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Abstract 

Classical computers have been present for a long time and they have 

played a significant role in scientific advancements. Quantum 

computing has shown good results in solving complex problems. 

Quantum computers use phenomena of quantum superposition and 

quantum entanglement to form states that scale exponentially with the 

number of qubits or quantum bits [1]. Classical computers use 

individual bits, 0 and 1 to store information as binary data & quantum 

computers use the probability of state before it is measured [2]. 

Therefore, it gives them a potential to process exponentially more data 

as compared to classical computers. Unlike classical computers that 

use binary bits, quantum computers use qubits that are produced by 

quantum state of object to perform operations. Since, these qubits are 

quantum, they follow phenomena like quantum superposition and 

entanglement. Superposition is ability of a quantum system to be in 

multiple states at the same time. Entanglement is the strong correlation 

among quantum particles. These phenomena help quantum computers 

work with 0, 1 and superposition of 0 and 1, giving it advantage of doing 

complex calculations that classical systems cannot do or take a 

significant amount of time to get desired results [3]. Quantum 

computing is used because of its potential for changing time and space 

complexity of many algorithms we have been using as a solution to 

linear system of equations [4]. Quantum simulation is one of the most 

prominent areas of quantum computers, it has the potential to solve the 

complexities of molecular and chemical interactions which can lead to 

the discovery of new medicines and materials. Various applications of 

quantum computing in several significant areas of computer science, 

such as cryptography, machine learning, deep learning and quantum 

simulations. They also use various real-life scenarios such as risk 

analysis, logistics and satellite communication [6]. 
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1. INTRODUCTION 

Quantum computing represents a paradigm shift in 

computational science, harnessing the peculiarities of quantum 

mechanics to potentially solve problems that are intractable for 

classical computers. Unlike classical bits, which are binary and 

can only exist in a state of 0 or 1 at any given time, quantum bits 

or qubits can exist in superpositions of 0 and 1 simultaneously [5]. 

This superposition allows quantum computers to perform many 

calculations in parallel, vastly increasing their computational 

power for certain types of tasks. One of the most promising 

applications of quantum computing is in optimization problems, 

where finding the best solution among a vast number of 

possibilities is essential but computationally intensive. Quantum 

algorithms like Grover’s algorithm can provide a quadratic 

speedup over classical algorithms in searching unsorted 

databases, offering significant efficiency gains. Similarly, Shor’s 

algorithm demonstrates potential exponential speedup for 

factoring large numbers, a crucial capability for breaking many 

classical encryption schemes. Moreover, quantum computers 

excel in simulating quantum systems, which are notoriously 

complex and difficult to model accurately with classical 

computers [9]-[11]. This capability has profound implications for 

fields such as chemistry, materials science, and drug discovery, 

where understanding and predicting the behavior of molecules 

and materials at a quantum level could lead to revolutionary 

advancements. However, the path to practical quantum 

computing is fraught with challenges. Maintaining the delicate 

quantum states of qubits against environmental interference 

(decoherence) is a major hurdle. Error correction in quantum 

systems is also complex and requires sophisticated techniques to 

ensure the accuracy and reliability of computations. Building 

scalable quantum computers that can outperform classical 

systems consistently across a wide range of applications remains 

a formidable goal. In summary, while quantum computing holds 

immense promise for transforming fields ranging from 

cryptography to scientific research, realizing its potential requires 

overcoming significant technical barriers. As research and 

development progress, quantum computing stands poised to 

revolutionize computational capabilities and unlock new frontiers 

in science and technology in the decades to come. 

2. APPLICATIONS 

2.1 CRYPTOGRAPHY 

The first applications of quantum computing, i.e. use of Shor’s 

algorithm [7], can break most widely used public-key 

cryptosystems, such as RSA that use complex mathematical 

problems such as integer factorisation as basis for security. Given 

an integer N= p×q for some prime numbers p and q, Shor was able 

to determine p and q in time O [log (N^3)]. This is exponentially 

faster as compared to any existing classical algorithms. Shor’s 

algorithm is analogous to the hidden subgroup problem (HSP) for 

finite Abelian groups [12]. The HSP is described by a group G, in 

the case of Shor’s algorithm G=ℤ. 

