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Abstract 

Image processing tasks in Computer vision such as segmentation, 

object detection, and classification are foundational in geosciences, 

driving advancements by enabling precise analysis and interpretation 

of Earth’s dynamic systems and landscapes. The processing of high-

resolution aerial images for object detection presents significant 

challenges, including the need for high detection accuracy and the 

ability to handle vast datasets effectively. Traditional methods often 

struggle with the scale and complexity of such tasks, necessitating 

innovations that can leverage distributed computing to meet these 

demands. This study introduces a groundbreaking framework that 

integrates Vision Transformers, a cutting-edge architecture for object 

detection, with PySpark’s distributed computing capabilities. This 

inference model significantly enhances batch inference processing 

efficiency of voluminous datasets, enabling the analysis of high-

resolution aerial imagery with notable accuracy. By utilizing Resilient 

Distributed Datasets (RDDs), the research offers a detailed algorithmic 

analysis that reveals the computational advantages of this PySpark-

based approach. The proposed Vision Transformer-PySpark 

framework is evaluated on the DOTA benchmark dataset for aerial 

images, demonstrating its scalability and superior performance as the 

amount of computing nodes rise, achieving improved scalability. The 

comparison of this framework against cutting edge object detection 

models underscores it’s effectiveness and scalability, setting a new 

standard for efficient, large-scale aerial image analysis in distributed 

computing environments. 
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1. INTRODUCTION 

. Aerial imagery, captured by satellites and drones, provides a 

crucial perspective for monitoring Earth’s landscapes. These 

images are widely used in domains like disaster management, 

urban planning, environmental preservation, and ecological 

monitoring. However, detection of objects in aerial imagery poses 

complexities due to several interrelated factors. Variability in 

object size, depending on distance, and frequent obstruction by 

larger structures or terrain complicate detection efforts. 

Recognizing and classifying objects across varying scales in 

densely packed environments requires sophisticated algorithms. 

Additionally, high-resolution satellite images generate large file 

sizes, demanding significant computational power for effective 

processing and analysis. These challenges necessitate advanced 

techniques to achieve accurate results. This complexity highlights 

the need for advanced detection algorithms capable of handling 

both the scale and detail present in aerial imagery [1]. 

Convolutional Neural Networks (CNNs) transformed object 

detection by automating the process of feature extraction, 

eliminating the need for manual hand-crafted features [2]. 

Advances like Region-based CNN (R-CNN) further improved 

detection accuracy by introducing a two-step process of region 

proposals and classification [3]. However, these methods often 

rely on sequential processing, limiting their suitability for real-

time applications. 

To overcome this, the YOLO (You Only Look Once) model 

was developed, offering real-time object detection by processing 

images in a single pass. YOLO's architecture allows simultaneous 

prediction of bounding boxes and class probabilities, achieving 

impressive frame rates. Despite this, it faces contextual challenges 

with high-resolution satellite imagery, where varying object 

scales and complex scenes including occlusion impede its 

performance. Vision Transformers (ViTs) address some of these 

challenges by utilizing self-attention as well as multi-head 

attention mechanisms to model global relationships in images, 

making them more effective at handling varying object scales and 

densely packed environments [4]. Unlike CNNs, which focus on 

local pixel relationships, ViTs process images as sequences of 

patches, learning spatial relationships through self-attention [5]. 

This approach enhances their ability to capture high-level 

features, making them particularly well-suited for complex 

datasets like aerial and satellite imagery.  

However, like other deep learning models, ViTs struggle with 

the vast scale of satellite image archives [6]. Datasets such as 

NASA’s LANDSAT, which include over 10 million images, 

present significant storage and processing challenges. It becomes 

challenging to manage large volumes of data with traditional 

single-node systems. While ViTs excel in speed for standalone 

tasks, they fall short in batch processing large datasets. For this, 

big data platforms offer potential solutions, but disk-based 

systems like Apache Hadoop are inefficient for deep learning-

based inference tasks. In contrast, Apache Spark, with its in-

memory computing capabilities, provides a more scalable 

solution, capable of efficiently handling large- scale satellite 

imagery data without the limitations of disk- based processing. 

