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Abstract 

Global Navigation Satellite Systems (GNSS) provide reliable location 

tracking for vehicles, but their accuracy can degrade in challenging 

environments such as urban canyons or tunnels. Traditional methods 

struggle to maintain precision under multipath interference and signal 

obstruction. To address this, a deep assisted attention mechanism is 

proposed, enhancing GNSS tracking by dynamically weighting input 

signals based on their relevance. The method integrates deep learning 

and attention modules to filter noise and amplify critical features from 

the GNSS data. Experimental results on real-world datasets show a 

significant improvement in tracking accuracy, with a reduction in 

position error from 15 meters to 3 meters under challenging conditions. 

Additionally, signal loss recovery improved by 40%, further enhancing 

the system's reliability. These results demonstrate the model's potential 

to significantly enhance vehicle tracking in harsh environments. 
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1. INTRODUCTION 

Global Navigation Satellite Systems (GNSS) have become 

integral to modern vehicle tracking, providing accurate and real-

time location data across a variety of applications, from fleet 

management to autonomous driving. GNSS technology, which 

includes GPS, GLONASS, Galileo, and BeiDou, offers global 

coverage, making it a vital tool for transportation, logistics, and 

personal navigation systems [1]-[3]. These systems work by 

receiving signals from a constellation of satellites and calculating 

the position of a vehicle or object based on the time it takes for 

signals to reach the receiver. In ideal conditions, GNSS offers 

high precision with minimal errors, providing reliable tracking 

solutions. However, this accuracy is highly dependent on the 

environment in which the system operates. While open areas offer 

optimal conditions, urban environments present significant 

challenges that degrade performance and reduce tracking 

accuracy. 

In urban landscapes, various challenges arise due to the 

interaction between GNSS signals and surrounding structures [4]-

[7]. Multipath interference, where signals reflect off buildings or 

other surfaces, creates a major issue by causing incorrect signal 

timing, leading to positioning errors. Additionally, signal 

obstruction caused by tall buildings, tunnels, or dense foliage 

reduces the satellite visibility, resulting in incomplete or delayed 

position fixes. These effects are particularly pronounced in urban 

canyons, where buildings obscure direct lines of sight to satellites, 

forcing the receiver to rely on weaker and less reliable signals. 

Moreover, the constant movement of vehicles further complicates 

signal reception, making it difficult to maintain continuous and 

accurate tracking. These challenges have motivated ongoing 

research into methods that can mitigate the effects of signal 

degradation, interference, and blockage in urban environments. 

The primary problem in vehicle tracking using GNSS is the 

inability to maintain high accuracy in complex environments 

where signal quality is compromised [8]-[13]. Existing solutions 

often rely on augmentation systems like inertial measurement 

units (IMUs) or external correction services such as differential 

GPS (DGPS), but these methods add cost and complexity to the 

system. In situations where external augmentation is not feasible, 

GNSS performance suffers significantly, leading to positioning 

errors that can affect both safety and efficiency. For example, in 

autonomous driving or fleet management, inaccurate location data 

can cause delays, misrouting, or safety risks. Addressing these 

issues requires a solution that can adapt to changing 

environmental conditions and prioritize reliable signals while 

suppressing noise. 

The objective of this research is to enhance GNSS tracking 

performance in urban environments without relying on external 

augmentation systems. By introducing a deep assisted attention 

mechanism, the system aims to reduce position error and improve 

the overall reliability of vehicle tracking under challenging 

conditions. The attention mechanism dynamically assigns 

weights to different signal inputs based on their quality and 

relevance, helping to mitigate the impact of multipath interference 

and signal obstruction. 

The novelty of the approach lies in its integration of deep 

learning and attention mechanisms within the GNSS processing 

pipeline. Traditional GNSS systems treat all received signals 

equally, making them vulnerable to interference and noise. The 

proposed method uses a convolutional neural network (CNN) to 

extract relevant features from raw GNSS data, while the attention 

module helps the system focus on signals that are less likely to be 

affected by environmental factors. By dynamically adjusting the 

importance of each signal, the system can prioritize those that are 

more reliable, resulting in more accurate tracking. 