2.2 UNSTRUCTURED SEARCH 

Unstructured data gives rise to a significant portion of total 

data generated. It consists of text, dates and values that result in 

data not organised in any pre-defined manner. In this search 

within a list of k elements, assuming n=2k for the index to become 

an ‘n’ bit string, function f is given such that f:{0, 1}n→{0, 1} to 

tell us whether that specific unique element is present or not. 

Grover’s algorithm, based on quantum computing, was devised in 

1997 for searching in an unstructured data set [8]. Grover’s 

algorithm does not use any internal structure of the given function 
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f, even if it has one. This algorithm requires a time complexity of 

O(√N) , which is an improvement by a quadratic factor over the 

classic computational models. Fig. below shows the complete 

working of Grover’s search algorithm for 3 qubits. The amplitude 

of the marked state becomes negative through the oracle, and then 

that state is amplified. After an appropriate number of iterations, 

the amplitude of the desired state is maximised [13]. Sysoev 

proposed an improvised algorithm based on Grover’s algorithm 

to solve NP-tasks, which would be exponentially faster than the 

speed achieved by Grover’s algorithm. However, this requires the 

use of two quantum systems at the same time to alternate the roles 

between each iteration, and this kind of quantum computational 

model is yet to be developed [14]. 
┌────────────┐     ┌────────────┐┌────────────┐     ┌────────────┐ 

q0: ──┤ Hadamard   ├──■──┤ Hadamard   ├┤ Hadamard   ├──■──┤ Hadamard   ├ 

├────────────┤┌─┴─┐├────────────┤├────────────┤┌─┴─┐├────────────┤ 

q1: ──┤ Hadamard   ├┤ X ├┤ Hadamard   ├┤ Hadamard   ├┤ X ├┤ Hadamard   ├ 

├────────────┤└───┘├────────────┤└───┬────────┘└───┘├────────────┤ 

q2: ──┤ Hadamard   ├─────┤ Hadamard   ├────┤ Hadamard──────┤ Hadamard   ├ 

└────────────┘     └────────────┘    └───────────────┘ 

Fig.1. A 3-Qubit Grover’s search algorithm on a quantum 

computer. 

2.3 AMPLITUDE AMPLIFICATION AND 

ESTIMATION 

Let’s assume that the probability of finding an element x0 in 

the list of elements X [x1, x2, …, xn] is p. Each time we execute 

this search algorithm, the probability of finding the element would 

increase by p, making the probability 2p, 3p, …, and so on. 

Applying the same logic in quantum computations, we get the 

concept of amplitude amplification. We can consider a Boolean 

function f(x), x ∈ X, wherein it’s value is true if x0 = x otherwise, 

it’s false. In amplitude amplification, instead of increasing the 

probability after each iteration, we would be increasing the 

amplitude of being in one amongst the two possible states 

(true/false) residing in a complex separable Hilbert space. The 

quantum algorithm which was proposed by Brassard [15] is a 

generalisation of Grover’s algorithm [8] where there has to be a 

unique solution only. This algorithm can find the element in 

O(1/√p) time, which is a quadratic speedup over classical 

algorithms. Amplitude estimation uses the ideas behind 

Grover’s[8] and Shor’s algorithms[7] to obtain the approximate 

number of times a ‘True value” is obtained in the simulation. 