This research combines the advanced object detection capabilities 

of Vision Transformers with PySpark’s distributed computing 

framework. By leveraging PySpark’s in-memory processing and 

distributed data architecture, ViT-based object detection is 

parallelized across clusters, enabling scalable batch processing of 

massive aerial image datasets. This approach allows Vision 

Transformers to process high- resolution imagery more 

efficiently. Our framework demonstrates superior performance on 

the DOTA dataset and shows remarkable scalability, from a single 

node to a 50-node cluster. This integration represents a significant 

leap forward in aerial image analysis, providing a powerful and 

scalable solution for large- scale satellite data processing using 

Vision Transformers. The contributions of the paper are 

summarised as follows: 



ISSN: 2229-6948(ONLINE)                                                                                  ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, MARCH 2022, VOLUME: 13, ISSUE: 01 
 

714 

 

Fig.1. Scalable Vision Transformers object detection inference module on PySpark cluster. Input images are loaded as (key, value) pairs 

into HDFS where key is file name and value is the image matrix

• Advanced Object Detection: The paper proposes 

employing of Vision Transformers (ViTs) for object 

detection in aerial imagery, addressing challenges posed by 

varying object scales and complex scenes with occlusion. 

• Scalable Big Data Processing: It proposes a novel 

combination of ViT-based object detection with Apache 

Spark’s distributed in-memory computing framework to 

process large-scale datasets like satellite imagery efficiently. 

• Enhanced Performance: The framework demonstrates 

superior performance on the DOTA dataset and showcases 

its scalability from a single node to a 50-node cluster, 

offering an efficient solution for real-time and batch 

processing of high- resolution satellite images. 

The organisation of the research paper is as follows: A 

comprehensive review of related work is presented in Section 2, 

with an outline of important developments in object detection. 

Section 3 delves into Vision Transformers (ViTs), discussing their 

architecture and relevance to the field. In Section 4, we present an 

enhanced object detection approach that integrates Vision 

Transformers with PySpark to improve scalability and 

performance. The details of the experimental results are discussed 

in Section 5, with a focus on performance metrics as well as 

comparative analysis. Finally, the conclusion of the paper is 

presented in Section 6 with a summary of the key findings of the 

research and proposing future research directions. 

2. RELATED WORK 

2.1 TRADITIONAL METHODS IN OBJECT 

DETECTION 

Since the early 1990s, object detection has been a primary 

focus of computer vision research. Traditional, rule-based 

algorithms dominated early efforts but struggled with effective 

image representation. The emergence of deep learning brought a 

major shift, enabling more complex feature extraction and 

improving performance, marking a pivotal transformation in the 

field [7]. 

that highlights various algorithms that were developed with 

handcrafted features and were most popular in the last decade. 

One of them included was Deformable Parts Model (DPM) [8]. It 

has been among the most notable traditional algorithm for object 

detection and employs a graphical model to integrate carefully 

designed low- level features with part decompositions based on 

kinematic principles. However, DPM fails when it comes to 

computational efficiency and scalability as well as it struggles 

with capturing large variations in object appearance and pose, 

especially when objects undergo significant deformation or 

occlusion. 

2.2 DEEP LEARNING APPROACHES 

The introduction of deep learning algorithms has 

revolutionized object detection by enabling autonomous learning 

of feature representations and patterns from data and 

Convolutional Neural Networks (CNNs) [2] have been 

particularly effective in extracting meaningful features from 

images. A major breakthrough occurred when AlexNet [9] won 

the 2012 ImageNet competition, significantly surpassing previous 

pioneering models in prediction accuracy through the use of deep 

convolutional networks. Despite these advancements, CNNs still 

face challenges in detecting objects across varying scales and 

resolutions and struggle with capturing spatial dependencies or 

high-level features from images as convolutional filters used by 

CNNs majorly focus on local patches of the input image. 

A significant advancement in addressing the limitations of 

CNNs for object detection was the introduction of Regions with 

CNN (RCNN) by Girshick et al. [3]. RCNN utilized selective 

search to generate object proposals, which were then analyzed 

using a pre-trained CNN. However, it suffered from slow 

detection speeds due to repetitive feature computation. The 

Spatial Pyramid Pooling Network (SPPNet) [10] improved 

efficiency by computing feature maps for the entire image at once, 

although it had limitations in its training process. Fast RCNN [11] 

further enhanced both speed and accuracy by enabling 

simultaneous training of the detector and the bounding box 

regressor. Building on this, Faster RCNN [12] introduced a 

Region Proposal Network (RPN), achieved near real-time 

detection while still retaining some computational redundancies 

in earlier stages. To enhance real- time object detection, the 

YOLO model was introduced, known for its compact design and 

fast detection capabilities. YOLO marked a notable advancement 

in one-shot object detection models, as it employs a single 

convolutional layer to forecast bounding boxes and class 

probabilities simultaneously. Moreover, it is optimized for speed 
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and has low computational overhead. It is also notable that due to 

YOLO architecture, its implementation does not require extensive 

modification leading to ease of implementation. However, it faces 

challenges when applied to aerial imagery, where the 

complexities of satellite images such as variability in sizes and 

occlusion can hinder performance. 

