pareto rank and crowding distance to form 

the new population P. 

1. Termination: 

o Step 15: When the termination criteria are met, return 

the Pareto optimal solutions in P 

 

Fig.1. Flowchart and mathematical formulations of Hybrid 

ABC-NSGAII working Procedure  

4. BENCHMARK TEST FUNCTIONS   

Introducing a new benchmark problem allows algorithms to 

be evaluated in a real-world scenario, but this may not fully 

capture the algorithm’s robustness. The CEC2023 test suite must 

include benchmark problems for a complete assessment. These 

benchmarks assess multi-objective optimisation algorithms’ 

scalability, complexity, and constraint-handling. Constrained 

MOOPF problems are among evolutionary computation 

research’s hardest. To solve, you must consider constraints and 

objective functions simultaneously. This led to many constraint-

handling methods. Considering these two points, this paper begins 

by building IEEE CEC 2023 test instances with different 

properties. To apply MOOPF to performance differences under 

different conditions, we combine it with nondominated sorting 

genetic algorithm II. 
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Fig.2. IEEE CEC 2023 Benchmark test instance suite 

PlatEMO is an open-source MATLAB platform tailored for 

evolutionary multi-objective optimisation (EMO). It 

accommodates a diverse array of algorithms and problems, 

rendering it suitable for comparative reviews [70]. Utilising 

PlatEMO’s experiment module allows for the efficient evaluation 

and comparison of various algorithms across different 

optimisation problems, the export of statistical results, and the 

exploration of new algorithmic possibilities, all within a user-

friendly interface that supports research objectives.  

4.1 PERFORMANCE METRICS 

4.1.1 Hypervolume Indicator: 

The Hypervolume Indicator serves as a performance metric 

for assessing the quality of solution sets in multi-objective 

optimisation. The measurement pertains to the volume, or area in 

two-dimensional cases, within the objective space that is 

encompassed by the solution set and constrained by a reference 

point. The reference point is typically selected to ensure that all 

solutions are superior to it. The hypervolume signifies 

convergence and diversity. A larger hypervolume signifies that 

the solutions are nearer to the optimal Pareto front. Diversity in 

solutions enhances coverage across a broader spectrum within the 

objective space.  

To calculate the hypervolume, one must: Choose a reference 

point that is superior to all solutions. Partition the objective space 

into hyper-rectangles defined by the solutions and the reference 

point. A higher Hypervolume value indicates a better performance 

of the algorithm in terms of these two aspects. All simulations 

upto 30 runs with bold highlighted numbers as the best results. 

Table.1. Mean hypervolume (HV) 

Problems SPEA-II  NSGA-I  MOEA/D  NSGA-II  
NSGA-

III  
MOABC  

ABC-

NSGAII  

DCMO1 4.92E-01 4.26E-01 6.17E-01 6.86E-01 1.26E-01 6.87E-01 7.58E-01 

DCMO2 5.25E-01 5.56E-01 5.55E-01 5.55E-01 5.09E-01 5.59E-01 5.38E-01 

MTSOO1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.04E-01 

MTSOO2 4.69E-01 4.29E-01 3.32E-01 4.57E-01 4.99E-01 3.65E-01 5.43E-01 

MTMOO1 1.98E-01 1.94E-01 1.82E-01 1.99E-01 1.89E-01 1.92E-01 1.99E-01 

LSOP1 1.94E-01 1.91E-01 1.55E-01 2.00E-01 2.00E-01 1.91E-01 2.00E-01 

LSOP2 2.48E-01 2.46E-01 2.34E-01 2.71E-01 2.69E-01 2.62E-01 2.71E-01 

CMMO1 6.35E-01 5.98E-01 0.00E+00 5.36E-01 0.00E+00 0.00E+00 6.46E-01 

CMMO2 3.01E-01 2.79E-01 4.06E-03 2.66E-01 1.56E-01 1.63E-02 3.16E-01 

4.1.2 Inverted Generational Distance (IGD): 

The Inverted Generational Distance (IGD) serves as a metric 

for assessing the degree to which the obtained solution set 

approximates the true Pareto front. In contrast to the conventional 

Generational Distance (GD), which quantifies the average 

distance from solutions to the closest point on the true Pareto 

front, Inverted Generational Distance (IGD) assesses the average 

distance from the true Pareto front to the nearest point within the 

obtained solution set. Procedure for calculating IGD: Determine 

the Euclidean distance from each point on the true Pareto front to 

the closest point in the derived solution set. Calculate the mean of 

these distances. A smaller IGD value signifies that the solutions 

obtained are nearer to the true Pareto front, indicating superior 

performance. 