 

Fig.2. Amplitude Amplification 

2.4 APPLICATIONS OF SEARCH 

Grover’s search and amplitude amplification can be used as 

subroutines for more complicated quantum algorithms. A 

quantum algorithm by Durr and Hoyer [16] can be used to find 

the minimum of an unsorted list of N integers with O(√N) 

evaluations. More generally, it finds the minimum of an unknown 

function f :{0, 1}n ⟶ ℤ. Their algorithm applies Grover’s 

algorithm to a function g:{0, 1}n ⟶ {0, 1} defined by g(x) = 1 if 

and only if f(x) < T, where T is some threshold initially set 

randomly. The threshold is then updated as inputs x are found 

such that f(x) < T. A classical computer requires time O(N^2) in 

the worst case, where N is the number of vertices in the graph. It 

give a quantum algorithm that runs in time O(N^3/2), up to 

logarithmic factors [17]. Efficient algorithms for other graph 

problems, such as strong connectivity, minimum spanning tree 

and shortest path were also proposed. A fundamental problem in 

text processing and bioinformatics is pattern matching. There is 

an algorithm that can find a given pattern p of length m within a 

text t of given length n. The required time is of the order 

O(√n+√m) up to logarithmic factors. The best possible classical 

complexity is O(n+m) [18]-[22]. 

2.5 ADIABATIC QUANTUM COMPUTATION (OR 

QUANTUM ANNEALING): 

Adiabatic quantum computation (AQC) or quantum annealing 

is a unique way to solve optimisation problems. It is used to find 

the global minimum value from the dataset with the help of a 

function. The ground state (lowest energy state) of a complicated 

Hamiltonian describes the solution to the problem. Initially, we 

take a simple Hamiltonian in its ground state to solve the problem. 

Thereafter, a complicated Hamiltonian evolves adiabatically from 

the simple Hamiltonian. The Fig.3 provides a graphical 

representation for the quantum annealing process [23]. According 

to adiabatic theorem, the system will always remain in the ground 

state. The processor D-Wave ‘2X’ from the D-wave company, 

developed recently, can outperform classical processors 

implementing quantum Monte Carlo and simulated annealing 

[24]. Like the Shor’s algorithm, quantum annealing can be used 

to factor integers into primes. This makes it very important from 

the perspectives of cryptography. Burges in [25] did fundamental 

research in this direction. The author used factoring of biprimes 

as a framework for solving combinatorically hard problems using 

optimisation algorithms. His work was further improved by the 

authors[26]. 

 

Fig.3. Graphical representation of Quantum Annealing 
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3. QUANTUM COMPUTING IN MACHINE 

LAERNING 

In machine learning, we develop algorithms which can learn 

from the inputs and give desired outputs from which we expect 

the algorithms to predict values for future unknown inputs. The 

most common use of quantum computing in machine learning is 

using computational speed-ups achieved by quantum algorithms, 

for classical machine learning algorithms. While deep learning 

algorithms use hardware such as quantum annealers (quantum 

computers based on AQC) to enhance performance. 

3.1 NEAREST NEIGHBOUR CLASSIFICATION 

AND K-MEAN CLUSTERING 

A standard algorithm in machine learning, K-nearest 

neighbour (KNN) algorithm takes all the previous data under 

consideration while evaluating a new data item that we need to 

classify based on how similar it is and how it’s neighbours are 

classified. The closer a vector is to another vector, the more 

similar they are. Standard methods for evaluating closeness or 

distance are the inner product, the Hamming distance, or the 

Euclidean. In [27], the authors use a technique of overlap or 

fidelity ⟨a b⟩ of two quantum states ⟨a⟩ and ⟨b⟩ to measure the 

similarity between vectors. The overlap is acquired through a 

subroutine known as a swap test. Based on [27], the authors in 

[28] proposed a quantum algorithm that takes time O(log MN). 

This introduced an exponential speed-up [29]. The authors of [30] 

have presented algorithms for measuring the distance between 

feature vectors. The approach is based on the swap test that 

provides methods for calculating Euclidean distance both directly 

and using the inner product. It is coupled with the use of amplitude 

amplification applied together with Grover’s search. However, 

the representation of classical information through qubits is 

different. In the worst case, the algorithm leads to polynomial 

reductions when compared to Monte-Carlo algorithms.  