 

Fig.2. A basic architecture of vision transformers encoder [4] 

The introduction of ViTs to computer vision was based on the 

success of Transformers in NLP. ViTs [4] became the first object 

detection models to apply transformer architectures directly to 

image data. The images are divided into patches to process them 

as a sequence of linear embeddings resembling tokens in NLP. 

Notably, ViTs demonstrated exceptional performance, 

particularly when trained on larger datasets, marking a new era in 

object detection. 

2.3 DISTRIBUTED COMPUTING FOR OBJECT 

DETECTION 

Although, Vision Transformers (ViTs) have demonstrated 

significant potential in object detection tasks, yet, they encounter 

challenges related to computational complexity, often prioritizing 

performance over speed. When applied to real-time object 

detection on large-scale image datasets, ViTs face scalability 

issues that demand substantial computational resources. To 

overcome these hurdles, leveraging big data platforms emerges as 

a promising approach to improve scalability and resource 

efficiency. Classification of Big Data platforms can be done into 

two types; vertical and horizontal scaling tools [13]. Vertical 

tools, such as GPUs and multi-core systems, offer significant 

computational power but are limited by shared memory, making 

them less suitable for large-scale, high-dimensional image 

processing [14]-[16]. In contrast, horizontal scaling systems like 

grid computing and Apache Hadoop provide scalable, cost-

effective solutions for big data challenges [17], [18]. While grid 

computing struggles with data recovery and job completion, 

Hadoop offers distributed storage, computation, fault tolerance, 

and automatic data recovery, though it excels primarily in batch 

processing and is inefficient for real-time tasks. Apache Spark 

addresses this limitation by supporting both batch and real-time 

processing through its in-memory computation engine, advancing 

the efficiency of complex, multi-stage computational jobs. 

Studies have explored the optimization of object detection using 

distributed computing, with one example leveraging Hadoop and 

MapReduce for large-scale image processing, highlighting the 

potential of these systems for handling vast image datasets [19]. 

Our study advances the field by combining Vision 

Transformers with PySpark, addressing scalability and 

computational efficiency issues inherent in analyzing high 

resolution aerial imagery. We leverage a User-Defined Function 

(UDF) that operates on RDDs containing images to execute object 

detection tasks within Apache Spark’s in memory computing 

environment. 

3. EXPERIMENTAL METHOD  

3.1 VISION TRANSFORMERS  

Transformers are self-attention-based deep learning models 

originally designed for Natural Language Processing (NLP) tasks. 

They are typically trained through a two-step process, that is, pre-

training on a large text dataset, followed by targeted fine-tuning 

on a task-specific dataset. This approach allows for the 

development of models with unprecedented sizes, exceeding 100 

billion parameters, due to their computational efficiency and 

scalability. Inspired by these abilities, Vision Transformers 

(ViTs) were developed to adapt Transformer architectures for 

processing image data. The architecture of a Vision Transformers 

model involves segmentation of images into a non-overlapping 

sequence of patches. Each patch is subsequently reduced and 

linearly embedded into a vector, which is used as input for the 

transformer model. Moreover, positional encodings are added to 

the patch embeddings, helping the model to learn the relative 

positions of the patches within the image. The core of ViT 

architecture is composed of multiple layers of transformer 

encoders. The Fig.2 depicts a structure of the transformer encoder. 

It consists of the following layers: 

 

Fig.3. Detection results drawn from the final annotations 

generated from ViT+PySpark module for sample images. The 

red bounding boxes depict predicted and green are actual 

• Multi-Head Self Attention Layer: This layer combines all 

the attention outputs by concatenating them into the 

appropriate dimensions. The multiple attention heads 

facilitate the learning of both local and global dependencies 

within an image.  