Table.2. Mean inverted generational distance (IGD) 

Problems SPEA-II  NSGA-I  MOEA/D  NSGA-II  
NSGA-

III  
MOABC  

ABC-

NSGAII  

DCMO1 1.77E-01 2.29E-01 2.54E-01 1.10E-01 7.21E-01 1.28E-01 8.30E-02 

DCMO2 7.31E-02 5.49E-02 5.49E-02 5.67E-02 7.64E-02 5.18E-02 7.03E-02 

MTSOO1 8.50E+00 9.55E+00 1.49E+01 8.76E+00 1.63E+01 7.79E+00 1.36E+01 

MTSOO2 1.98E-01 3.21E-01 5.07E-01 2.66E-01 8.58E-02 4.57E-01 6.63E-02 

MTMOO1 6.61E-03 1.25E-02 3.23E-02 5.05E-03 1.65E-02 1.72E-02 6.05E-03 

LSOP1 1.38E-02 1.87E-02 1.44E-02 4.74E-03 7.46E-03 1.80E-02 5.75E-03 

LSOP2 1.05E-01 1.49E-01 1.68E-01 9.02E-02 7.83E-02 1.67E-01 8.30E-02 

CMMO1 4.88E-02 5.82E-02 NaN 1.46E-01 NaN NaN 4.60E-02 

CMMO2 6.69E-02 9.41E-02 1.87E+00 1.13E-01 1.73E-01 3.33E+00 5.20E-02 

4.1.3 Averaged Hausdorff Distance (Δp): 

AHD quantifies the distance between two-point sets, 

specifically between the derived solution set and the actual Pareto 

front. The Hausdorff distance is defined as the maximum distance 
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from any point in one set to the closest point in the other set. The 

AHD enhances this concept by averaging the maximum distances, 

resulting in a more balanced measure of similarity. Procedure for 

calculating AHD: Identify the nearest point on the true Pareto 

front for each point in the derived solution set and record the 

corresponding distance. Identify the nearest point in the obtained 

solution set for each point on the true Pareto front and record the 

distance. Calculate the mean of these distances. A reduced AHD 

signifies that the solution sets are more proximate and analogous, 

suggesting an improved approximation of the Pareto front. 

Table.3. Mean averaged hausdorff distance (Δp) 

Problems SPEA-II  NSGA-I  MOEA/D  NSGA-II  
NSGA-

III  
MOABC  

ABC-

NSGAII  

DCMO1 2.77E-01 3.41E-01 3.34E-01 1.44E-01 4.94E+00 1.76E-01 1.11E-01 

DCMO2 7.31E-02 5.49E-02 5.49E-02 5.67E-02 7.72E-02 5.18E-02 7.03E-02 

MTSOO1 9.94E+00 1.14E+01 1.83E+01 9.99E+00 8.31E+01 9.58E+00 1.87E+01 

MTSOO2 1.98E-01 3.21E-01 5.07E-01 2.66E-01 1.28E-01 4.57E-01 6.63E-02 

MTMOO1 6.61E-03 1.25E-02 3.23E-02 5.05E-03 1.70E-02 1.80E-02 5.75E-03 

LSOP1 2.54E-02 1.87E-02 1.54E-01 5.09E-03 7.46E-03 1.80E-02 5.75E-03 

LSOP2 1.05E-01 1.49E-01 1.68E-01 9.02E-02 7.83E-02 1.67E-01 8.30E-02 

CMMO1 5.54E-02 5.82E-02 NaN 1.46E-01 NaN NaN 5.55E-02 

CMMO2 6.69E-02 9.41E-02 1.89E+00 1.13E-01 2.70E-01 3.37E+00 5.20E-02 

4.1.4 Spread:  

It is utilised in multi-objective optimisation to evaluate the 

distribution and diversity of solutions along the Pareto front. This 

metric assesses the uniformity of solution distribution, thereby 

guaranteeing thorough representation of various trade-offs among 

objectives. This metric is derived from the Euclidean distances 

between consecutive solutions, reflecting the mean distance and 

its deviations, thereby offering insights into the uniformity of the 

solution distribution. In Many-Objective Optimal Power Flow 

(MOOPF), a low Spread Metric value signifies well-distributed 

solutions, essential for providing decision-makers with a wide and 

diverse array of optimal solutions. 

