
ISSN: 2583-9292 (ONLINE)                                                                      ICTACT JOURNAL ON DATA SCIENCE AND MACHINE LEARNING, MARCH 2024, VOLUME: 05, ISSUE: 02 
DOI: 10.xx/ijdsml.2023.xx 

608 

ENHANCING REMOTE SENSING IMAGE FUSION AND CLASSIFICATION 

ACCURACY USING DEEP LEARNING MODELS 

G. Brindha 
Department of Artificial Intelligence and Data Science, Dr. N.G.P. Institute of Technology, India   

Abstract 

Remote sensing imagery has become a pivotal source for land-use 

information at broad spatial scales due to advancements in satellite 

technology. However, challenges persist in accurately segmenting and 

classifying remote sensing data, particularly with high-resolution 

imagery. This paper proposes a novel hybrid deep learning model for 

spatiotemporal fusion to address these challenges, integrating SRCNN 

and LSTM models. The SRCNN enhances spatial details using 

MODIS-Landsat image pairs, while the LSTM learns phenological 

patterns in the enhanced images, facilitating dynamic agricultural 

system predictions. Evaluation comparing against benchmark fusion 

models. Implementation details are provided, including the use of loss 

functions for image segmentation and training specifics. Results 

demonstrate superior performance in land cover extraction accuracy 

compared to existing models, with an overall accuracy of 95.77% and 

a mean Intersection over Union (MIoU) of 82.23%. This study 

highlights the effectiveness of the proposed hybrid model in capturing 

both spatial and temporal dynamics, essential for applications ranging 

from land cover mapping to disaster assessment. 
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1. INTRODUCTION 

Currently, remote sensing pictures are considered the gold 

standard for doing land-use analysis on a wide scale [1]. There 

has been a substantial improvement in the spatial-temporal 

resolution of remote sensing imagery as a result of the continued 

development of satellite remote sensing technology and remote 

sensing platforms. When it comes to remote sensing imagegraphs, 

the data that is obtained by high-resolution satellite sensors for 

remote sensing delivers more clear ground geometry, spatial 

information, and rich texture information. The spatial resolution 

of hyperspectral remote sensing satellite data is frequently 

insufficient for use in remote sensing applications, despite the fact 

that the data contains a wealth of spectral information. Surface 

feature extraction, categorization, and application are all 

simplified as a result of the wealth of surface feature information 

that is present in high-resolution satellite remote sensing images. 

Due to the extremely robust feature extraction capabilities that 

image segmentation algorithms possess, an increasing number of 

academics are adding them into the process of remote sensing 

picture categorization [2].  

GEographic Object-Based Picture Analysis (OBIA) is said to 

rely extensively on picture segmentation, as evidenced by [3]. 

Accurate remote sensing data segmentation could be of 

tremendous use for a wide variety of applications, including but 

not limited to mapping land cover and agricultural monitoring, 

urban development surveys, and disaster damage assessment [4]. 

Picture segmentation, which involves classifying images down to 

the pixel level, is an essential area of study for remote sensing 

image classification [5].  

Image segmentation is a subfield of image classification. 

Pictures are often segmented using methods that entail the 

extraction of features and the classification of those features [6,7]. 

The tasks involved in remote sensing image categorization are as 

diverse as the fields that make use of and perform operations on 

these images. Throughout the course of history, the major basis 

for the categorization of remote sensing pictures has been the 

spectral disparities of ground features, with prior knowledge 

playing a secondary role. The differentiation of different ground 

features can be accomplished by the utilization of a wide range of 

spectral properties [8,9].  

The classification of common ground characteristics such as 

water, agricultural land, and vegetation is accomplished by the 

utilization of normalized difference indices (NDWI, NDVI, 

NDBI, and so on) [10,11,12]. On the other hand, when we are 

presented with the phenomenon of “same spectral from different 

materials” and “same material with different spectral,” we may 

experience misclassification and accuracy concerns as a result of 

depending entirely on spectral information for the categorization 

of ground features. Within the realm of high-resolution remote 

sensing pictures, the spectral resolution is quite modest, while the 

spatial resolution is quite great. 

2. DATASET 

The Gaofen Image Dataset (GID) serves as a benchmark 

dataset that we employ in order to validate the methodologies that 

we have developed. For the purpose of training CNN models, the 

research investigation utilized partially processed GF-2 satellite 

images from the GID dataset, which is accessible to the general 

public. These images only comprise green, blue, and red bands. 