• Multi-Layer Perceptron (MLP) Layer: This layer consists 

of two layers that utilize the Gaussian Error Linear Unit 

(GELU) activation function. The inclusion of a classification 

head following the MLP adds a special token with the input 

patch embeddings, the called classification token. The 

inference made by the model depends on the token output. 

• Norm Layer: Added before each block, layer normalization 

does not introduce any new dependencies among the training 
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images. This practice improves not only the performance of 

the model but also the speed of training. 

Furthermore, Residual connections are incorporated after each 

block to enable components to pass through the network directly, 

bypassing non-linear activations. ViTs have exhibited cutting-

edge performance across various benchmarks, particularly when 

trained using extensive datasets, positioning them as a powerful 

alternative to traditional CNN-based models. In the context of 

object etection in aerial imagery, ViTs leverage the strengths of 

Transformers, offering a novel approach to image understanding 

that excels in capturing rich contextual information.  

3.2 PYSPARK-ENHANCED OBJECT DETECTION 

WITH VISION TRANSFORMERS  

At the heart of the Spark programming paradigm are Resilient 

Distributed Datasets (RDDs), which encapsulate all input data, 

intermediate computations, and final outputs [20]. Each 

transformation or reduction of an RDD results in a new, 

immutable RDD. Spark ensures fault tolerance through lineage 

graphs, which tracks the sequence of operations on RDDs and 

allow for the reconstruction of lost data partitions in case of 

runtime failures [21]. Typically, input images are stored in the 

Hadoop Distributed File System (HDFS). The process starts by 

retrieving these images from HDFS to create an RDD, which is 

then distributed across worker nodes for processing. Operations 

on RDDs are mapped to these nodes and executed on local data 

segments.  

The Fig.1 depicts the workflow of Vision Transformers 

integrated with Spark RDDs. The process starts with gathering 

input images, where each image is represented as a (key, value) 

pair: the filename (f1, f2,…,fn) serves as the key, and the 

corresponding image data matrix (f1, f2,…,fn) serves as the value. 

Parallel processing of these images takes place after they are 

uploaded to HDFS and distributed across multiple disks. Further 

computational optimization can be achieved by dividing images 

into grids. In this approach, combinations of files and grids are 

represented as (f1+g1,m1) (f2+g2,m2),..., where (fn+gn) are the keys 

and 𝑚1and 𝑚2 are the values. While this method improves 

computational efficiency, it requires specialized algorithms to 

address the challenge of overlapping objects spanning multiple 

grids. For simplicity and to maintain detection accuracy, this 

discussion does not explore image slicing in detail. After storage, 

a map function triggers the ViT object detection algorithm on 

each image. The algorithm scans the images, identifying objects 

and assigning each a class identifier (class id1, class id2,…,class 

id3) along with bounding box parameters (x, y, width w, height h). 

Once object detection is complete, a reduction function 

consolidates the detected data, retaining only relevant 

information. This process results in annotated images with objects 

clearly marked by bounding boxes. Additionally, a corresponding 

text file (FileID.txt) is generated for each image, detailing class 

IDs and bounding box coordinates for all detected objects. This 

efficient process enhances object detection scalability and 

performance in distributed computing environments. 

3.3 DOTA DATASET  

The DOTA dataset [1] was introduced to boost object 

detection in the field of Earth Vision. It is an extensive dataset 

created for detecting objects in aerial imagery. It consists of 

images from various satellites and sensors, gathered through 

crowdsourcing and featuring multiple resolutions, along with 

expert vetting, ensuring a collection of of high-quality images. 

DOTA includes annotations for 15 common object categories 

using oriented bounding boxes (OBBs) and horizontal bounding 

boxes (HBBs) which enhances the object detection accuracy, 

particularly for distinguishing closely positioned objects. The 

dataset also includes objects of varying scales, orientations, and 

shapes, all precisely annotated. To date, three versions of DOTA 

have been released, each improving on the last, with added 

annotations for small objects and increased category variations. 

4. EXPERIMENTAL RESULTS  

4.1 TRAINING VISION TRANSFORMERS  

To initialize the training of ViT’s, we utilize the PyTorch 

framework, which facilitates model instantiation. The 

initialization process involves setting up various layers and 

parameters. We trained the ViT model for 500 epochs with 

patience 12 and a batch size of 128 on an NVIDIA A100 GPU, 

using the standard train/validation split from the DOTA dataset. 