Table.4. Mean Averaged spread metric 

Problems SPEA-II  NSGA-I  MOEA/D  NSGA-II  
NSGA-

III  
MOABC  

ABC-

NSGAII  

DCMO1 6.30E-01 6.38E-01 6.09E-01 3.28E-01 8.89E-01 8.66E-01 6.23E-01 

DCMO2 5.02E-01 1.85E-01 1.72E-01 7.89E-02 3.86E-01 3.20E-01 5.10E-01 

MTSOO1 9.17E-01 9.41E-01 7.88E-01 1.01E+00 1.04E+00 1.40E+00 1.19E+00 

MTSOO2 5.25E-01 5.25E-01 7.92E-01 4.48E-01 4.82E-01 7.88E-01 5.00E-01 

MTMOO1 5.16E-01 8.50E-01 1.76E+00 1.68E-01 4.61E-01 1.52E+00 4.94E-01 

LSOP1 7.80E-01 1.32E+00 1.55E+00 2.01E-01 5.16E-01 1.59E+00 4.48E-01 

LSOP2 4.90E-01 5.73E-01 1.12E+00 3.07E-01 5.03E-01 1.08E+00 5.09E-01 

CMMO1 5.05E-01 5.60E-01 NaN 7.69E-01 NaN NaN 4.60E-01 

CMMO2 1.33E+00 1.17E+00 1.01E+00 1.04E+00 8.18E-01 1.00E+00 1.36E+00 

DCMO1 7.42E-01 8.19E-01 6.10E-01 5.20E-01 1.01E+00 8.30E-01 5.61E-01 

DCMO2 7.56E-01 8.99E-01 5.57E-01 NaN NaN NaN NaN 

Table.5. Overall Mean Friedman rank of all metrics combined 

Problems SPEA-II  NSGA-I  MOEA/D  NSGA-II  NSGA-III  MOABC  ABC-NSGAII  

DCMO1 5.55 6.89 5.36 1.93 8.91 4.30 2.45 

DCMO2 8.03 2.89 3.53 4.43 8.50 2.25 1.47 

MTSOO1 3.44 4.38 5.13 4.15 4.31 1.12 3.13 

MTSOO2 5.23 6.28 8.31 5.31 2.69 8.23 2.87 

MTMOO1 3.24 4.90 9.00 1.00 5.65 6.86 1.25 

LSOP1 4.60 5.59 8.63 1.02 3.08 5.77 1.01 

LSOP2 4.78 7.08 8.48 2.13 2.14 1.08 2.57 

CMMO1 1.86 2.96 6.00 4.27 6.00 6.00 1.18 

CMMO2 3.50 4.34 6.82 4.12 4.74 6.58 2.72 

4.2 DISCUSSION  

Due to its improved convergence and Pareto front solution 

distribution, the hybrid approach combining Artificial Bee 

Colony (ABC) and Non-dominated Sorting Genetic Algorithm II 

(NSGA-II) consistently outperforms other methods. 

Hypervolume (HV), Inverted Generational Distance (IGD), and 

Δp assess solution quality based on their proximity to the true 

Pareto front and distribution balance. ABC-NSGAII optimises 

convergence and solution diversity for complex multi-objective 

optimisation problems with statistically significant results. The 

clustering mechanism of HNSMOABC ensures well-distributed 

solutions in optimal regions, improving large-scale optimisation 

performance, but it may limit diversity at the Pareto front. 

MOEA/D-DAE algorithms excel at solution space exploration, as 

measured by diversity metrics like spread. The Friedman test 

shows ABC-NSGAII’s efficacy and reliability with a P-value of 

0.016 and top metrics. Successfully solving IEEE-CEC 2023 

benchmark problems shows its ability to manage complex trade-

offs, constraints, and non-uniform Pareto fronts. Hybrid 

optimisation methods like ABC-NSGAII may outperform 

traditional and metaheuristic methods for multi-objective 

optimisation problems due to their balanced approach.. 

5. MULTI-OBJECTIVE OPTIMAL POWER 

FLOW  

MOOPF, an advanced electrical power system optimisation 

problem, optimises multiple conflicting objectives, including 

generation costs, transmission losses, emissions, system security, 

and reliability. To solve MOOPF problems realistically, power 

balance, generator, voltage, and thermal constraints must be met. 

Power system operation and planning, renewable energy 

integration, and electricity market operations use MOOPF to 

ensure efficiency, reliability, and environmental friendliness. 

Advanced optimisation methods like hybrid MOABC and NSGA-

II balance multiple objectives and handle complex optimisation 

landscapes to find high-quality solutions. MOOPF methodologies 

must be understood and applied to improve power system 

efficiency, reliability, and environmental sustainability. 