The fine land-cover classification set and the large-scale 

classification are the two fundamental components that make up 

the Geographic Information System (GID).  

Annotations are made for five exemplary land-use categories 

in the case of the former. These categories include urban, 

agricultural, woodland, meadow, and water. These different land-

use categories were represented by the colors red, green, blue, 

cyan, and yellow. These colors were used to identify the 

categories. Additionally, regions that do not fall into any of the 

five categories, as well as any areas that are considered to be 

clutter zones, are designated as backdrop and colored black. There 

are 15 subcategories that are included in the fine land-cover 

categorization set.  

These subcategories include paddy field, irrigated farmland, 

dry cropland, garden, arbor forest, shrub, natural meadow, 

artificial meadow, industrial, urban, rural, residential, traffic, 

river, lake, and pond. The annotation of unknown regions is also 

performed in the event that these locations do not fall into any of 

the categories or if they were not manually identified. 
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3. HYBRID DEEP LEARNING MODEL 

In this study, we have created a new hybrid deep learning 

model for spatiotemporal fusion in order to better the prediction 

of spatially detailed information and variable phenological 

changes in dynamic agricultural systems. This was done in order 

to improve the accuracy of our predictions. The SRCNN model is 

trained to enhance the spatial details using MODIS-Landsat 

picture pairs as part of the hybrid deep learning model. 

Meanwhile, the LSTM model is trained to recognize patterns of 

phenological change in these improved images. Both models are 

trained to improve spatial details.  

In addition, we develop three scenarios that depict different 

degrees of phenological changes that occur over the course of 

time in the fusion images. The phenological transition dates of the 

crop are used to determine if these scenarios involve rapid, 

moderate, or minimal phenological changes. Following that, we 

put the hybrid deep learning model through its paces by putting it 

through its paces under a variety of phenological change 

thresholds. The final decision is to select three benchmark image 

fusion models, namely STARFM, FSDAF, and STFDCNN, in 

order to conduct a more comprehensive evaluation of the 

performance of the model. 

During the process of spatiotemporal image fusion, it is 

possible to retrieve both the spatial linkage between coarse 

MODIS and fine Landsat pictures as well as the temporal 

relationship between images that were taken on different dates. It 

is required to retrieve spatial and temporal linkages with a high 

level of accuracy to develop fusion models that are useful. During 

our investigation, we successfully developed a hybrid architecture 

for deep learning models that is capable of managing both kinds 

of interactions. The SRCNN and LSTM models are what make up 

the hybrid deep learning model. This model is a blend of the two. 

It is decided to employ the SRCNN model because of its 

convolutional operations’ ability to restore the spatial information 

that has been degraded in coarse images and to register the 

reflectance of both coarse and fine images.  

SRCNN is an effective model for mapping spatial properties 

in satellite data. This is mostly due to the fact that its construction 

is quite lightweight. After that, the LSTM model’s one-of-a-kind 

recurrent network structure is utilized in order to carry out the 

process of learning the temporal phenological changes that occur 

among the SRCNN-derived pictures. This is accomplished with 

the assistance of the registered reflectance and the restored spatial 

information. 

3.1 HYBRID DEEP LEARNING - LSTM 

With the help of the long short-term memory (LSTM) 

component of the hybrid deep learning model, the objective is to 

acquire knowledge of phenological patterns that have developed 

over time from a collection of imagegraphs. In addition to 

resolving the issue of disappearing gradients that is associated 

with RNN, LSTM improves the structure of the network cells by 

incorporating a gating mechanism. This mechanism enables the 

storage of information in memory for longer periods of time. It 

selectively keeps specific data in memory and adds new data to 

represent the patterns of change in the sequential data in order to 

regulate the flow of information that is changing over time.  

This allows it to control the flow of communication that is 

occurring. By utilizing a mix of gates and memory cells, long-

term short-term memory (LSTM) models are able to learn the 

characteristics that vary over time from a collection of images. 

This allows them to make predictions about future time series. 

Consequently, the peculiar design of LSTM offers significant 

promise for describing complex temporal phenological 

fluctuations across satellite data.  

A cell state, an input gate, a forget gate, and an output gate are 

the components that make up a conventional LSTM cell unit. 