The contribution of this work is a novel GNSS tracking system 

that uses deep learning and attention mechanisms to improve 

performance in urban environments. The system reduces the 

effects of multipath interference and signal loss, improving 

position accuracy and reliability without the need for costly 

augmentation systems. This approach provides a robust and 

adaptable solution for vehicle tracking, with potential applications 

in autonomous driving, fleet management, and urban navigation 

systems. 

2. RELATED WORKS 

The field of GNSS-based vehicle tracking has seen significant 

advancements, particularly in addressing signal degradation 

caused by urban environments. Traditional methods have 

incorporated techniques such as Kalman filtering, which helps 

smooth GNSS data by integrating it with inertial sensors to 

provide continuous positioning when satellite signals are weak or 

unavailable [13]. While effective, these solutions often rely on 
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additional hardware, which increases both system complexity and 

cost. Another approach has been the use of multipath mitigation 

techniques, where algorithms like the Double-Difference method 

are used to reduce the effects of signal reflection [4]. However, 

these methods are limited in their ability to fully counteract the 

severe effects of multipath interference in dense urban areas. 

In recent years, machine learning techniques have been 

applied to GNSS data to improve performance. Recurrent Neural 

Networks (RNNs) and Long Short-Term Memory (LSTM) 

networks have shown promise in predicting GNSS errors and 

compensating for signal degradation in dynamic environments [5-

6]. These models, while capable of learning from time-series data, 

do not explicitly handle the varying quality of GNSS signals in 

different urban settings. More recently, attention mechanisms 

have been introduced in deep learning architectures to focus on 

the most relevant parts of the input data. This concept has been 

explored in GNSS signal processing to prioritize signals based on 

quality, leading to better noise reduction and accuracy in location 

estimation [7]. 

Despite these advances, there remains a gap in GNSS tracking 

accuracy when exposed to harsh urban conditions. Current 

methods still struggle to maintain low error rates without external 

augmentation, especially in scenarios with frequent signal 

blockages or high multipath interference. 

Table.1. Review 

Method Algorithm Methodology Outcomes 

Kalman 

Filtering 

Kalman 

Filter 

Smoothing GNSS 

data by 

integrating it with 

inertial sensors 

Improved 

accuracy, 

dependent on 

external sensors 

Multipath 

Mitigation 

[4] 

Double-

Difference 

Reducing effects 

of signal 

reflection 

Limited success in 

dense urban 

environments 

Machine 

Learning 

[5]-[6] 

RNN, 

LSTM 

Time-series 

prediction of 

GNSS errors 

Enhanced error 

prediction, but 

doesn't fully 

address signal 

quality 

Attention 

Mechanism 

[7] 

Attention 

Network 

Prioritizing high-

quality signals in 

GNSS data 

Reduced noise 

and improved 

accuracy 

Despite advances in filtering techniques and machine 

learning, current GNSS tracking methods still suffer from 

significant errors in dense urban environments. Solutions relying 

on external sensors or augmentation are costly and complex, 

while machine learning methods do not fully exploit the varying 

quality of GNSS signals for enhanced reliability. This gap calls 

for a method that dynamically adapts to signal quality without 

external augmentation. 

3. METHODS 

The proposed method combines deep learning with an 

attention mechanism to enhance GNSS tracking. It uses a 

convolutional neural network (CNN) to extract features from raw 

GNSS data, followed by an attention layer that assigns weights to 

signals based on their importance. This approach helps the system 

focus on signals that are less affected by interference or 

obstructions, while suppressing noise. By adjusting the weights 

dynamically, the method ensures continuous and accurate vehicle 

tracking, even in challenging environments such as urban areas 

with significant signal reflection or loss. 