6. IEEE 118 BUS SYSTEM DETAILS 

The IEEE 118 Bus System is a commonly employed test case 

in power system research, depicting a portion of the American 

Electric Power System (AEP) in the Midwestern United States as 

of December 1962. The system consists of 118 buses, comprising 

32 generator buses, 91 load buses, and 5 reference buses. The 

system comprises 19 generators with a total capacity of 4,377 

MW, 177 transmission lines, 9 transformers and 35 synchronous 

condensers with a cumulative capacity of 574 MW. The system 

functions at a base voltage of 138 kV while serving 91 loads. 

Owing to its intricacy and authentic depiction of a power grid, it 

is frequently employed for the testing and validation of power 

flow algorithms, stability analyses, and optimisation 

methodologies. 
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Fig.4. Single line diagram of IEEE 118-bus system 

Fuel cost, active power loss, and voltage magnitude deviation 

parameters in Many-Objective Optimal Power Flow (MOOPF) 

must be studied for several reasons. First, reducing fuel costs 

boosts economic efficiency, lowering electricity prices and 

increasing utility profits. Second, reducing transmission line 

active power loss reduces energy waste and operational costs, 

improving system efficiency and reliability. Thirdly, voltage 

stability prevents malfunctions, device wear, and blackouts in 

electrical equipment and the power system. Fuel reduction also 

reduces greenhouse gas emissions, helping the environment. 

Optimised power flow ensures system reliability by meeting 

demand regardless of load conditions or faults. MOOPF balances 

economic, technical, and environmental goals to create a reliable 

and efficient power system. 

 

Fig.5. MOOPF Framework and mathematical formulations 

6.1 CASE STUDY RESULT OF MOOPF PROBLEM 

ON IEEE 118 BUS SYSTEM  

Mathematical formulations for MOOPF study [21] prime 

motive to optimal setting of control parameter at minimal thermal 

fuel cost, power loss and voltage deviation simultaneously so, the 

algorithm is run with three objective functions. The Pareto fronts 

(PFs) observed in this case are depicted in Fig.6. The comparison 

of the BCS values and the corresponding control variables 

obtained for Case-V is presented in Table.6. 

The suggested algorithm obtains 137,715.17($/hr) fuel cost, 

33.3462(MW) power loss, and 0.4779 (p.u) VMD, whereas 

NSGA-II [29] gives 138,441.48($/hr), 37.8479(MW), 

0.5067(p.u) and MOABC [30] gives 138,501.58($/hr), 

51.5057(MW), 0.5750(p.u), respectively. The bold values shown 

in the table are optimal objective values obtained using the 

proposed algorithm. The statistical inference including best, 

worst, range, standard deviation (SD) and mean values for the 

three cases of IEEE 118-bus power system is tabulated in Table.7. 

From the Table.8, it is evident that the suggested algorithm 

produces better performance as compared to NSGA-II [29] and 

MOABC [30] algorithms. 

Table.6. Simulation result on Minimize objective functions in 

MOOPF 118 bus system 

Sl.  

No 

Control  

Variable 

ABC- 

NSGAII 

NSGA 

-II 
MOABC 

ABC- 

NSGAII 

NSGA 

-II 
MOABC 

Control Variables:  

Power (MW) 

Control Variables:  

Voltage (p.u) 