These components are used to regulate the transfer of data. The 

regulation of these gates makes it possible to bring about the 

gradual addition, deletion, or updating of information that is 

stored in the state of the cell. 

4. IMPLEMENTATION  

The Keras framework is utilized in conjunction with the 

Tensorflow backend in order to accomplish the creation of the 

hybrid deep learning model. Testing and training are carried out 

with the assistance of a GPU accelerator manufactured by 

NVIDIA and referred to as a GK110 “Kepler” K20X. The 

optimizer that the hybrid model uses is called Adam, and it is a 

system that makes use of adaptive learning rates. For determining 

the initial learning rate, an empirical value of 0.001 is utilized. 

The sub-images will be extracted from the original images on a 

regular basis by SRCNN.  

10000 of these sub-images will be used for training purposes 

at random, and two thousand and five hundred will be reserved 

for testing. During the training phase of the Long Short-Term 

Memory (LSTM) approach, a random selection of 150,000 

picture pixels is utilized, whereas the testing phase utilizes 30,000 

pixels. To make use of the graphics processing unit’s random-

access memory (RAM), the mini-batch size has been set to 128. 

Table.1. Effect of different loss functions on road segmentation 

results. 

Loss Function OA (%) MioU (%) Kappa 

Softmax Loss 95.24 71.96 0.64 

Dice Loss 95.20 74.27 0.68 

BCE Loss 95.24 72.27 0.64 

Dice Loss + BCE Loss 95.27 74.30 0.68 

The DICE and BCE loss functions are combined in this study 

in order to increase the detect accuracy for surface characteristics 

such as highways. Other surface features, on the other hand, 

continue to employ the softmax loss function. An increase in the 

total classification accuracy is achieved by the complete 

application of these loss functions. We analyze the performance 

of the softmax and DICE-BCE loss functions in road picture 

segmentation on the basis of their respective capabilities. A 

breakdown of the results of the classification accuracy is 

presented in Table.1. The results for road ground characteristics 

are improved when the DICE-BCE loss function is applied, as 

opposed to simply applying the softmax loss function. 
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Table.2. Performance Analysis 

Model 

Category 

SRCNN LSTM SRCNN 

CA (%) IoU (%) CA (%) IoU (%) 

Desert 95.85 93.90 96.46 95.18 

Cotton 90.78 86.28 92.88 88.89 

Roads 72.68 56.15 95.27 74.30 

Water 89.09 83.68 91.40 87.84 

Wetland 90.38 86.17 92.98 89.83 

Uncultivated land 83.50 78.38 89.13 84.67 

Jujube trees 84.27 75.51 87.72 83.48 

Populus euphratica 83.68 73.70 85.95 79.79 

Buildings 84.19 80.89 89.95 86.82 

Woodland 82.64 79.87 85.91 81.58 

pear trees 89.39 79.31 90.83 85.46 

backgrounds 94.97 90.61 95.73 92.44 

OA (%) 93.62 95.77 

MIOU (%) 80.38 85.77 

Kappa coefficient 0.92 0.94 

By employing indicators such as OA, MIoU, Kappa 

coefficient, CA, and IoU, we are able to objectively and 

accurately evaluate the impact that each model has on the 

extraction accuracy of various land covers by making use of the 

test set. The results presented in Table.2 demonstrate that the 

model achieves an overall accuracy of 86.16% while it is being 

pre-trained on the COCO dataset.  

5. CONCLUSION 

The purpose of this work is to provide a comprehensive 

technique for evaluating remote sensing images, with a particular 

emphasis on the development of a hybrid deep learning model for 

spatiotemporal fusion. To appropriately segmenting and 

categorizing high-resolution remote sensing data, the suggested 

method combines SRCNN and LSTM models. This allows the 

method to overcome challenging situations. The intensive testing 

and evaluation that was performed on the dataset demonstrates 

that the model is capable of accurately representing both spatial 

and temporal dimensions of dynamics. When compared to 

benchmark fusion models, fusion models with high mean 

Intersection over Union (MIoU) scores and overall accuracy 

exhibit superior operational performance. There are many 

different applications for remote sensing that can benefit from the 

insights acquired from this study. Some of these applications 

include mapping land cover, monitoring urban development, and 

evaluating the damage caused by disasters. With additional 

applications and modifications of the hybrid deep learning model, 

there is the potential for a significant improvement in the global 

knowledge and management of dynamic environmental systems. 
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