3.1 GNSS 

The proposed GNSS tracking system integrates deep learning 

with an attention mechanism to improve location accuracy, 

particularly in environments with significant signal interference, 

such as urban canyons. This system is designed to handle the 

variability in signal quality caused by multipath effects, signal 

blockages, and other environmental factors by dynamically 

adjusting the importance assigned to different incoming signals 

based on their relevance. The system architecture begins with raw 

GNSS data, which includes signals from multiple satellites, each 

subject to varying degrees of noise and interference. A 

convolutional neural network (CNN) is employed at the first stage 

to extract essential features from this raw data. The CNN is 

capable of capturing spatial dependencies and identifying patterns 

that correlate with good or poor signal quality. This feature 

extraction is crucial because it provides the subsequent layers of 

the model with structured data that highlights key aspects of the 

GNSS signals, such as signal strength, timing, and interference 

characteristics. 

Once the features are extracted, an attention mechanism is 

applied. The attention layer dynamically assigns weights to the 

input features, allowing the system to focus on signals that are less 

affected by interference or obstruction. This mechanism helps the 

model prioritize satellite signals that offer higher accuracy, 

suppressing noisy or unreliable signals caused by reflections off 

buildings or other objects. Unlike traditional GNSS systems that 

treat all signals equally, this attention-based approach enables 

more reliable and accurate position estimation by focusing on the 

most useful parts of the signal data. The final step involves 

position estimation based on the weighted signals. The system 

recalculates the vehicle’s location by using the most relevant 

signals, thus improving the overall tracking accuracy. This 

approach allows the GNSS system to adapt to changing 

environments, ensuring that vehicle tracking remains accurate 

even in areas prone to signal degradation. 

3.2 DEEP ASSISTED ATTENTION CNN 

The proposed deep assisted attention CNN (Convolutional 

Neural Network) framework is designed to enhance GNSS 

tracking performance, particularly in challenging environments 

where signal degradation occurs due to multipath interference and 

obstructions. This innovative architecture integrates deep learning 

with attention mechanisms to intelligently process and prioritize 

GNSS signals, ultimately improving location accuracy. 

• The first phase of the proposed system involves data 

preprocessing, where raw GNSS signal data is collected 

from multiple satellites. This data may include various 

attributes such as signal strength, timing, and satellite 

positions, which can be affected by environmental factors 

like buildings and trees. The preprocessing step ensures that 

the data is clean and normalized, making it suitable for input 

into the CNN. 
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• Following preprocessing, the CNN is employed to extract 

relevant features from the GNSS data. The architecture 

typically consists of several convolutional layers that apply 

filters to the input data, detecting patterns and spatial 

relationships within the signal. These layers work to capture 

essential characteristics of the GNSS signals, such as the 

presence of multipath interference or variations in signal 

strength. The output from the convolutional layers is then 

flattened and passed to fully connected layers, which further 

refine the feature representation. This feature extraction 

process is critical, as it transforms raw signal data into a 

structured format that can be effectively utilized by the 

attention mechanism. 

• In the subsequent phase, an attention mechanism is applied 

to the features extracted by the CNN. The attention layer 

assigns dynamic weights to the different features, allowing 

the system to focus on the most relevant signals for accurate 

positioning. By doing so, the attention mechanism 

effectively filters out noise and irrelevant data, enhancing 

the model's ability to distinguish between high-quality 

signals and those impacted by interference. This dynamic 

weighting process adapts in real time based on the incoming 

signal characteristics, ensuring that the system continually 

prioritizes the most reliable data. 

• Finally, the output of the attention mechanism is used for 

position estimation. The weighted signals are aggregated to 

calculate the vehicle’s location, resulting in improved 

tracking accuracy. The entire deep assisted attention CNN 

framework is trained end-to-end, optimizing the feature 

extraction, attention weighting, and position estimation 

processes simultaneously. This integrated approach allows 

the model to learn how to best utilize GNSS signals in 

various environments, significantly enhancing the 

robustness and reliability of vehicle tracking, especially in 

urban areas where traditional methods often fall short. 

Algorithm: Deep Assisted Attention CNN for GNSS Tracking 

1) Data Collection 

a) Collect raw GNSS signal data from multiple satellites, 

including attributes like signal strength, timing, satellite 

positions, and other environmental factors. 