1 1 49.8078 54.8971 23.8680 1.0116 1.0211 1.0285 

2 4 52.5061 47.8583 23.5583 1.0034 1.0038 0.9910 

3 6 37.9561 41.7676 30.3396 1.0186 1.0148 1.0380 

4 8 40.4637 52.1134 68.8969 1.0130 1.0279 0.9943 

5 10 208.3497 200.001 162.529 0.9954 1.0076 0.9799 

6 12 96.2351 95.3491 94.2803 1.0202 1.0203 1.0032 

7 15 59.9765 47.7239 41.3812 1.0114 1.0157 1.0131 

8 18 44.6825 44.8845 87.9004 1.0142 1.0093 1.0188 

9 19 46.3333 38.8888 55.6282 1.0155 1.0186 1.0374 

10 24 23.7604 47.9193 47.9193 1.0165 1.0088 0.9903 

11 25 117.6926 98.7580 71.8418 1.0118 1.0254 1.0193 

12 26 154.555 165.6475 225.008 1.007 1.027 1.002 

13 27 44.1010 41.2942 64.7284 1.0123 1.0192 1.0445 

14 31 19.6902 24.6045 32.3143 1.0087 1.0082 1.0009 

15 32 31.9930 35.9945 55.3926 1.0059 1.0105 0.9909 

16 34 51.7709 52.5163 5.2702 1.0117 1.0189 0.9987 

17 36 56.1834 41.0381 72.9698 1.0063 1.0057 1.0141 

18 40 87.8627 58.5974 32.3235 1.0177 1.0058 1.0016 

19 42 75.2689 56.1755 57.5625 1.0118 1.0127 1.0017 

20 46 35.1325 49.1190 46.1951 1.0197 1.0145 1.0135 

21 49 159.3047 167.186 206.595 0.9980 0.9970 0.9751 

22 54 81.8220 78.8419 32.3143 1.0128 1.0080 1.0101 

23 55 80.5026 64.8844 63.9898 1.0182 1.0245 1.0219 

24 56 70.8324 61.9925 43.1943 1.0187 1.0313 1.0245 

25 59 145.9911 151.241 161.442 1.0141 1.0241 1.0121 

26 61 127.1395 136.523 109.375 1.0143 1.0338 0.9994 

27 62 49.8338 37.0122 72.9286 1.0226 1.0071 0.9935 

28 65 229.5327 222.242 256.717 1.0260 1.0103 0.9979 

29 66 231.1206 244.556 211.476 0.9859 1.0170 1.0214 

30 70 45.3337 38.0014 36.8410 1.0281 1.0108 1.0437 

31 72 20.0243 40.2348 19.8350 1.0192 1.0070 1.0214 

32 73 23.8761 37.2211 10.1501 1.0316 1.0343 0.9932 

33 74 50.1527 47.4695 43.4136 1.0333 1.0054 1.0002 

34 76 44.8794 55.6834 42.1826 1.0048 1.0170 0.9894 

35 77 38.0621 35.9400 77.9524 1.0080 1.0240 0.9916 

36 80 297.0032 255.412 217.792 1.0037 1.0097 1.0271 

37 85 42.5265 45.5885 64.8361 1.0135 1.0109 1.0339 

38 87 10.9515 6.4937 9.9615 1.0100 1.0115 0.9928 
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39 89 229.9336 243.088 227.022 1.0091 1.0288 1.0191 

40 90 50.8835 58.2787 40.1591 1.0412 1.0245 1.0083 

41 91 48.0809 51.0010 32.7856 1.0141 1.0221 1.0081 

42 92 49.2068 45.5966 71.8462 1.0157 1.0237 0.9970 

43 99 35.9029 49.0012 41.4485 1.0235 1.0129 1.0159 

44 100 141.6298 126.013 165.347 1.0199 1.0172 1.0105 

45 103 43.1302 49.2388 43.2952 1.0172 1.0221 1.0197 

46 104 42.4401 44.8947 70.0230 1.0196 1.0164 1.0300 

47 105 50.3917 36.2602 51.0041 1.0173 1.0239 1.0313 

48 107 35.5470 37.5737 66.2487 1.0104 1.0056 1.0040 

49 110 40.3137 52.1613 17.5272 1.0184 1.0045 0.9709 

50 111 35.5358 44.9217 30.3810 1.0193 1.0173 1.0299 

51 112 45.4344 47.0013 22.9620 1.0205 1.0225 1.0463 

52 113 46.0275 43.1162 43.9970 1.0275 1.0312 1.0295 

53 116 39.6684 43.9970 61.9924 1.0091 1.0051 1.0382 

Table.7. Statistical Interference of IEEE 118 bus system. 

Algorithms Objectives 
Best  

Value 

Worst  

Value 
Range SD 

Mean  

Value 

Proposed 

ABC- 

NSGAII 

FC($/hr) 136,201.34 140,369.68 4,168.34 634.03 137,585.29 

PL(MW) 30.3348 38.3905 8.0557 1.6158 33.7176 

VD (p.u) 0.4440 0.5951 0.1310 0.0247 0.5099 

NSGA-II 

[29] 

FC($/hr) 136,205.28 140,718.02 4,512.74 883.21 137,906.91 

PL MW) 35.1875 44.5861 9.3986 2.1589 39.4477 

VD (p.u) 0.4556 0.7252 0.2795 0.0642 0.5653 

MOABC 

[30] 

FC($/hr) 136,253.94 141,933.91 5,679.97 1,528.17 138,618.22 

PL (MW) 46.8119 82.3806 35.5687 8.6009 59.0408 

VD (p.u) 0.5192 0.8185 0.2993 0.0772 0.6320 

Table.8. Performance Metric test on IEEE 118 MOOPF test 

system 

Metric Proposed ABC-NSGAII NSGA-II [29] MOABC [30] 

IGD 0.0812 0.0962 0.5340 

SP 1.9159E8 8.7203E7 3.2553E7 

 