Image resolution used was of 1280 × 1280. During training, we 

monitored loss convergence with test and value losses reaching 

near to 0.05. For model validation on the test set, we used mean 

Average Precision (mAP), which averages AP across all 

categories [22] and IoU thresholds, along with the area beneath 

the precision-recall curve. After training, the model was applied 

to DOTA images for object detection, generating an output array 

of predicted classes and bounding box coordinates. Fig.3 displays 

annotation results from ViTs applied on sample images. The 

green boxes in the images represent the ground truth annotations 

and red boxes indicates the model's predictions.  

4.2 PYSPARK BASED OBJECT DETECTION 

In this phase, we utilize the RDD-based algorithm for object 

detection, using the ViT model trained during the offline stages as 

described earlier. The process involves several key steps: setting 

up the Hadoop cluster, loading images and trained model file into 

HDFS, performing object detection, and saving the annotation 

results as text or JSON files. 

These operations are carried out through a series of PySpark 

transformations, followed by action operations. PySpark's 

integration with HDFS enables efficient distributed computing on 

large datasets stored in the system. 

4.3 EXPERIMENTAL SET  

An in-house Hadoop cluster with configurations of 5, 10, 35, 

and 50 nodes were built at the Computer Science Lab, 

Akkamahadevi Women’s University Campus. Fig.4 shows a 

snapshot of the 35-node Hadoop cluster. It details the 

configuration of each node that was setup on the system depicting 

properties like configured capacity, capacity used, non-DFS 

capacity used, remaining capacity, capacity used in percentage 

and remaining capacity in percentage. The system was setup with 

Hadoop version 2.7.3 and Apache Spark version 3.1.2 to ensure 

compatibility and optimize the data processing capabilities of 

both platforms. For the development of object detection models, 

we used Python version 3.10 and OpenCV version 4.6.0. The 
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experiments were conducted using Vision Transformers on the 

PySpark cluster with varying node counts and dataset sizes. A 

replication factor of 3 was set, and YARN cluster optimization 

parameters were adjusted. 

 

Fig.4. Snapshot of in-house Hadoop cluster built at the 

university campus 

4.4 PERFORMANCE EVALUATION OF PYSPARK 

CLUSTER  

To evaluate the computational performance of Vision 

Transformer inference model implemented on PySpark, we 

conducted experiments with 10,000 DOTA images, each scaled 

down to a resolution of 1280 × 1280 pixels. The workflow 

involved initially uploading the images to the HDFS, followed by 

processing in the detector module for object detection tasks. We 

systematically assessed the detection performance across four 

different clusters sizes, analyzing ten different image sets. The 

inference time for each batch was meticulously recorded. To 

guarantee the reliability of our results, each experimental setup 

was on DOTA replicated five times, as well as the mean 

computational  time was documented. It was noted that a rising 

number of nodes in a PySpark cluster leads to an approximately 

linear improvement in computational cost. The Fig.5 represents 

the computational costs involved in processing various different 

image batches across distinct number of nodes in a PySpark 

cluster. It was observed that increasing the number of nodes 

results in a nearly linear reduction in computational costs. 

Table.1. Comparison of Performance of PySpark based ViT 

object detection system with varying PySpark cluster nodes 

Model Dataset 
Size 

(px) 
mAP 

Speed 

(ms) 

ViT+1-node Pyspark 

cluster 
DOTAv2.0 1280 77.74 200 

ViT+5-node Pyspark 

cluster 
DOTAv2.0 1280 78.68 49.02 

ViT+10-node Pyspark 

cluster 
DOTAv2.0 1280 81.32 28.29 

ViT+35-node Pyspark 

cluster 
DOTAv2.0 1280 81.32 11.54 

ViT+50-node Pyspark 

cluster 
DOTAv2.0 1280 80.87 6.86 

4.5 COMPARISON WITH DOTA BASELINES  

In order to evaluate the performance of PySpark-based ViT 

object detection system, we used the DOTAv2.0 dataset. The 

system was tested on 10,000 images of the dataset which were 

downscaled to resolution of 1280 × 1280 pixels with varying 

numbers of PySpark cluster nodes. Moreover, all models were 

trained from scratch on the DOTAv2.0 dataset. 