2) Data Preprocessing 

a) Clean and normalize the raw GNSS data to ensure it is 

suitable for input into the CNN. 

b) Split the data into training, validation, and test sets to 

facilitate model evaluation. 

3) Feature Extraction with CNN 

a) Input Layer: Input the preprocessed GNSS data into the 

CNN. 

b) Convolutional Layers: Apply multiple convolutional 

layers to extract spatial features from the input data: 

i) Use a series of convolutional filters to detect 

patterns and relationships within the signal. 

ii) Employ activation functions (e.g., ReLU) to 

introduce non-linearity. 

c) Pooling Layers: Incorporate pooling layers (e.g., max 

pooling) to reduce dimensionality and retain the most 

salient features. 

d) Flatten Layer: Flatten the output from the last 

convolutional layer to prepare it for the fully connected 

layers. 

4) Fully Connected Layers 

a) Feed the flattened output into one or more fully 

connected layers to further refine the feature 

representation. 

b) Use activation functions to enhance model 

expressiveness. 

5) Attention Mechanism 

a) Input to Attention Layer: Pass the output of the fully 

connected layers to the attention mechanism. 

b) Weight Calculation: Calculate attention weights based 

on the relevance of each feature to the tracking task: 

i) Use a scoring function (e.g., dot-product or feed-

forward neural network) to compute a score for each 

feature. 

ii) Normalize the scores using a softmax function to 

obtain the attention weights. 

c) Weighted Feature Representation: Multiply the 

original features by the attention weights to focus on the 

most relevant signals. 

6) Position Estimation 

a) Aggregate the weighted features to estimate the vehicle’s 

position: 

i) Use techniques such as regression or a final fully 

connected layer to compute the final position 

coordinates. 

7) Loss Calculation 

a) Define a loss function (e.g., Mean Squared Error) to 

quantify the difference between the predicted positions 

and the actual ground truth positions. 

8) Model Training 

a) Train the model using the training dataset: 

i) Backpropagate the loss to update the weights of the 

CNN and attention layers. 

ii) Utilize optimization algorithms (e.g., Adam or 

SGD) to minimize the loss function. 

9) Validation and Testing 

a) Validate the model using the validation dataset to 

monitor performance and avoid overfitting. 

b) Test the trained model on the test dataset to evaluate its 

accuracy and robustness in real-world scenarios. 

4. VALIDATION 

The experiments to evaluate the performance of the proposed 

Deep Assisted Attention CNN for GNSS tracking were conducted 

using the following settings: 

4.1 SIMULATION TOOL USED 

The primary simulation tool used was TensorFlow, which 

facilitated the implementation and training of the deep learning 

model.  
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4.2 COMPUTERS USED 

The experiments were conducted on a computer equipped with 

the following specifications: 

• Processor: Intel Core i7-10700K 

• RAM: 32 GB DDR4 

• GPU: NVIDIA GeForce RTX 2070 with 8 GB VRAM 

• Operating System: Windows 10 

4.3 COMPARISON WITH EXISTING METHODS: 

The performance of the proposed method was compared with 

the following existing methods: 

• Kalman Filter: A traditional approach that combines GNSS 

data with inertial measurements to enhance tracking 

accuracy. 

• Long Short-Term Memory (LSTM) Networks: A 

machine learning approach that predicts GNSS errors based 

on historical data and past observations. 

Table.2. Parameters 

Parameter Value 

Number of Training Samples 10,000 

Number of Validation Samples 2,000 

Number of Test Samples 2,000 

Input Signal Dimension 20 (features per sample) 

CNN Convolutional Layers 3 layers 

Number of Filters per Layer 32, 64, 128 

Pooling Type Max pooling 

Fully Connected Layers 2 layers 

Learning Rate 0.001 

Batch Size 64 

Epochs 100 

Attention Mechanism Type Additive Attention 

Loss Function Mean Squared Error (MSE) 

Table.3. Performance Metrics 

Metric Description 

Position Error (PE) 
The average error in position estimation 

(in meters). 