Fig.6. IEEE 118-bus power system Pareto Fronts (PFs) with 

three objectives 

7. CONCLUSIONS 

In this study, a novel non-dominated sorting hybrid 

Multiobjective artificial bee colony hybrid algorithm ABC-

NSGAII was designed for solving multi-objective constraint 

optimization problems. To validate the proposed methods, 

standard test functions, such as the IEEE CEC 2023 suites were 

tested. By using statistical test measurement indices as 

Hypervolume, IGD, Hausdorff and spread metric, it gets, 

proposed algorithms is best result among recent metaheuristic 

algorithm. For real time computation analysis, further given 

problem studied as complex optimal power problem on IEEE 118 

bus system. The multi-objective optimal power flow problem was 

solved as a multiobjective and multi-constrained optimization 

problem, where the cost, loss, and voltage deviation value were 

minimized. The obtained results show the Pareto optimal front 

obtained by Hybrid ABC-NSGAII was better than that of the 

existing literature. It was also observed that the proposed method 

can handle ramp rate limit constraints. The result shows that the 

proposed method is superb. 

REFERENCES 

[1] M. Balasubbareddy, “Multi-Objective Optimization in the 

Presence of Ramp-Rate Limits using Non-Dominated 

Sorting Hybrid Fruit Fly Algorithm”, Ain Shams 

Engineering Journal, Vol. 7, No. 2, pp. 895-905, 2016. 

[2] M. Balasubbareddy, S. Sivanagaraju and C.V. Suresh, 

“Multi-Objective Optimization in the Presence of Practical 

Constraints using Non-Dominated Sorting Hybrid Cuckoo 

Search Algorithm”, Engineering Science and Technology an 

International Journal, Vol. 49, No. 4, pp. 603-615, 2015. 

[3] G. Chen, X. Yi, Z. Zhang and H. Wang, “Applications of 

Multi-Objective Dimension-based Firefly Algorithm to 

Optimize the Power Losses, Emission and Cost in Power 

Systems”, Applied Soft Computing, Vol. 68, pp. 322-342, 

2018. 

[4] J. Zhou, C. Wang, Y. Li, P. Wang, C. Li, P. Lu and L. Mo, 

“A Multi-Objective Multi-Population Ant Colony 

Optimization for Economic Emission Dispatch Considering 

Power System Security”, Applied Mathematical Modelling, 

Vol. 45, pp. 684-704, 2017. 

[5] M. Ding, H. Chen, N. Lin, S. Jing, F. Liu, X. Liang and W. 

Liu, “Dynamic Population Artificial Bee Colony Algorithm 

for Multi-Objective Optimal Power Flow”, Saudi Journal of 

Biological Sciences, Vol. 24, pp. 703-710, 2017. 

[6] S. Sahu, A.K. Barisal and A. Kaudi, “Multi-Objective 

Optimal Power Flow with DG Placement using TLBO and 

MIPSO: A Comparative Study”, Energy Procedia, Vol. 117, 

pp. 236-243, 2017. 

[7] L. Wu, Q. Liu, X. Tian, J. Zhang and W. Xiao, “A New 

Improved Fruit Fly Optimization Algorithm IAFOA and its 

Application to Solve Engineering Optimization Problems”, 

Knowledge-based Systems, Vol. 144, pp. 153-173, 2018. 

[8] L. Wang and X. Zheng, “A Knowledge-Guided Multi-

Objective Fruit fly Optimization Algorithm for the Multi-

Skill Resource-Constrained Project Scheduling Problem”, 

Swarm Evolutionary Computation, Vol. 38, pp. 54-63, 2018. 

[9] T.S. Du, X.T. Ke, J.G. Liao and Y.J. Shen, “DSLC-FOA: 

Improved Fruit Fly Optimization Algorithm for Application 

to Structural Engineering Design Optimization Problems”, 

Applied Mathematical Modelling, Vol. 55, pp. 314-339, 

2018. 

[10] K. Nuaekaew, P. Artrit, N. Pholdee and S. Bureerat, 

“Optimal Reactive Power Dispatch Problem using a Two-



ISSN: 2583-9292 (ONLINE)                                                                            ICTACT JOURNAL ON DATA SCIENCE AND MACHINE LEARNING, MARCH 2025, VOLUME: 06, ISSUE: 02 

785 

Archive Multi-Objective Grey Wolf Optimizer”, Expert 

Systems with Applications, Vol. 87, pp. 79-89, 2017. 