 

 

Fig.4. Nearest Neighbour classification and K-mean clustering 

3.2 SUPPORT VECTOR MACHINES (SVM) 

SVMs are the supervised machine learning algorithms for 

classification of data models. They are used for classification 

analysis and also for regression. It uses a test sample for training 

the data model and assigning each value to one of the categories 

available. The task in such problems is to find an optimal 

hyperplane that separates two-class regions very clearly and acts 

as a decision boundary for future inputs. In the early 2000s, the 

authors of [30]-[31] proposed the first version of the quantum 

SVM, which used a variant of Grover’s search. More powerful 

methods have been developed recently. The data input can come 

from, sources such as qRAM accessing classical data, or it can be 

a quantum subroutine preparing quantum states. Specifically, 

quantum phase estimation and matrix invasion are used to create 

the optimal hyperplane and test the input vector, which in 

principle requires time poly log(N). ‘N’ is the dimension of the 

matrix that is required to produce a quantum version of the 

hyperplane vector. The methods described in [32]-[34] can be 

used to analyse data using the HHL algorithm. 

 

 

Fig.5. Support vector machines (SVM) 

3.3 QUANTUM NEAURAL NETWORKS (QNN) 

AND DEEP LEARNING 

QNNs are computational neural networks working on 

principles governed by quantum mechanics. Artificial neural 

networks are researched because of their help in pattern 

recognition and big data applications. It is believed that concepts 

such as entanglement, parallelism and interference can help. An 

increasing number of advancements have explored the idea of 

quantum artificial networks[35]-[37]. Current work in the field 

uses the concept of replacing the classical binary bit with a qubit, 

thus creating a neural unit that is in a superposition of the activated 

and not activated states. Quantum annealers are easily scalable 

and commercially available and well suited for constructing deep 

quantum learning networks [38]. A deep learning network that is 
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the Boltzmann machine is the easiest to approximate[39]. The 

quantum Boltzmann machine outputs quantum data which is in 

qubits. Schuld[40] have concluded in their survey that there are 

no proposals that truly harness the power of quantum computers. 

The reason why this is just theoretical till now is that quantum 

states need to be normalised. Moreover, classical neural networks 

have non-linear dynamics, whereas QNN has linear dynamics. 

 

Fig.6. Neural Network 

3.4 HIDDEN QUANTUM MARKOV MODELS 

A Markov model is a stochastic model that models temporal 

or sequential data which helps in predicting future value based on 

the current information. A hidden Markov model (HMM) is a 

Markov model where states of the model are hidden and can be 

observed only when it is given as output by the state. HMM is 

particularly used to model sequential data in fields such as NLP 

(Natural Language Processing). In 2010, authors of [41] first 

introduced hidden quantum Markov models (HQMMs). HQMMs 

have an edge that they are a generalisation when compared to the 

classical HMM. In [42], the authors have proposed open quantum 

systems with instantaneous feedback to implement the HQMM. 

They also note that HQMMs can find application as simulators of 

stochastic processes. Recently an iterative maximum likelihood 

algorithm has been proposed [43]. The algorithm could 

successfully learn HQMM and better model certain sequential 

data. 

 

Fig.7. Sequential data and 2-States matrices 

4. QUANTUM COMPUTING IN OTHER AREAS 

4.1 FINANCIAL RISK ANALYSIS 

Suppose we have a portfolio of financial products and the 

value of these products profits and losses depends on future 

prices. These future prices are uncertain, and we do not know how 

they will develop with time. This uncertainty raises many 

questions, such as whether a particular investment will yield profit 

or loss. To get these future estimations, many algorithms have 

been developed over time. Value at Risk (VaR) and Conditional 

VaR (CVaR) are the two units for calculating the risk. VaR is used 

to determine the loss distribution, while the CVaR is used to 

determine the expected loss for losses greater than the VaR. CVaR 

is more sensitive to extreme events in the loss distribution. Monte 

Carlo simulations are the most widely used methods to find these 

predictions on classical computers. Monte Carlo simulation is the 

process of generation of random objects or processes that can be 

achieved on a computer. It follows a stochastic model to sample 

the future prices. Also, calculations performed on a classical 

computer takes very long time for big datasets. Quantum methods 

can achieve this very quickly. Quantum techniques not only help 

machine learning to solve financial problems, but can also 

optimise risk returns for the financial assets and portfolios. 