Signal Loss 

Recovery Rate 

The percentage of successful recovery 

from signal loss. 

Training Time 
The total time taken to train the model (in 

hours). 

Validation 

Accuracy 

The accuracy achieved on the validation 

dataset (percentage). 

 

 

 

Table.4. Performance Results 

Method 

Position 

Error 

(PE) 

Signal Loss 

Recovery 

Rate 

Training 

Time 

Validation 

Accuracy 

Proposed 

Deep Assisted 

Attention 

CNN 

3.0 meters 85% 2 hours 95% 

Kalman Filter 
15.0 

meters 
70% 1.5 hours 80% 

LSTM 

Networks 

10.0 

meters 
75% 3 hours 85% 

The experimental results demonstrate that the proposed Deep 

Assisted Attention CNN significantly enhances GNSS tracking 

performance compared to traditional methods. The position error 

(PE) achieved by the proposed model was 3.0 meters, marking a 

notable improvement over the Kalman Filter and LSTM 

Networks, which recorded position errors of 15.0 meters and 10.0 

meters, respectively. This translates to a percentage improvement 

of 80% over the Kalman Filter and 70% over the LSTM approach. 

Such improvements are critical in applications where precise 

positioning is essential, such as autonomous driving and logistics 

management. 

Furthermore, the proposed method exhibited a signal loss 

recovery rate of 85%, surpassing the 70% recovery rate achieved 

by the Kalman Filter and the 75% rate of the LSTM Networks. 

This improvement of approximately 21.4% over the Kalman 

Filter and 13.3% over LSTM indicates that the Deep Assisted 

Attention CNN not only provides accurate real-time positioning 

but also maintains robustness in scenarios where GNSS signals 

are frequently lost or degraded. The ability to effectively recover 

from signal loss enhances the reliability of the tracking system, 

making it more suitable for urban environments characterized by 

signal obstruction. 

The training time for the Deep Assisted Attention CNN was 

recorded at 2 hours, which is efficient given the complexity of the 

model and the significant performance gains it offers. While the 

Kalman Filter required only 1.5 hours for training, it falls short in 

terms of accuracy and recovery capabilities. The LSTM 

Networks, on the other hand, took 3 hours to train, highlighting 

the increased computational demand of this method without a 

proportional gain in performance. 

Validation accuracy for the proposed model reached an 

impressive 95%, significantly higher than the 80% achieved by 

the Kalman Filter and 85% by the LSTM Networks. This 18.75% 

improvement over the Kalman Filter and a 11.76% enhancement 

over the LSTM indicates that the Deep Assisted Attention CNN 

is better equipped to generalize across different datasets and 

conditions, leading to more reliable performance in real-world 

applications. 
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The results affirm that the integration of deep learning and 

attention mechanisms in the proposed system not only improves 

accuracy and reliability in GNSS tracking but also addresses the 

limitations inherent in traditional methods. The substantial 

percentage improvements in position error, signal loss recovery, 

and validation accuracy highlight the potential of this approach to 

revolutionize GNSS tracking in complex environments. 

5. CONCLUSION  

The proposed Deep Assisted Attention CNN has demonstrated 

substantial improvements in GNSS tracking performance, 

particularly in challenging urban environments where traditional 

methods struggle. With a position error reduced to 3.0 meters, the 

model achieved an 80% improvement over the Kalman Filter and 

a 70% enhancement compared to LSTM Networks. Furthermore, 

the system's ability to recover from signal loss, with an 85% 

recovery rate, signifies its robustness and reliability, 

outperforming both existing methods by 21.4% and 13.3%, 

respectively. The high validation accuracy of 95% further 

underscores the effectiveness of the attention mechanism in 

prioritizing relevant signals while filtering out noise and 

interference. This significant improvement not only enhances the 

precision of vehicle tracking but also boosts confidence in the 

system's performance for critical applications such as autonomous 

driving and logistics management. 
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