[11] M.J. Morshed, J.B. Hmida and A. Fekih, “A Probabilistic 

Multi-Objective Approach for Power Flow Optimization in 

Hybrid Wind-PVPEV Systems”, Applied Energy, Vol. 211, 

pp. 1136-1149, 2018. 

[12] S.K.M. Shareefa and R.S. Rao, “Optimal Reactive Power 

Dispatch Under Unbalanced Conditions using Hybrid 

Swarm Intelligence”, Computers and Electrical 

Engineering, Vol. 69, pp. 183-193, 2018. 

[13] W. Warid, H. Hizam, N. Mariun and N.I.A. Wahab, “A 

Novel Quasi-Oppositional Modified Jaya Algorithm for 

Multi-Objective Optimal Power Flow Solution”, Applied 

Soft Computing, Vol. 65, pp. 360-373, 2018. 

[14] A.F. Attia, R.A. El Sehiemya and H.M. Hasanien, “Optimal 

Power Flow Solution in Power Systems using a Novel Sine-

Cosine Algorithm”, International Journal of Electrical 

Power and Energy Systems, Vol. 99, pp. 331-343, 2018. 

[15] G. Dhiman and V. Kumar, “Multi-Objective Spotted Hyena 

Optimizer: A Multi-Objective Optimization Algorithm for 

Engineering Problems”, Knowledge-based Systems, Vol. 

150, pp. 175-197, 2018. 

[16] L. Lv and J. Zhao, “The Firefly Algorithm with Gaussian 

Disturbance and Local Search”, Journal of Signal 

Processing Systems, Vol. 90, pp. 1123-1131, 2017. 

[17] A.A.A. Mohamed, Y.S. Mohamed, A.A.M. EI-Gaafary and 

A.M. Hemeida, “Optimal Power Flow using Moth Swarm 

Algorithm”, Electric Power Systems Research, Vol. 142, pp. 

190-206, 2017. 

[18] E. Davoodi, E. Babaei and B. Mohammadi-ivatloo, “An 

Efficient Covexified SDP Model for Multi-Objective 

Optimal Power Flow”, International Journal of Electrical 

Power and Energy Systems, Vol. 102, pp. 254-264, 2018. 

[19] A.A. El-Fergany and H.M. Hasanien, “Tree-Seed Algorithm 

for Solving Optimal Power Flow Problem in Large-Scale 

Power Systems Incorporating Validations and 

Comparisons”, Applied Soft Computing, Vol. 64, pp. 307-

316, 2018. 

[20] E. Naderi, H. Narimani, M. Fathi and M.R. Narimani, “A 

Novel Fuzzy Adaptive Configuration of Particle Swarm 

Optimization to Solve Large-Scale Optimal Reactive Power 

Dispatch”, Applied Soft Computing, Vol. 53, pp. 441-456, 

2017. 

[21] M. Sedighizadeh, M. Sarvi and E. Naderi, “Multi-Objective 

Optimal Power Flow with FACTS Devices using Shuffled 

Frog Leaping Algorithm”, International Review of 

Electrical Engineering, Vol. 6, pp. 1794-1801, 2011. 

[22] J. Wei, Y. Zhang, J. Wang, X. Caob and M.A. Khan, “Multi-

Period Planning of Multi-Energy Microgrid with Multi-

Type Uncertainties using Chance Constrained Information 

Gap Decision Method”, Applied Energy, Vol. 260, pp. 1-6, 

2020. 

[23] A. Khan, H. Hizam, N.I. Abdul-Wahab and M.L. Othman, 

“Solution of Optimal Power Flow using Non-Dominated 

Sorting Multi Objective-based Hybrid Firefly and Particle 

Swarm Optimization Algorithm”, Energies, Vol. 13,No. 16, 

pp. 1-7, 2020. 

[24] N.C. Yang, D. Mehmood and K.Y. Lai, “Multi-Objective 

Artificial Bee Colony Algorithm with Minimum Manhattan 

Distance for Passive Power Filter Optimization Problems”, 

Mathematics, Vol. 9, pp. 1-6, 2021. 

[25] S. Subramanian, C. Sankaralingam, R.M. Elavarasan, R.R. 

Vijayaraghavan, K. Raju and L. Mihet-Popa, “An 

Evaluation on Wind Energy Potential using Multi-Objective 

Optimization based Non-Dominated Sorting Genetic 

Algorithm III”, Sustainability, Vol. 13, No. 1, pp. 1-8, 2021. 

[26] Z. Tong, J. Xin and C. Ling, “Many-Objective Hybrid 

Optimization Method for Impeller Profile Design of Low 

Specific Speed Centrifugal Pump in District Energy 

Systems”, Sustainability, Vol. 13, pp. 1-9, 2021. 