 

Fig.8. Financial risk analysis (VaR, ES and Returns) 

4.2 QUANTUM RANDOM NUMBERS 

Random numbers serve as the fundamental element in several 

applications. Statistical methods, such as bootstrap method, 

require random numbers to work. Random numbers play a very 

significant role in cryptography. It is used in generation of crypto 

codes, which serves as the base for many modern cryptographic 

algorithms. Not just cryptography, it is also used in many other 

programming aspects and well-known algorithms, such as Monte 

Carlo simulation. The deterministic system of present computers 

does not generate truly random numbers. Computers follow 

complex algorithms to generate pseudo-random numbers. These 

pseudo-random numbers serve as a base for cryptography which 

is very critical for privacy. To solve this problem, a random 

number generator is required which follows random physical 

phenomenon. Since, quantum systems are random inherently, 

they are able to generate truly random numbers. A good 

demonstration for construction of a cheap, simple, and easy to use 

quantum random number generator. This prototype is small 

(68×150×188 mm) and fast enough to be implemented for 

cryptography. It is possible to make a quantum random number 
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generator based on a beam splitter that generates true binary 

random signals at a rate of 1 Mbit/s having an autocorrelation time 

of 11.8 ns [50]. For prospects, it is feasible to develop a random 

number generator based on quantum mechanism that will produce 

truly random numbers at a rate of 1 Gbit/s or even above that [44]. 

 

 

Fig.9. Monte-Carlo Simulation and Random measured bits 

4.3 SATELLITE COMMUNICATION 

Although quantum computer is in its initial state, but many 

algorithms and protocols have been developed, which can help in 

communication. At present, many applications are reliant on 

satellite and play a vital role in our day-to-day life. These are 

television, telephones, weather, navigation, business and finance, 

earth observation, space station, military and security purposes. 

Its applications have become an integral part of our life. A 

quantum channel is a communication channel meant to transfer 

classical or quantum information to a satellite. A free quantum 

space is required for communication to be made possible. In 

future, it is possible that free-space quantum key distribution 

applications can have direct communication: free space, satellite-

to-satellite, and ground-to-satellite communication will be 

possible on low earth orbit, middle earth orbit, and geostationary 

orbits [45]. 

 

Fig.10. Satellite communication and the transmission of photons 

5. CONCLUSION 

Quantum computing represents a transformative leap in 

computational power and capability compared to classical 

computing. At its core, quantum computers leverage the 

principles of quantum mechanics—superposition, entanglement, 

and quantum interference—to process information in 

fundamentally different ways. This enables them to potentially 

solve certain types of problems much faster than classical 

computers. For instance, tasks like factoring large numbers 

(crucial for cryptography) or simulating complex quantum 

systems could be executed exponentially faster with quantum 

algorithms. This speed and efficiency stem from the ability of 

quantum bits (qubits) to exist in multiple states simultaneously, 

exploring many solutions at once. Beyond speed, quantum 

computing could revolutionize fields such as drug discovery, 

materials science, and artificial intelligence by tackling problems 

that are computationally prohibitive for classical machines. 

However, realizing this potential requires overcoming substantial 

technical challenges, such as qubit stability and error correction, 

before quantum computers can reliably outperform classical 

systems across a broad range of applications. Nonetheless, the 

promise of quantum computing underscores its potential to 

reshape computing and scientific discovery in profound ways in 

the coming decades.  

APPENDIX 

It is demonstrated that quantum computers have a significant 

advantage. There are several quantum algorithms that provide an 

edge over classical algorithms. Quantum simulations continue to 

attract researchers in quantum computations for several years, 

because of its wide possibilities. Novel and practical use cases for 

existing quantum algorithms is a useful future research direction. 

Quantum computers are expected to be made available via cloud 

computing in the future, which will make their integration with 

our existing classical computers easier. Quantum computations 

and its applications will be an exciting field for research because 

of its endless possibilities in future. 
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