 

Fig.5. Computational performance analysis of PySpark clusters 

of size 5, 10, 35, 50. Each subplot depicts computational cost 

against number of images 

The Table.1 presents the results of the experiments where the 

mean average precision (mAP) was computed followed by the 

speed of inference in milliseconds. As evident from Table 1, 

increasing the number of nodes in the cluster leads to a notable 

improvement in both mAP and inference speed. The mAP 

increases progressively from 77.74% with a 1-node  cluster to a 

peak of 81.32% with a 10-node cluster, demonstrating the model's 

enhanced ability to detect objects accurately with additional 

computing resources. In terms of speed, the inference time per 

frame significantly improves as the cluster size grows, dropping 

from 200 ms in a 1-node cluster to just 6.86 ms in a 50-node 

cluster. This highlights the computational efficiency gained by 

leveraging a larger PySpark cluster, enabling faster processing 

without sacrificing much accuracy.  

4.6 COMPARISON OF PYSPARK-BASED VIT 

AGAINST SOTA MODELS  

For a more comprehensive evaluation of PySpark based 

Vision Transformers, it is compared with other pioneering object 

detection models on the DOTA dataset. The results of the 

comparison analysis are depicted in Table 2. For evaluation, 

different versions of DOTA were utilized. All images used for 

evaluation were downscaled to 1280 × 1280 pixels and mean 

average precision (mAP) was computed as the precision metrics. 
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All models are pre-trained using the pytorch framework It is 

notable that this research is primarily concentrated on exploring 

the computational performance incorporating Vision 

Transformers model into PySpark batch processing operations. 

Consequently, no significant efforts were made to improve the 

existing model architectures. In addition to the DOTA-v2.0, this 

setup was tested on the DOTAv1.0 and DOTAv1.5 versions and 

compared with baseline models including RetinaNet OBB [23], 

Fast R-CNN [11], Faster RCNN [12], Mask R-CNN [24] Cascade 

R-CNN [25], Hybrid Task Cascade [26] variants augmented with 

Dpool and RoI Transformer modules and YOLOv8. This 

comparative study focused on both OBB and HBB accuracy to 

ensure an equitable evaluation across all models. The analysis 

underscores the performance benefits of incorporating distributed 

computing into object detection workflows. The Table.2 depicts a 

comparison of object detection performance of a PySpark-based 

ViT model against various state-of-the-art models based on pixel 

size, speed in frames per second (fps), and mean Average 

Precision (mAP) for both Horizontal Bounding Boxes (HBB) and 

Oriented Bounding Boxes (OBB). The findings corroborate that 

the PySpark based Vision Transformer object detection stands out 

in terms of speed without compromising on accuracy when 

measured against its counterpart. Moreover, the results in Table 2 

depicts that one of the most notable aspects of the ViT models is 

their impressive processing speed, particularly when deployed in 

a PySpark environment with varying cluster sizes. For instance, 

the 50-node configuration achieves a remarkable speed of 145.76 

fps,  significantly outpacing many traditional models, such as 

Mask R-CNN and YOLOv8n-obb, which operate at lower fps 

rates of 0.3 and 22 respectively.  

In terms of detection accuracy, the mAP values for the ViT 

models exhibit competitive performance, though they generally 

trail behind some leading architectures like, the Faster R-CNN 

OBB + RoI Transformer achieves a high mAP of 74.59% on 

DOTA (1.0), while the ViT models in the 1-node and 5-node 

configurations achieve mAP scores of 65.53% and 63.17%, 

respectively, for the same dataset. This trend indicates that the 

ViT models can effectively perform object detection tasks, 

although there is room for improvement in their accuracy relative 

to the highest performing models. Another noteworthy 

observation is the performance trend of the ViT models as the 

number of nodes in the PySpark cluster increases. The mAP 

results reveal a slight decline in performance for HBB detection, 

with scores decreasing from 65.53% at 1 node to 62.16% at 35 

nodes. This trend suggests that while increasing the cluster size 

enhances processing speed, it may also introduce complexities 

that impact detection accuracy.