[27] M.Z. Islam, N.I.A. Wahab, V. Veerasamy, H. Hizam, N.F. 

Mailah, J.M. Guerrero and M.N.M. Nasir, “A Harris Hawks 

Optimization based Single- and Multi-Objective Optimal 

Power Flow Considering Environmental Emission”, 

Sustainability, Vol. 12, pp. 1-8, 2020. 

[28] T.T. Nguyen, “A High Performance Social Spider 

Optimization Algorithm for Optimal Power Flow Solution 

with Single Objective Optimization”, Energy, Vol. 171, pp. 

218-240, 2019. 

[29] E. Naderi, M. Pourakbari-Kasmaei and H. Abdi, “An 

Efficient Particle Swarm Optimization Algorithm to Solve 

Optimal Power Flow Problem Integrated with FACTS 

Devices”, Applied Soft Computing, Vol. 80, pp. 243-262, 

2019. 

[30] C.V. Suresh and S. Sivanagaraju, “Analysis and Effect of 

Multi-Fuel and Practical Constraints on Economic Load 

Dispatch in the Presence of Unified Power Flow Controller 

using UDTPSO”, Ain Shams Engineering Journal, Vol. 6, 

pp. 803-817, 2015. 

[31] M.A. Abido, “Optimal Power Flow using Tabu Search 

Algorithm”, Electric Power Components and Systems, Vol. 

30, pp. 469-483, 2002. 

[32] R. Arul, G. Ravi and S. Velsami, “Non-Convex Economic 

Dispatch with Heuristic Load Patterns, Valve Point Loading 

Effect, Prohibited Operating Zones, Ramp-Rate Limits and 

Spinning Reserve Constraints using Harmony Search 

Algorithm”, Electrical Engineering, Vol. 95, pp. 53-61, 

2013. 

[33] J. Zhu and J.A. Momoh, “Multi-Area Power Systems 

Economic Dispatch using Nonlinear Convex Network Flow 

Programming”, Electric Power Systems Research, Vol. 59, 

pp. 13-20, 2001. 

[34] T. Niknam, M.R. Narimani, J. Aghaei and R. Azizipanah-

Abarghooee, “Improved Particle Swarm Optimisation for 

Multi-Objective Optimal Power Flow Considering the Cost, 

Loss, Emission and Voltage Stability Index”, IET 

Generation, Transmission and Distribution, Vol. 6, No. 6, 

pp. 515-527, 2012. 

[35] A.E. Chaib, H. Bouchekara, R. Mehasni and M.A. Abido, 

“Optimal Power Flow with Emission and Non-Smooth Cost 

Functions using Backtracking Search Optimization 

Algorithm”, International Journal of Electrical Power and 

Energy Systems, Vol. 81, pp. 64-77, 2016. 

[36] E. Naderi, M.P. Kasmaei, F.V. Cerna and M. Lehtonen, “A 

Novel Hybrid Self-Adaptive Heuristic Algorithm to Handle 

Single and Multi-Objective Optimal Power Flow Problems”, 

International Journal of Electrical Power and Energy 

Systems, Vol. 125, pp. 1-6, 2021. 



ABHISHEK BAJIRAO KATKAR AND HIMMAT TUKARAM JADHAV: ADVANCED MULTI-CRITERIA OPTIMIZATION STRATEGY FOR TACKLING COMPLEX MANY-OBJECTIVE  

                                                   OPTIMAL POWER FLOW CHALLENGES 

786 

[37] P.K. Roy, S.P. Ghoshal and S.S. Thakur, “Optimal Power 

Flow using Biogeography based Optimization”, 

International Journal of Power and Energy Conversion, 

Vol. 2, No. 3, pp. 216-249, 2010. 

[38] M.S. Kumari and S. Maheswarapu, “Enhanced Genetic 

Algorithm based Computation Technique for Multi-

Objective Optimal Power Flow Solution”, International 

Journal of Electrical Power and Energy Systems, Vol. 32, 

pp. 736-742, 2010. 

[39] C. Audet, J. Bigeon, D. Cartier, S. Le Digabel and L. 

Salomon, “Performance Indicators in Multiobjective 

Optimization”, European Journal of Operational Research, 

Vol. 292, No. 2, pp. 397-422, 2021. 

[40] Y. Tian, R. Cheng, X. Zhang and Y. Jin, “PlatEMO: A 

MATLAB Platform for Evolutionary Multi-Objective 

Optimization”, IEEE Computational Intelligence Magazine, 

Vol. 12, No. 4, pp. 73-87, 2017.

 