Table.2. Vision Transformers performance evaluation against state-of-the-art methods on three different versions of DOTA dataset 

Method 
Size 

(pixels) 

Speed (frames 

per second) 

DOTA (1.0) DOTA (1.5) DOTA (2.0) 

HBB 

(mAP%) 

OBB 

(mAP%) 

HBB 

(mAP%) 

OBB 

(mAP%) 

HBB 

(mAP%) 

OBB 

(mAP%) 

RetinaNet 1280 3.0 67.45 - 61.64 - 49.31 - 

RetinaNet OBB 1280 1.2 69.05 66.28 62.49 59.16 49.26 46.68 

Mask R-CNN 1280 0.3 71.61 70.71 64.54 62.67 51.16 49.47 

Cascade Mask R-CNN 1280 0.8 71.61 70.71 64.54 62.67 51.16 49.47 

Hybrid Task Cascade 1280 5.1 72.49 71.21 64.47 63.40 50.88 50.34 

Faster R-CNN 1280 4.9 70.76 - 64.16 - 50.71 - 

Faster R-CNN OBB 1280 4.5 71.93 69.40 63.82 62.01 49.36 47.31 

Faster R-CNN OBB 

+Dpool 
1280 3.2 71.84 70.15 63.65 62.22 

50.49 48.77 

Faster R-CNN OBB 

+HOB 
1280 1.3 70.37 70.11 64.43 62.57 

50.38 48.90 

Faster R-CNN OBB + 

RoI Transformer 
1280 1.0 74.59 73.76 66.09 65.03 

53.37 52.81 

YOLOv8n-obb 1280 22 64.87 56.43 54.98 48.89 39.58 45.01 

ViT+ 1-node PySpark 

cluster  
1280 05 65.53 57.53 55.43 51.74 

40.69 45.61 

ViT+ 5-nodes 

PySpark cluster 
1280 20.4 63.17 58.52 57.44 50.91 

41.59 45.13 

ViT + 10-nodes 

PySpark cluster 
1280 35.35 63.19 58.54 57.42 50.91 

41.60 45.18 

ViT + 35-nodes 

ySpark cluster 
1280 86.67 62.16 56.55 56.40 51.93 

42.58 43.10 

ViT + 50-node ySpark 

cluster 
1280 145.76 62.18 55.54 58.43 49.93 

42.60 44.13 
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Nonetheless, the ViT model manages to maintain a reasonable 

level of accuracy while achieving significant speed 

improvements, highlighting a noteworthy trade-off between 

speed and precision. Overall, the results presented in the tables 

illustrate that the PySpark-based ViT model, despite facing 

competition from traditional object detection models in terms of 

precision, showcases significant advantages in processing speed. 

This balance of speed and reasonable accuracy positions the ViT 

model as a viable option for applications requiring rapid object 

detection, where quick response times are crucial. 

5. CONCLUSION  

This research underscores the substantial advantages of 

integrating Vision Transformer (ViT) models with PySpark for 

object detection tasks in real-time applications. Our 

comprehensive evaluation, utilizing the DOTA dataset, reveals 

that the PySpark-based ViT model achieves impressive 

processing speeds, particularly when deployed across varying 

cluster sizes. Specifically, the proposed framework achieved a 

notable peak performance of 145.76 frames per second (fps) with 

a 50-node cluster, significantly outperforming many traditional 

models. This enhancement in speed is particularly valuable in 

contexts where rapid response times are essential for improving 

customer experiences and operational efficiency where the ViT 

model demonstrates competitive mean average Precision (mAP) 

scores, peaking at 81.32% with a 10-node cluster, it trails behind 

certain state-of-the-art architectures, such as Faster R-CNN OBB 

+ RoI Transformer. This performance gap indicates an 

opportunity for future enhancements, suggesting that while the 

model excels in speed, further optimization is necessary to 

improve accuracy. The results emphasize that achieving a balance 

between processing speed and detection precision is crucial for 

deploying these models in real-world scenarios. Future research 

should focus on bridging the accuracy gap identified in this study. 

Approaches such as fine-tuning pre trained models on domain-

specific datasets can be explored to leverage existing knowledge 

for improved performance. Additionally, incorporating advanced 

techniques, including multi-scale feature extraction and 

sophisticated augmentation strategies, may yield significant 

improvements in detection capabilities. Moreover, investigating 

the integration of alternative distributed computing frameworks 

with the ViT model could provide deeper insights into optimizing 

performance and scalability. Overall, this research lays a robust 

foundation for advancing object detection capabilities within 

distributed computing environments. By addressing the identified 

limitations and exploring innovative approaches, future studies 

can further enhance the effectiveness of ViT models in various 

applications, paving the way for significant advancements in the 

field of computer vision. 
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